
TDA362/DIT224 – Computer Graphics

Teacher: Ulf Assarsson

Chalmers University of Technology

Starting 10:00 …

+ =>

This Course

• Algorithms!

Real-time Rendering

Understanding Ray Tracing

Course Info
• Study Period 2 (lp2)
• Real Time Rendering, 4th edition

– Available on Cremona
at discount.

• Schedule:
– Mon 13-15, w2 only
– Tues 10-12,
– Fri 9-12,

• ~14 lectures in total, ~2 / week

– Lab slots:
• Mon: 17-21
• Tues: 13-21
• Wed: 13-21
• Thur: 9-12 + 17-21

• Homepage:
– Google “TDA362” or
– “Computer Graphics Chalmers”

https://se.timeedit.net/web/chalmers/db1/public/ri.html?h=f&sid=3&p=20151102.x,20160110.x&objects=201968.182&ox=0&types=0&fe=0&h2=f
http://www.cse.chalmers.se/edu/course/TDA361/index.html

Tutorials

 All laborations are in C++ and OpenGL

◦ Industry standard

◦ No previous (C++) knowledge required

 Six shorter tutorials that go through basic concepts

◦ Basics, Textures, Camera&Animation, Shading, Render-to-texture,

Shadow Mapping

 One slightly longer lab where you put everything

together

◦ Real-time rendering

 or

◦ Path tracer

Tutorials 1-6

Rendering a

triangle
Textures Animation

Shading Render to

textures

Shadow maps

Screen-space

ambient occlusion
Particle System Height field

Path Tracing

Project

Real-time rendering Offline rendering

Project
Choose at least 1 from:

Custom environment map (difficult)

or

Tutorials
• Info: http://www.cse.chalmers.se/edu/course/TDA362/tutorials.html

• To pass the tutorials:

– Present your solutions to lab assistant.

– Deadlines:

• Lab 1+2+3: Thursday week 2.

• Lab 4 : Thursday week 3.

• Lab 5+6: Thursday week 4

• Lab 7 / Project: Thursday week 7.

• Do the tutorials in groups (Labgrupper) of two, or individually if you

prefer.

• First deadline: Thurs. next week.

http://www.cse.chalmers.se/edu/course/TDA362/tutorials.html

Computer Graphics:
– two main principles…

…for computer-generating the appearance of a virtual 3D scene:

• Ray Tracing:

– Forward ray tracing: Tracing light beams

from light sources and how they reach the

virtual camera.

– Backward ray tracing: Tracing the light

beams backwards, i.e., from the camera

and all the way back to the light sources.

• Rasterization:

– Draw the scene triangles one by one onto the pixels of the

screen and, for each pixel, compute the color (by regarding

light sources and perhaps also surrounding objects).

Forward Ray Tracing
Forward ray tracing is simple and automatically gives

correct intensity (energy) distribution on screen.

“Trace some trillion photons and you probably have a good image.”

Backward Ray Tracing
Backward ray tracing is more efficient, but finding correct

intensity (energy) and relevant incoming light directions

is a sampling problem with more

careful maths for

correctness.

“Trace a billion rays backwards and you probably have a great image.”

?

?

Forward Ray Tracing
One way to form an image is to

follow rays of light (or photons)

from a point source finding which

rays enter the lens of the

camera. Each ray of light may have

multiple interactions with objects

before being absorbed or going to

infinity.

Pros: Algorithmically very easy to generate physically

correct images.

Cons: Extremely slow. Only few of the traced rays will reach

the camera sensor and actually contribute to the image.

“Trace some trillion photons and you probably have a good image.”

Backward Ray Tracing

• Follow rays of light backwards, i.e., from the camera
sensor (center of projection) into the scene until they
either are absorbed by objects or go off to infinity.

– At each bounce position, estimate incoming light intensity and
color by following possible bounce directions,
given the material.

– Cons: Complicated but possible to get accurate
convergence. We use Monte-Carlo sampling
theory from maths for how to best sample an
unknown signal. E.g., we do not
know photon density nor from which direction
the photon came. Combinations of forward
+ backwards ray tracing can be used to
remedy this.

– Pros: Faster but still slow compared to rasterization

“Trace a billion rays backwards and you probably have a great image.”

based on Rasterization

Overview of the

Graphics Rendering Pipeline

and OpenGL

Real-Time Rendering

DirtRally2.0.mp4

Z

X

Y

3D-models: surfaces are constructed by triangles.

4926 triangles
Why triangles?

Z

X

Y

(x,y,z)-position

Each triangle is projected onto the image plane using a

virtual camera.





































••

••

••

w

z

y

x

ts

ts

ts

zz

yy

xx

1000

=

’

’

’

’

4D Matrix Multiplication

Z

X

Y

The graphics card draws the triangles onto the screen.

Z

X

Y

(x,y,z) Light source

(x,y,z)-position

How compute pixel color?
light

blue

red green

Exaggerated example

Use some shading model based

on light sources and triangle’s

material:

At rendering (for each frame):

• The graphics card computes, the

reflected light toward the camera.

• per pixel (or per vertex and

using interpolation per pixel),

• This depends on the light and

material parameters.

Z

X

Y

• The texture color is modulated

(often just multiplied) with the light

intensity to get the final pixel color.

Triangle colors:
are typically multiplied with the lighting contribution. Instead of one single

color per triangle, you can use a texture (=image) – to simulate details and

materials.

+ =

Specify which part of the texture that

each triangle covers.

=>

Z

X

Y

Texture Maps

Each triangle’s mapping to texture space

Summary of this very simple type of shading model:

Z

X

Y

triangles lighting + texturing

There are many others. Details are given in Lecture 3+4.

The Graphics Rendering

Pipeline

The Application stage, geometry stage, and rasterizer stage

You say that you render a

”3D scene”, but what is it?

• First, of all to take a picture, it takes a camera – a

virtual one.

– Decides what should end up in the final image

• A 3D scene is:

– Geometry (triangles, lines, points, and more)

– Light sources

– Material properties of geometry

• Colors, shader code ,

• Textures (images to glue onto the geometry)

• A triangle consists of 3 vertices

– A vertex is 3D position, and may have an

attached normal, color, texture coordinate, ….

Lecture 1: Real-time Rendering

The Graphics Rendering Pipeline

• The pipeline is the ”engine” that creates

images from 3D scenes

• Three conceptual stages of the pipeline:

– Application (executed on the CPU)

– Geometry

– Rasterizer

Application Geometry Rasterizer

3D

sceneinput

Image

output

The APPLICATION stage

• Executed on the CPU

– Means that the programmer decides what
happens here

• Examples:

– Collision detection

– Speed-up techniques

– Animation

• Most important task: feed geometry stage
with the primitives (e.g. triangles) to render

Application Geometry Rasterizer

The GEOMETRY stage

•

• Allows:

– Move objects (matrix multiplication)

– Move the camera (matrix multiplication)

– Lighting computations per triangle vertex

– Project onto screen (3D to 2D)

– Clipping (avoid triangles outside screen)

– Map to window

Application Geometry Rasterizer

Task: ”geometrical” operations

on the input data (e.g. triangles)

The GEOMETRY stage

Application Geometry Rasterizer

Vertex

Shading

Projection Clipping Screen

Mapping

• Vertex Shader

– A program executed

per triangle vertex,

computing:

• Transformations

• Projection (3D->2D)

• Compute a color per

vertex

• Clipping

• Screen Mapping

The RASTERIZER stage
• Main task: take output from GEOMETRY

and turn into visible pixels on screen

Application Geometry Rasterizer

⚫ Computes color per pixel, using fragment
shader (=pixel shader)

- textures, (light sources, normal), colors and various
other per-pixel operations

⚫ And visibility is resolved here using the
fragment’s z-value to check its visibility

The rasterizer stage

Triangle

Setup

Triangle

Traversal

Pixel

Shading

Merging

Triangle Setup:

• collect three vertices + interpolated vertex shader output (incl.

normals) and make one triangle.

Triangle Traversal

• Scan conversion or

rasterization

Pixel Shading

• Compute pixel color

Merging:

• output color to screen

Application Geometry Rasterizer

The three stages’

correlation to hardware

The Application stage, geometry stage, and rasterizer stage

Rendering Pipeline and
Hardware

Application Stage Geometry Stage Rasterization Stage

CPU GPU

Tomas Akenine-Mőller © 200331

Rendering Pipeline and
Hardware

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Appli-

cation
Stage

CPU

Geometry Stage Rasterization Stage

GPU

Tomas Akenine-Mőller © 200332

Hardware design

light

Geometry

blue

red green

Vertex shader:

•Lighting (colors)

•Screen space positions

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Geometry Stage

Tomas Akenine-Mőller © 200333

Hardware design Geometry shader:

•One input primitive

•Many output primitives

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

or

Geometry Stage

Tomas Akenine-Mőller © 200334

Hardware design Clips triangles against

the unit cube (i.e.,

”screen borders”)

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Geometry Stage

Tomas Akenine-Mőller © 200335

Hardware design Maps window size to

unit cube

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Geometry stage always operates inside

a unit cube [-1,-1,-1]-[1,1,1]

Next, the rasterization is made against a

draw area corresponding to window

dimensions.

Geometry Stage

Hardware design

Tomas Akenine-Mőller © 200336

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Collects three vertices

into one triangle

Rasterizer Stage

Hardware design

Tomas Akenine-Mőller © 200337

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Creates the

fragments/pixels for the

triangle

Rasterizer Stage

blue

red green

38

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Pixel Shader:

Compute color

using:

•Textures

•Interpolated data

(e.g. Colors +

normals) from

vertex shader
Rasterizer Stage

Graphics Hardware

Hardware design

Tomas Akenine-Mőller © 200339

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Frame buffer:

• Color buffers

• Depth buffer

• Stencil buffer

The merge units update

the frame buffer with the

pixel’s color

Rasterizer Stage

• Vertex shader: reads from textures. Writes

outputs per vertex, which are interpolated

and input to the fragment shader invocation

per pixel.

• Fragment shader: reads from textures, writes

to pixel color.

• Memory: Texture memory (read + write)

typically 4 GB – 16 GB

• Program size: the smaller the faster

What are vertex and fragment (pixel)
shaders?

Department of Computer Engineering

// Fragment Shader, exec. per fragment

#version 420

precision highp float; // 32-bits floats

in vec3 vsOutColor; // interpolated input

 from vertex shader

layout(location = 0) out vec4 fragColor;

 // Here, location=0 means that we draw

to frameBuffer[0], i.e., the screen

void main()

{

 fragColor = vec4(vsOutColor,1);

}

// Vertex Shader, executed per vertex

#version 420

layout(location = 0) in vec3 vertex; // x,y,z

layout(location = 1) in vec3 color; // r,g,b

out vec3 vsOutColor; // output result for this vertex

uniform mat4 modelViewProjectionMatrix;

void main()

{

 gl_Position = modelViewProjectionMatrix *

 vec4(vertex,1); //Project the vertex from 3D

 vsOutColor = color; // Output for this vertex. Will

 // be interpolated input to

 // fragment shader

}

Shaders

v0, c0

v = vertex (x,y,z)

c = color (r,g,b)

Department of Computer Engineering

Shaders

vec3 compute_color()

{

 vec4 gbuffer = texture2D(tex0, uv_0);

 int intColor = int(gbuffer.x);

 int r = (intColor/256)/256;

 intColor -= r*256*256;

 int g = intColor/256;

 intColor -= g*256;

 int b = intColor;

 vec3 color = vec3(float(r)/255.0, float(g)/255.0,

float(b)/255.0);

 normal = vec3(sin(gbuffer.g) * cos(gbuffer.b),

 sin(gbuffer.g)*sin(gbuffer.b), cos(gbuffer.g));

 vec2 ang = gbuffer.gb*2.0-vec2(1.0);

 vec2 scth = vec2(sin(ang.x * PI), cos(ang.x * PI);

 vec2 scphi = vec2(sqrt(1.0 - ang.y*ang.y), ang.y);

 normal = -vec3(scth.y*scphi.x, scth.x*scphi.x, scphi.y);

 roughness = 0.05;

 specularity = 1.0;

 fresnelR0 = 0.3;

 return color;

}

precision highp float;

uniform sampler2D tex0;

uniform sampler2D tex1;

uniform sampler2D tex2;

uniform sampler2D tex3;

uniform float val;

varying vec2 uv_0;

varying vec3 n;

void main(void) {

 gl_FragColor.rgb = compute_color();

 gl_FragColor.a = 1.0;

}

Example of a more advanced fragment shader:

OpenGL
(Open Graphics Library)

CPU-side

Language: C++

API: OpenGL (Direct3D)

Window system: SDL (Cocoa, Win32,…)
C++:
float positions[] = {
// X Y Z per vertex

0.0f, 0.5f, 1.0f, // v0
-0.5f, -0.5f, 1.0f, // v1
0.5f, -0.5f, 1.0f // v2
... // ... vn

};
// and any other per-vertex data, e.g.:
float colors[] = {
// R G B

1.0f, 0.0f, 0.0f, // c0
-0.0f, 1.0f, 0.0f, // c1
0.0f, 0.0f, 1.0f // c2
... // ... cn

};
float normals[] = {...};
float textureCoords[] = {...};

OpenGL C++ API:
Vertex-buffer objects

uint32 positionBuffer; // x,y,z per vertex
uint32 colorBuffer; // r,g,b per vertex

Vertex-Array object // groups the arrays
uint32 vertexArrayObject;

Shaders
uint32 vertexShader;
uint32 fragmentShader;
uint32 shaderProgram;

GPU-side

Language: GLSL

 used for vertex- ,geometry-, and

 fragment shaders

Vertex Shader:
#version 420

layout(location = 0) in vec3 position;

layout(location = 1) in vec3 color;

out vec3 outColor; // r,g,b

void main()

{
gl_Position = vec4(position, 1.0);

outColor = color;
}

Fragment Shader:
#version 420

precision highp float; // required by GLSL spec Sect 4.5.3

// (though nvidia does not, amd does)

layout(location = 0) out vec4 fragmentColor;
in vec3 outColor;

void main()
{

// fragmentColor = vec4(1,1,1,1);
fragmentColor.rgb = outColor;

fragmentColor.a = 1.0;

}

Per-pixel-interpolated value

(0,0) (1,0)

(1,1)(0,1)

(u0,v0)

(u1,v1)

(u2,v2)

CPU-side

Language: C++

API: OpenGL (Direct3D)

Window system: SDL (Cocoa, Win32,…)
C++:
float positions[] = {
// X Y Z

0.0f, 0.5f, 1.0f, // v0
-0.5f, -0.5f, 1.0f, // v1
0.5f, -0.5f, 1.0f // v2
... // ... vn

};
// and any other per-vertex data, e.g.:
float colors[] = {
// R G B

1.0f, 0.0f, 0.0f, // c0
-0.0f, 1.0f, 0.0f, // c1
0.0f, 0.0f, 1.0f // c2
... // ... cn

};
float normals[] = {...};
float textureCoords[] = {...};

OpenGL C++ API:
Vertex-buffer objects

uint32 positionBuffer; // x,y,z per vertex
uint32 colorBuffer; // r,g,b per vertex

Vertex-Array object // groups the arrays
uint32 vertexArrayObject;

Shaders
uint32 vertexShader;
uint32 fragmentShader;
uint32 shaderProgram;

GPU-side

Language: GLSL

 used for vertex- ,geometry-, and

 fragment shaders

Vertex Shader:
#version 420

layout(location = 0) in vec3 position;

layout(location = 1) in vec3 color;

out vec3 outColor;

void main()

{
gl_Position = vec4(position, 1.0);

outColor = color;
}

(0,0) (1,0)

(1,1)(0,1)

(u0,v0)

(u1,v1)

(u2,v2)

How to connect the

vertexArrayObject as vertex

shader input (position, color):

glGenVertexArrays(1, &vertexArrayObject);
// Following commands now affect this vertex array object.
glBindVertexArray(vertexArrayObject);

// Makes positionBuffer the current array buffer for subsequent commands.
// and attaches positionBuffer to vertexArrayObject,
glBindBuffer(GL_ARRAY_BUFFER, positionBuffer);
// Connect positions to location 0. 3 floats per vertex
glVertexAttribPointer(0, 3, GL_FLOAT, …, positions);

// Makes colorBuffer the current array buffer for subsequent commands.
// and attaches colorBuffer to vertexArrayObject,
glBindBuffer(GL_ARRAY_BUFFER, colorBuffer);
// Connect colors to location 1. 3 floats per vertex
glVertexAttribPointer(1, 3, GL_FLOAT, …, colors);

glEnableVertexAttribArray(0); // Enable attribute array 0

glEnableVertexAttribArray(1); // Enable attribute array 1

A Simple Program
Computer Graphics version of “Hello World”

Generate a triangle on a solid background

Graphics Pipelines
BONUS

77

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

We focus on:

Tesselation shaders

Mesh shaders (still quite new):

Compatibility:

• OpenGL 4.3

• WebGL 2

• OpenGLES 3

i.e., phones, web,

PCs…

Compatibility:

• OpenGL 4.5

extension

• DirectX 12

Ultimate

• Vulcan

Full traditional pipeline: =>

int main(int argc, char *argv[])

{

 // open window of size 512x512 with double buffering, RGB colors, and Z-buffering

 g_window = labhelper::init_window_SDL("OpenGL Lab 1”, 512, 512);

 initGL(); // Set up our shaderProgram and our vertexArrayObject

 while (true) {

 display(); // render our geometry

 SDL_GL_SwapWindow(g_window); // swap front/back buffer. Ie., displays the frame.

 SDL_Event event;

 while (SDL_PollEvent(&event)) {

 if (event.type == SDL_QUIT || (event.type == SDL_KEYUP &&

 event.key.keysym.sym == SDLK_ESCAPE)) {

 labhelper::shutDown(g_window);

 return 0;

 }

 }

 }

 return 0;

}

Simple Application...

void display(void)

{

// The viewport determines how many pixels we are rasterizing to

int w, h;

SDL_GetWindowSize(g_window, &w, &h);

glViewport(0, 0, w, h); // Set viewport

// Clear background

glClearColor(0.2, 0.2, 0.8, 1.0); // Set clear color - for background

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clears the color buffer and the z-buffer

glDisable(GL_CULL_FACE); // Both front and back face of triangles should be visible

// DRAW OUR TRIANGLE(S)

glUseProgram(shaderProgram); // Shader Program. Sets what vertex/fragment shaders to use.

// Bind the vertex array object that contains all the vertex data.

glBindVertexArray(vertexArrayObject);

// Submit triangles from currently bound vertex array object.

glDrawArrays(GL_TRIANGLES, 0, 3); // Render 1 triangle (i.e., 3 vertices), starting at vertex 0.

glUseProgram(0); // "unsets" the current shader program. Not really necessary.

}

Lab 1 will teach you this, i.e., setting up

a shader program and vertex arrays.

Example of a simple GfxObject class

class GfxObject {
public:
 load(“filename”); // Creates m_shaderProgram + m_vertexArrayObject
 render()
 {
 /* You may want to initiate more OpenGL states, e.g., for
 textures (more on that in further lectures) */
 glUseProgram(m_shaderProgram);

 glBindVertexArray(m_vertexArrayObject);

 glDrawArrays(GL_TRIANGLES, 0, numVertices);
 };
private:
 uint numVertices;
 Gluint m_shaderProgram;
 GLuint m_vertexArrayObject;
};

Example:
GfxObject myCoolObject;
myCoolObject.load(“filename”);

In display():
 myCoolObject.render();50

The Geometry stage and

Rasterizer stage

in more detail

Rewind!

Let’s take a closer look

• The programmer ”sends” down primtives to

be rendered through the pipeline (using API

calls)

• The geometry stage does per-vertex

operations

• The rasterizer stage does per-pixel

operations

• Next, scrutinize geometry and rasterizer

Application Geometry Rasterizer

Geometry Stage:

– vertex transformation

Application Geometry Rasterizer

model space world space world space

e.g., compute lighting

camera space

Do projection

clip space

(or unit space)

clip
map to screen

screen space

Done in vertex shader
Fixed hardware function

Virtual Camera

• Defined by position, direction vector, up
vector, field of view, near and far plane.

point
dir

near

far
fov

(angle)

⚫ Create image of geometry inside gray region

⚫ Used by OpenGL, DirectX, ray tracing, etc.

• You can move the camera in the same

manner as objects

• But apply inverse transform to objects, so

that camera looks down negative z-axis

z x

Application Geometry RasterizerGeometry Stage:

– vertex transformation

The view transform

• Compute full or partial lighting information for fragment shader
(e.g., light direction, normal, and vertex position)

Application Geometry Rasterizer

light

Geometry

blue

red green

Rasterizer

⚫ Much more about this in later lecture

Geometry Stage:

– vertex transformation

Lighting

Why a normal

per vertex?

Flat shading

Smooth shading

to shade as a curved surface

although triangle is flat

Application Geometry Rasterizer

• Two major ways to do it

– Orthographic (useful in few applications)

– Perspective (most often used)

• Mimics how humans perceive the world, i.e., objects’ apparent

size decreases with distance

Orthographic projection Perspective projection

Geometry Stage:

– vertex transformation

Projection

• Also done with a matrix multiplication!

• Pinhole camera (left), analog used in CG

(right)

Application Geometry RasterizerGeometry Stage:

– vertex transformation

Projection

GEOMETRY
Clipping and Screen Mapping

• Square (cube) after projection

• Clip primitives to square

Application Geometry Rasterizer

⚫ Screen mapping, scales and translates the
square so that it ends up in a rendering window

⚫ These ”screen space coordinates” together
with Z (depth) are sent to the rasterizer stage

The rasterizer stage

Triangle

Setup

Triangle

Traversal

Pixel

Shading

Merging

Merging - output color to screen:

includes for instance…

• Z-buffering

– Do not overdraw a pixel with content that is further
from the camera than the pixel’s current content

• Doublebuffering

– Use a front buffer that is displayed and a backbuffer
that we still draw to.

Application Geometry Rasterizer

The default frame buffer:
Typically: Front + Back color buffers + Z buffer + (Stencil buffer)

These are memory buffers, e.g., in GPU RAM.

Front Color buffer

(rgb buffer)

Z buffer

(depth)

Stores rgb(a) value per pixel.

Default: 8 bits per r,g,b channel.

Stores fragment’s

depth value per

pixel, typically: (16),

24, or 32 bits.

Back Color buffer

(rgb buffer)

Stencil buffer
(8-bits)

Stencil buffer can be

asked for. 8-bits per

pixel.

Is the most recent

fully finished drawn

frame.

Is displayed.

Is the color buffer we

still draw to.

Not displayed yet.

To resolve visibility

between triangles

Used for masking rendering

to only where pixel’s stencil

value = some specific value.

• A triangle that is covered by a more closely
located triangle should not be visible

• Assume two equally large tris at different
depths

Application Geometry Rasterizer

Triangle 1 Triangle 2 Draw 1 then 2

incorrect

Draw 2 then 1

correctnear far

The rasterizer stage

Painter’s Algorithm
• Render polygons a back to front order so that polygons behind

others are simply painted over

B behind A as seen by viewer Fill B then A

•Requires ordering of polygons

first

–O(n log n) calculation for ordering

–Not every polygon is either in

front or behind all other polygons

I.e., : Sort all triangles and

render them back-to-front.

Old way before

z-buffers:

• Would be nice to avoid sorting…

• The Z-buffer (aka depth buffer) solves this

• Can render in any order

Application Geometry Rasterizer

I.e., do not overdraw a pixel
with content that is further
from the camera than its
current content

Idea - storing closest fragment-z
(triangle depth) at each pixel:

– When rasterizing, compute the
fragment’s z-value.

– Compare this to pixel’s Z-buffer value

– If fragment is closer, then replace
color-buffer’s and Z-buffer’s value

– Else do nothing (discard the fragment)

• Z-buffer stores, for each pixel, the

closest fragment’s z-value.

• Color buffer stores, for each pixel, the

color value.

The rasterizer stage
Z-buffering:

Z-buffer

The color buffer The z-buffer

(= depth buffer)

Z-buffer

Z-Buffer Algorithm

• Use a buffer called the z or depth buffer to store the

depth of the closest fragment at each pixel rasterized

so far

• If a new fragment’s depth is closer to camera than

pixel’s z-buffer value,

–replace pixel’s color and z-buffer value.

• We do not want to show

the image until its drawing

is finished.

• The front buffer is displayed

• The back buffer is rendered to

• When new image has been created in back buffer, swap the Front-

/Back-buffer pointers.

• Use vsync. Else, screen tearing will occur…
i.e., when the swap happens in the middle of the screen with respect to the screen refresh

rate.

Application Geometry Rasterizer

Front buffer

(rgb color buffer)

Back buffer

(rgb color buffer)

Latest fully finished

drawn frame.

Color buffer we draw to.

Not displayed yet.

The rasterizer stage

Double buffering:

Application Geometry Rasterizer

Example if the swap happens here (w.r.t the screen refresh rate).

Solution: use vsync to swap buffers after monitor has updated

the full screen. See page 1011-1012.

old

new

Front- and

back-buffer

pointers

swapped

“within the

monitor’s

update” of the

screen.

Monitors

update the

screen line by

line from top

to bottom,

and each line

from left to

right.

Use vsync to

swap here:

The rasterizer stage
Double buffering – screen tearing:

Screen Tearing
Swapping

back/front buffers

Screen tearing is solved by using V-Sync.

V-Sync: swap front/back buffers during vertical blank (vblank) instead.

vblank

Screen Tearing
• Despite the gorgeous graphics seen in many of today's games, there are

still some highly distracting artifacts that appear in gameplay despite

our best efforts to suppress them. The most jarring of these is screen

tearing. Tearing is easily observed when the mouse is panned from

side to side. The result is that the screen appears to be torn between

multiple frames with an intense flickering effect. Tearing tends to be

aggravated when the framerate is high since a large number of frames

are in flight at a given time, causing multiple bands of tearing.

• Vertical sync (V-Sync) is the traditional remedy to this problem,

but as many gamers know, V-Sync isn't without its problems. The

main problem with V-Sync is that when the framerate drops below the

monitor's refresh rate (typically 60 fps), the framerate drops

disproportionately. For example, dropping slightly below 60 fps results

in the framerate dropping to 30 fps. This happens because the monitor

refreshes at fixed internals (although an LCD doesn't have this

limitation, the GPU must treat it as a CRT to maintain backward

compatibility) and V-Sync forces the GPU to wait for the next refresh

before updating the screen with a new image. This results in notable

stuttering when the framerate dips below 60, even if just momentarily.

A Swap Chain

Tripple buffering - or even more intermediate buffers

So, GPU does not have to wait until the swap for starting rendering

the next frame.

What is important:

• Understand the Application-, Geometry- and

Rasterization Stage

• Correlation to hardware

• Z-buffering, double buffering, screen tearing

Simple Application...
#ifdef WIN32

#include <windows.h>

#endif

#include <GL/glut.h> // This also includes gl.h

static void drawScene(void)

{

 glColor3f(1,1,1);

 glBegin(GL_POLYGON);

 glVertex3f(4.0, 0, 4.0);

 glVertex3f(4.0, 0,-4.0);

 glVertex3f(-4.0, 0,-4.0);

 glEnd();

}
Usually this and next 2

slides are put in the

same file main.cpp

OLD WAY
OpenGL 1.1

BONUS

void display(void)

{

 glClearColor(0.2, 0.2, 0.8, 1.0); // Set clear color

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clears the color buffer
 and the z-buffer

 int w = glutGet((GLenum)GLUT_WINDOW_WIDTH);

 int h = glutGet((GLenum)GLUT_WINDOW_HEIGHT);

 glViewport(0, 0, w, h); // Set viewport

 glMatrixMode(GL_PROJECTION); // Set projection matrix

 glLoadIdentity();

 gluPerspective(45.0,w/h, 0.2, 10000.0); // FOV, aspect ratio, near, far

 glMatrixMode(GL_MODELVIEW); // Set modelview matrix

 glLoadIdentity();

 gluLookAt(10, 10, 10, // look from

 0, 0, 0, // look at

 0, 0, 1); // up vector

 drawScene();

 glutSwapBuffers(); // swap front and back buffer. This frame will now been displayed.

}

Simple Application
BONUS

Old way
OpenGL 1.1

Changing Color per Vertex
static void drawScene(void)

{

 // glColor3f(1,1,1);

 glBegin(GL_POLYGON);

 glColor3f(1,0,0);

 glVertex3f(4.0, 0, 4.0);

 glColor3f(0,1,0);

 glVertex3f(4.0, 0,-4.0);

 glColor3f(0,0,1);

 glVertex3f(-4.0, 0,-4.0);

 glEnd();

}

BONUS

Old way
OpenGL 1.1

	Slide 1: TDA362/DIT224 – Computer Graphics
	Slide 2: This Course
	Slide 3: Course Info
	Slide 4: Tutorials
	Slide 5: Tutorials 1-6
	Slide 6: Project
	Slide 7: Tutorials
	Slide 8: Computer Graphics: – two main principles…
	Slide 9: Forward Ray Tracing
	Slide 10: Backward Ray Tracing
	Slide 11: Forward Ray Tracing
	Slide 12: Backward Ray Tracing
	Slide 13: based on Rasterization Overview of the Graphics Rendering Pipeline and OpenGL
	Slide 14: 3D-models: surfaces are constructed by triangles.
	Slide 15: Each triangle is projected onto the image plane using a virtual camera.
	Slide 16: The graphics card draws the triangles onto the screen.
	Slide 17: How compute pixel color?
	Slide 18: Triangle colors:
	Slide 19: Texture Maps
	Slide 20: Summary of this very simple type of shading model:
	Slide 21: The Graphics Rendering Pipeline
	Slide 22: You say that you render a ”3D scene”, but what is it?
	Slide 23: Lecture 1: Real-time Rendering The Graphics Rendering Pipeline
	Slide 24: The APPLICATION stage
	Slide 25: The GEOMETRY stage
	Slide 26: The GEOMETRY stage
	Slide 27: The RASTERIZER stage
	Slide 28: The rasterizer stage
	Slide 29: The three stages’ correlation to hardware
	Slide 30: Rendering Pipeline and Hardware
	Slide 31: Rendering Pipeline and Hardware
	Slide 32: Hardware design
	Slide 33: Hardware design
	Slide 34: Hardware design
	Slide 35: Hardware design
	Slide 36: Hardware design
	Slide 37: Hardware design
	Slide 38: Graphics Hardware
	Slide 39: Hardware design
	Slide 40
	Slide 41
	Slide 42
	Slide 43: OpenGL (Open Graphics Library)
	Slide 44
	Slide 45
	Slide 46: A Simple Program Computer Graphics version of “Hello World”
	Slide 47: Graphics Pipelines
	Slide 48: Simple Application...
	Slide 49
	Slide 50: Example of a simple GfxObject class
	Slide 51: The Geometry stage and Rasterizer stage in more detail
	Slide 52: Rewind! Let’s take a closer look
	Slide 53: Geometry Stage: – vertex transformation
	Slide 54: Virtual Camera
	Slide 55
	Slide 56
	Slide 57: Why a normal per vertex?
	Slide 58
	Slide 59
	Slide 60: GEOMETRY Clipping and Screen Mapping
	Slide 61: The rasterizer stage
	Slide 62: The default frame buffer: Typically: Front + Back color buffers + Z buffer + (Stencil buffer) These are memory buffers, e.g., in GPU RAM.
	Slide 63: The rasterizer stage
	Slide 64: Painter’s Algorithm
	Slide 65
	Slide 66: Z-buffer
	Slide 67: Z-buffer
	Slide 68: Z-Buffer Algorithm
	Slide 69
	Slide 70
	Slide 71: Screen Tearing
	Slide 72: Screen Tearing
	Slide 73: A Swap Chain
	Slide 74: What is important:
	Slide 75: Simple Application...
	Slide 76: Simple Application
	Slide 77: Changing Color per Vertex

