
TDA362/DIT224 – Computer Graphics

Teacher: Ulf Assarsson

Chalmers University of Technology

Starting 10:00 …

+ =>



This Course

• Algorithms!

Real-time Rendering

Understanding Ray Tracing



Course Info
• Study Period 2 (lp2)
• Real Time Rendering, 4th edition

– Available on Cremona
at discount.

• Schedule: 
– Mon 13-15,  w2 only
– Tues 10-12,
– Fri 9-12,

• ~14 lectures in total, ~2 / week

– Lab slots: 
• Mon: 17-21
• Tues: 13-21
• Wed: 13-21
• Thur:  9-12 + 17-21

• Homepage:
– Google “TDA362” or
– “Computer Graphics Chalmers”

https://se.timeedit.net/web/chalmers/db1/public/ri.html?h=f&sid=3&p=20151102.x,20160110.x&objects=201968.182&ox=0&types=0&fe=0&h2=f
http://www.cse.chalmers.se/edu/course/TDA361/index.html


Tutorials

 All laborations are in C++ and OpenGL

◦ Industry standard

◦ No previous (C++) knowledge required

 Six shorter tutorials that go through basic concepts

◦ Basics, Textures, Camera&Animation, Shading, Render-to-texture, 

Shadow Mapping

 One slightly longer lab where you put everything 

together

◦ Real-time rendering

   or

◦ Path tracer



Tutorials 1-6

Rendering a 

triangle
Textures Animation

Shading Render to 

textures

Shadow maps



Screen-space 

ambient occlusion
Particle System Height field

Path Tracing

Project

Real-time rendering Offline rendering

Project
Choose at least 1 from:

Custom environment map (difficult)

or



Tutorials
• Info: http://www.cse.chalmers.se/edu/course/TDA362/tutorials.html 

• To pass the tutorials:

– Present your solutions to lab assistant.

– Deadlines:

• Lab 1+2+3: Thursday week 2.

• Lab 4 : Thursday week 3.

• Lab 5+6: Thursday week 4

• Lab 7 / Project: Thursday week 7.

• Do the tutorials in groups (Labgrupper) of two, or individually if you

prefer.

• First deadline: Thurs. next week.

http://www.cse.chalmers.se/edu/course/TDA362/tutorials.html


Computer Graphics: 
– two main principles…

…for computer-generating the appearance of a virtual 3D scene:

• Ray Tracing:

– Forward ray tracing: Tracing light beams 

from light sources and how they reach the 

virtual camera.

– Backward ray tracing: Tracing the light 

beams backwards, i.e., from the camera 

and all the way back to the light sources.

• Rasterization:

– Draw the scene triangles one by one onto the pixels of the

screen and, for each pixel, compute the color (by regarding 

light sources and perhaps also surrounding objects).



Forward Ray Tracing
Forward ray tracing is simple and automatically gives 

correct intensity (energy) distribution on screen.

“Trace some trillion photons and you probably have a good image.”



Backward Ray Tracing
Backward ray tracing is more efficient, but finding correct 

intensity (energy) and relevant incoming light directions 

is a sampling problem with more 

careful maths for 

correctness.

“Trace a billion rays backwards and you probably have a great image.”

?

?



Forward Ray Tracing
One way to form an image is to

follow rays of light (or photons) 

from a point source finding which

rays enter the lens of the

camera. Each ray of light may have 

multiple interactions with objects

before being absorbed or going to 

infinity. 

Pros: Algorithmically very easy to generate physically 

correct images.

Cons: Extremely slow. Only few of the traced rays will reach

the camera sensor and actually contribute to the image.

“Trace some trillion photons and you probably have a good image.”



Backward Ray Tracing

• Follow rays of light backwards, i.e., from the camera 
sensor (center of projection) into the scene until they 
either are absorbed by objects or go off to infinity.

– At each bounce position, estimate incoming light intensity and 
color by following possible bounce directions, 
given the material. 

– Cons: Complicated but possible to get accurate 
convergence. We use Monte-Carlo sampling
theory from maths for how to best sample an 
unknown signal. E.g., we do not 
know photon density nor from which direction 
the photon came.  Combinations of forward 
+ backwards ray tracing can be used to 
remedy this.

– Pros: Faster but still slow compared to rasterization

“Trace a billion rays backwards and you probably have a great image.”



based on Rasterization

Overview of the 

Graphics Rendering Pipeline 

and OpenGL

Real-Time Rendering

DirtRally2.0.mp4


Z

X

Y

3D-models: surfaces are constructed by triangles.

4926 triangles
Why triangles?
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(x,y,z)-position

Each triangle is projected onto the image plane using a 

virtual camera.
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The graphics card draws the triangles onto the screen.



Z

X

Y

(x,y,z) Light source

(x,y,z)-position

How compute pixel color?
light

blue

red green

Exaggerated example

Use some shading model based 

on light sources and triangle’s

material:

At rendering (for each frame): 

• The graphics card computes, the 

reflected light toward the camera.

• per pixel (or per vertex and 

using interpolation per pixel),  

• This depends on the light and 

material parameters. 



Z

X

Y

• The texture color is modulated

(often just multiplied) with the light

intensity to get the final pixel color.

Triangle colors:
are typically multiplied with the lighting contribution. Instead of one single 

color per triangle, you can use a texture (=image) – to simulate details and 

materials.

+ =

Specify which part of the texture that

each triangle covers.

=>
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Y

Texture Maps

Each triangle’s mapping to texture space



Summary of this very simple type of shading model:

Z

X

Y

triangles lighting + texturing

There are many others. Details are given in Lecture 3+4.



The Graphics Rendering 

Pipeline 

The Application stage, geometry stage, and rasterizer stage



You say that you render a            

”3D scene”, but what is it?

• First, of all to take a picture, it takes a camera – a 

virtual one.

– Decides what should end up in the final image

• A 3D scene is:

– Geometry (triangles, lines, points, and more)

– Light sources

– Material properties of geometry

• Colors, shader code ,

• Textures (images to glue onto the geometry)

• A triangle consists of 3 vertices

– A vertex is 3D position, and may have an                            

attached normal, color, texture coordinate, ….



Lecture 1: Real-time Rendering

The Graphics Rendering Pipeline

• The pipeline is the ”engine” that creates 

images from 3D scenes

• Three conceptual stages of the pipeline:

– Application (executed on the CPU)

– Geometry

– Rasterizer

Application Geometry Rasterizer

3D

sceneinput

Image

output



The APPLICATION stage

• Executed on the CPU

– Means that the programmer decides what 
happens here

• Examples:

– Collision detection

– Speed-up techniques

– Animation

• Most important task: feed geometry stage 
with the primitives (e.g. triangles) to render 

Application Geometry Rasterizer



The GEOMETRY stage

•

• Allows:

– Move objects (matrix multiplication)

– Move the camera (matrix multiplication)

– Lighting computations per triangle vertex

– Project onto screen (3D to 2D)

– Clipping (avoid triangles outside screen)

– Map to window

Application Geometry Rasterizer

Task: ”geometrical” operations 

on the input data (e.g. triangles)



The GEOMETRY stage

Application Geometry Rasterizer

Vertex 

Shading

Projection Clipping Screen 

Mapping

• Vertex Shader

– A program executed 

per triangle vertex, 

computing:

• Transformations

• Projection (3D->2D)

• Compute a color per 

vertex

• Clipping

• Screen Mapping



The RASTERIZER stage
• Main task: take output from GEOMETRY 

and turn into visible pixels on screen

Application Geometry Rasterizer

⚫ Computes color per pixel, using fragment 
shader (=pixel shader)

- textures, (light sources, normal), colors and various 
other per-pixel operations

⚫ And visibility is resolved here using the 
fragment’s z-value to check its visibility



The rasterizer stage

Triangle 

Setup

Triangle 

Traversal

Pixel 

Shading

Merging

Triangle Setup: 

• collect three vertices + interpolated vertex shader output (incl. 

normals) and make one triangle.

Triangle Traversal

• Scan conversion or

rasterization

Pixel Shading

• Compute pixel color

Merging: 

• output color to screen

Application Geometry Rasterizer



The three stages’ 

correlation to hardware

The Application stage, geometry stage, and rasterizer stage



Rendering Pipeline and 
Hardware

Application Stage Geometry Stage Rasterization Stage

CPU GPU



Tomas Akenine-Mőller © 200331

Rendering Pipeline and 
Hardware

HARDWARE

Vertex 

shader

Pixel

shader

Display

Geometry

shader
Merger

Appli-

cation 
Stage

CPU

Geometry Stage Rasterization Stage

GPU



Tomas Akenine-Mőller © 200332

Hardware design

light

Geometry

blue

red green

Vertex shader:

•Lighting (colors)

•Screen space positions

HARDWARE

Vertex 

shader

Pixel

shader

Display

Geometry

shader
Merger

Geometry Stage



Tomas Akenine-Mőller © 200333

Hardware design Geometry shader:

•One input primitive

•Many output primitives

HARDWARE

Vertex 

shader

Pixel

shader

Display

Geometry

shader
Merger

or

Geometry Stage



Tomas Akenine-Mőller © 200334

Hardware design Clips triangles against

the unit cube (i.e., 

”screen borders”)

HARDWARE

Vertex 

shader

Pixel

shader

Display

Geometry

shader
Merger

Geometry Stage



Tomas Akenine-Mőller © 200335

Hardware design Maps window size to

unit cube

HARDWARE

Vertex 

shader

Pixel

shader

Display

Geometry

shader
Merger

Geometry stage always operates inside 

a unit cube [-1,-1,-1]-[1,1,1]

Next, the rasterization is made against a 

draw area corresponding to window 

dimensions.

Geometry Stage



Hardware design

Tomas Akenine-Mőller © 200336

HARDWARE

Vertex 

shader

Pixel

shader

Display

Geometry

shader
Merger

Collects three vertices

into one triangle

Rasterizer Stage



Hardware design

Tomas Akenine-Mőller © 200337

HARDWARE

Vertex 

shader

Pixel

shader

Display

Geometry

shader
Merger

Creates the 

fragments/pixels for the 

triangle

Rasterizer Stage



blue

red green

38

HARDWARE

Vertex 

shader

Pixel

shader

Display

Geometry

shader
Merger

Pixel Shader:

Compute color 

using:

•Textures

•Interpolated data 

(e.g. Colors + 

normals) from 

vertex shader
Rasterizer Stage

Graphics Hardware



Hardware design

Tomas Akenine-Mőller © 200339

HARDWARE

Vertex 

shader

Pixel

shader

Display

Geometry

shader
Merger

Frame buffer:

• Color buffers

• Depth buffer

• Stencil buffer

The merge units update

the frame buffer with the 

pixel’s color

Rasterizer Stage



• Vertex shader: reads from textures. Writes

outputs per vertex, which are interpolated

and input to the fragment shader invocation

per pixel.

• Fragment shader: reads from textures, writes 

to pixel color.

• Memory: Texture memory (read + write) 

typically 4 GB – 16 GB 

• Program size: the smaller the faster

What are vertex and fragment (pixel) 
shaders?



Department of Computer Engineering

// Fragment Shader, exec. per fragment

#version 420

precision highp float; // 32-bits floats

in  vec3 vsOutColor; // interpolated input 

      from vertex shader

layout(location = 0) out vec4 fragColor;

 // Here, location=0 means that we  draw 

to frameBuffer[0], i.e., the screen

void main() 

{

 fragColor = vec4(vsOutColor,1);

}

// Vertex Shader, executed per vertex

#version 420

layout(location = 0) in vec3 vertex; // x,y,z

layout(location = 1) in vec3 color; // r,g,b

out vec3 vsOutColor; // output result for this vertex

uniform mat4 modelViewProjectionMatrix; 

void main() 

{

       gl_Position = modelViewProjectionMatrix *

 vec4(vertex,1); //Project the vertex from 3D

       vsOutColor = color; // Output for this vertex. Will  

      // be interpolated input to        

      // fragment shader

}

Shaders

v0, c0

v = vertex (x,y,z)

c = color (r,g,b)



Department of Computer Engineering

Shaders

vec3 compute_color()

{

    vec4 gbuffer = texture2D(tex0, uv_0);

 int intColor = int(gbuffer.x);

 int r = (intColor/256)/256;

 intColor -= r*256*256;

 int g = intColor/256;

 intColor -= g*256;

 int b = intColor;

  vec3 color = vec3(float(r)/255.0, float(g)/255.0, 

float(b)/255.0 );

 normal = vec3(sin(gbuffer.g) * cos(gbuffer.b),

 sin(gbuffer.g)*sin(gbuffer.b), cos(gbuffer.g));

 vec2 ang = gbuffer.gb*2.0-vec2(1.0);

 vec2 scth = vec2( sin(ang.x * PI), cos(ang.x * PI);

 vec2 scphi = vec2(sqrt(1.0 - ang.y*ang.y), ang.y);

 normal = -vec3(scth.y*scphi.x, scth.x*scphi.x, scphi.y);

 roughness = 0.05;

 specularity = 1.0;

 fresnelR0 = 0.3;

 return color;

}

precision highp float;

uniform sampler2D tex0;

uniform sampler2D tex1;

uniform sampler2D tex2;

uniform sampler2D tex3;

uniform float val;

varying vec2 uv_0;

varying vec3 n;

void main(void) {

 gl_FragColor.rgb = compute_color();

 gl_FragColor.a = 1.0;

}

Example of a more advanced fragment shader: 



OpenGL
(Open Graphics Library)



CPU-side

Language:          C++

API:            OpenGL (Direct3D)

Window system: SDL (Cocoa, Win32,…)
C++:
float positions[] = { 
// X Y Z   per vertex

0.0f, 0.5f, 1.0f, // v0
-0.5f, -0.5f, 1.0f, // v1
0.5f, -0.5f, 1.0f // v2
... // ... vn

};
// and any other per-vertex data, e.g.:
float colors[] = {
// R G B

1.0f, 0.0f, 0.0f, // c0
-0.0f, 1.0f, 0.0f, // c1
0.0f, 0.0f, 1.0f // c2
... // ... cn

};
float normals[] = {...};
float textureCoords[] = {...};

OpenGL C++ API:
Vertex-buffer objects

uint32 positionBuffer; // x,y,z per vertex
uint32 colorBuffer;    // r,g,b per vertex

Vertex-Array object // groups the arrays
uint32 vertexArrayObject;

Shaders
uint32 vertexShader;
uint32 fragmentShader;
uint32 shaderProgram; 

GPU-side

Language: GLSL 

  used for vertex- ,geometry-, and

  fragment shaders  

Vertex Shader:
#version 420

layout(location = 0) in vec3 position;

layout(location = 1) in vec3 color;

out vec3 outColor; // r,g,b

void main()

{
gl_Position = vec4(position, 1.0);

outColor = color;
}

Fragment Shader:
#version 420

precision highp float; // required by GLSL spec Sect 4.5.3

// (though nvidia does not, amd does) 

layout(location = 0) out vec4 fragmentColor;
in vec3 outColor;

void main()
{

// fragmentColor = vec4(1,1,1,1);
fragmentColor.rgb = outColor;

fragmentColor.a = 1.0;

}

Per-pixel-interpolated value

(0,0) (1,0)

(1,1)(0,1)

(u0,v0)

(u1,v1)

(u2,v2)



CPU-side

Language:          C++

API:            OpenGL (Direct3D)

Window system: SDL (Cocoa, Win32,…)
C++:
float positions[] = {
// X Y Z

0.0f, 0.5f, 1.0f, // v0
-0.5f, -0.5f, 1.0f, // v1
0.5f, -0.5f, 1.0f // v2
... // ... vn

};
// and any other per-vertex data, e.g.:
float colors[] = {
// R G B

1.0f, 0.0f, 0.0f, // c0
-0.0f, 1.0f, 0.0f, // c1
0.0f, 0.0f, 1.0f // c2
... // ... cn

};
float normals[] = {...};
float textureCoords[] = {...};

OpenGL C++ API:
Vertex-buffer objects

uint32 positionBuffer; // x,y,z per vertex
uint32 colorBuffer;    // r,g,b per vertex

Vertex-Array object // groups the arrays
uint32 vertexArrayObject;

Shaders
uint32 vertexShader;
uint32 fragmentShader;
uint32 shaderProgram;

GPU-side

Language: GLSL 

  used for vertex- ,geometry-, and

  fragment shaders  

Vertex Shader:
#version 420

layout(location = 0) in vec3 position;

layout(location = 1) in vec3 color;

out vec3 outColor;

void main()

{
gl_Position = vec4(position, 1.0);

outColor = color;
}

(0,0) (1,0)

(1,1)(0,1)

(u0,v0)

(u1,v1)

(u2,v2)

How to connect the 

vertexArrayObject as vertex 

shader input (position, color):

glGenVertexArrays(1, &vertexArrayObject);
// Following commands now affect this vertex array object.
glBindVertexArray(vertexArrayObject);

// Makes positionBuffer the current array buffer for subsequent commands.
// and attaches positionBuffer to vertexArrayObject,
glBindBuffer( GL_ARRAY_BUFFER, positionBuffer );
// Connect positions to location 0. 3 floats per vertex
glVertexAttribPointer(0, 3, GL_FLOAT, …, positions );

// Makes colorBuffer the current array buffer for subsequent commands.
// and attaches colorBuffer to vertexArrayObject,
glBindBuffer( GL_ARRAY_BUFFER, colorBuffer );
// Connect colors to location 1. 3 floats per vertex
glVertexAttribPointer(1, 3, GL_FLOAT, …, colors );

glEnableVertexAttribArray(0); // Enable attribute array 0

glEnableVertexAttribArray(1); // Enable attribute array 1



A Simple Program
Computer Graphics version of “Hello World”

Generate a triangle on a solid background



Graphics Pipelines
BONUS

77

HARDWARE

Vertex 

shader

Pixel

shader

Display

Geometry

shader
Merger

We focus on:

Tesselation shaders

Mesh shaders (still quite new):

Compatibility:

• OpenGL 4.3

• WebGL 2

• OpenGLES 3

i.e., phones, web, 

PCs…

Compatibility:

• OpenGL 4.5 

extension

• DirectX 12 

Ultimate

• Vulcan

Full traditional pipeline: =>



int main(int argc, char *argv[])

{

 // open window of size 512x512 with double buffering, RGB colors, and Z-buffering 

 g_window = labhelper::init_window_SDL("OpenGL Lab 1”, 512, 512);

 initGL(); // Set up our shaderProgram and our vertexArrayObject

 while (true) {

  display(); // render our geometry

  SDL_GL_SwapWindow(g_window); // swap front/back buffer. Ie., displays the frame.

  SDL_Event event;

  while (SDL_PollEvent(&event)) {

  if (event.type == SDL_QUIT || (event.type == SDL_KEYUP &&

       event.key.keysym.sym == SDLK_ESCAPE)) {

   labhelper::shutDown(g_window);

   return 0;

  }

 }

       }

 return 0;          

}

Simple Application...



void display(void)

{

// The viewport determines how many pixels we are rasterizing to

int w, h;

SDL_GetWindowSize(g_window, &w, &h);

glViewport(0, 0, w, h); // Set viewport

// Clear background

glClearColor(0.2, 0.2, 0.8, 1.0); // Set clear color  - for background

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clears the color buffer and the z-buffer

glDisable(GL_CULL_FACE); // Both front and back face of triangles should be visible

// DRAW OUR TRIANGLE(S)

glUseProgram( shaderProgram ); // Shader Program. Sets what vertex/fragment shaders to use.

// Bind the vertex array object that contains all the vertex data.

glBindVertexArray(vertexArrayObject);

// Submit triangles from currently bound vertex array object.

glDrawArrays( GL_TRIANGLES, 0, 3 ); // Render 1 triangle (i.e., 3 vertices), starting at vertex 0.

glUseProgram( 0 ); // "unsets" the current shader program. Not really necessary.

}

Lab 1 will teach you this, i.e., setting up 

a shader program and vertex arrays.



Example of a simple GfxObject class

class GfxObject {
public:
 load(“filename”); // Creates m_shaderProgram + m_vertexArrayObject
 render() 
 {
  /* You may want to initiate more OpenGL states, e.g., for 
     textures (more on that in further lectures) */
  glUseProgram(m_shaderProgram);

  glBindVertexArray(m_vertexArrayObject);

    glDrawArrays( GL_TRIANGLES, 0, numVertices);
 }; 
private:
 uint numVertices;
 Gluint m_shaderProgram;
 GLuint m_vertexArrayObject;
};

Example:
GfxObject myCoolObject;
myCoolObject.load(“filename”);

In display(): 
 myCoolObject.render();50



The Geometry stage and 

Rasterizer stage

in more detail



Rewind! 

Let’s take a closer look

• The programmer ”sends” down primtives to

be rendered through the pipeline (using API 

calls)

• The geometry stage does per-vertex 

operations 

• The rasterizer stage does per-pixel 

operations

• Next, scrutinize geometry and rasterizer

Application Geometry Rasterizer



Geometry Stage:

– vertex transformation

Application Geometry Rasterizer

model space world space world space

e.g., compute lighting

camera space

Do projection

clip space

(or unit space)

clip
map to screen

screen space

Done in vertex shader
Fixed hardware function



Virtual Camera

• Defined by position, direction vector, up 
vector, field of view, near and far plane.

point
dir

near

far
fov

(angle)

⚫ Create image of geometry inside gray region

⚫ Used by OpenGL, DirectX, ray tracing, etc.



• You can move the camera in the same 

manner as objects

• But apply inverse transform to objects, so 

that camera looks down negative z-axis

z x

Application Geometry RasterizerGeometry Stage:

– vertex transformation

The view transform



• Compute full or partial lighting information for fragment shader
(e.g., light direction, normal, and vertex position)

Application Geometry Rasterizer

light

Geometry

blue

red green

Rasterizer

⚫ Much more about this in later lecture

Geometry Stage:

– vertex transformation

Lighting



Why a normal 

per vertex?

Flat shading

Smooth shading

to shade as a curved surface 

although triangle is flat



Application Geometry Rasterizer

• Two major ways to do it

– Orthographic (useful in few applications)

– Perspective (most often used)

• Mimics how humans perceive the world, i.e., objects’ apparent 

size decreases with distance

Orthographic projection Perspective projection

Geometry Stage:

– vertex transformation

Projection



• Also done with a matrix multiplication!

• Pinhole camera (left), analog used in CG 

(right)

Application Geometry RasterizerGeometry Stage:

– vertex transformation

Projection



GEOMETRY 
Clipping and Screen Mapping

• Square (cube) after projection

• Clip primitives to square

Application Geometry Rasterizer

⚫ Screen mapping, scales and translates the 
square so that it ends up in a rendering window

⚫ These ”screen space coordinates” together 
with Z (depth) are sent to the rasterizer stage



The rasterizer stage

Triangle 

Setup

Triangle 

Traversal

Pixel 

Shading

Merging

Merging - output color to screen:

includes for instance…

• Z-buffering

– Do not overdraw a pixel with content that is further
from the camera than the pixel’s current content

• Doublebuffering

– Use a front buffer that is displayed and a backbuffer
that we still draw to.

Application Geometry Rasterizer



The default frame buffer:
Typically: Front + Back color buffers + Z buffer + (Stencil buffer)

These are memory buffers, e.g., in GPU RAM.

Front Color buffer

(rgb buffer)

Z buffer

(depth)

Stores rgb(a) value per pixel.

Default: 8 bits per r,g,b channel.

Stores fragment’s 

depth value per 

pixel, typically: (16), 

24, or 32 bits.

Back Color buffer

(rgb buffer)

Stencil buffer
(8-bits)

Stencil buffer can be 

asked for. 8-bits per 

pixel.

Is the most recent 

fully finished drawn 

frame.

Is displayed.

Is the color buffer we 

still draw to.

Not displayed yet.

To resolve visibility 

between triangles

Used for masking rendering 

to only where pixel’s stencil 

value = some specific value.



• A triangle that is covered by a more closely 
located triangle should not be visible

• Assume two equally large tris at different 
depths

Application Geometry Rasterizer

Triangle 1 Triangle 2 Draw 1 then 2

incorrect

Draw 2 then 1

correctnear far

The rasterizer stage



Painter’s Algorithm
• Render polygons a back to front order so that polygons behind 

others are simply painted over

B behind A as seen by viewer Fill B then A

•Requires ordering of polygons 

first 

–O(n log n) calculation for ordering

–Not every polygon is either in 

front or behind all other polygons

I.e., : Sort all triangles and  

render them back-to-front. 

Old way before

z-buffers:



• Would be nice to avoid sorting…

• The Z-buffer (aka depth buffer) solves this

• Can render in any order

Application Geometry Rasterizer

I.e., do not overdraw a pixel 
with content that is further
from the camera than its
current content

Idea - storing closest fragment-z 
(triangle depth) at each pixel:

– When rasterizing, compute the 
fragment’s z-value.

– Compare this to pixel’s Z-buffer value

– If fragment is closer, then replace
color-buffer’s and Z-buffer’s value

– Else do nothing (discard the fragment)

• Z-buffer stores, for each pixel, the 

closest fragment’s z-value.

• Color buffer stores, for each pixel, the 

color value.

The rasterizer stage
Z-buffering:



Z-buffer

The color buffer The z-buffer

(= depth buffer)



Z-buffer



Z-Buffer Algorithm

• Use a buffer called the z or depth buffer to store the 

depth of the closest fragment at each pixel rasterized 

so far

• If a new fragment’s depth is closer to camera than 

pixel’s z-buffer value, 

–replace pixel’s color and z-buffer value.



• We do not want to show

the image until its drawing

is finished.

• The front buffer is displayed

• The back buffer is rendered to

• When new image has been created in back buffer, swap the Front-

/Back-buffer pointers.

• Use vsync. Else, screen tearing will occur…
i.e., when the swap happens in the middle of the screen with respect to the screen refresh 

rate.

Application Geometry Rasterizer

Front buffer

(rgb color buffer)

Back buffer

(rgb color buffer)

Latest fully finished 

drawn frame.

Color buffer we draw to.

Not displayed yet.

The rasterizer stage

Double buffering:



Application Geometry Rasterizer

Example if the swap happens here (w.r.t the screen refresh rate).

Solution: use vsync to swap buffers after monitor has updated

the full screen. See page 1011-1012.

old

new

Front- and 

back-buffer 

pointers 

swapped 

“within the 

monitor’s 

update” of the 

screen.

Monitors 

update the 

screen line by 

line from top 

to bottom, 

and each line 

from left to 

right.

Use vsync to 

swap here:

The rasterizer stage
Double buffering – screen tearing:



Screen Tearing
Swapping 

back/front buffers

Screen tearing is solved by using V-Sync.

V-Sync: swap front/back buffers during vertical blank (vblank) instead.

vblank



Screen Tearing
• Despite the gorgeous graphics seen in many of today's games, there are 

still some highly distracting artifacts that appear in gameplay despite 

our best efforts to suppress them. The most jarring of these is screen 

tearing. Tearing is easily observed when the mouse is panned from 

side to side. The result is that the screen appears to be torn between 

multiple frames with an intense flickering effect. Tearing tends to be 

aggravated when the framerate is high since a large number of frames 

are in flight at a given time, causing multiple bands of tearing.

• Vertical sync (V-Sync) is the traditional remedy to this problem, 

but as many gamers know, V-Sync isn't without its problems. The 

main problem with V-Sync is that when the framerate drops below the 

monitor's refresh rate (typically 60 fps), the framerate drops 

disproportionately. For example, dropping slightly below 60 fps results 

in the framerate dropping to 30 fps. This happens because the monitor 

refreshes at fixed internals (although an LCD doesn't have this 

limitation, the GPU must treat it as a CRT to maintain backward 

compatibility) and V-Sync forces the GPU to wait for the next refresh 

before updating the screen with a new image. This results in notable 

stuttering when the framerate dips below 60, even if just momentarily.



A Swap Chain

Tripple buffering - or even more intermediate buffers

So, GPU does not have to wait until the swap for starting rendering 

the next frame.



What is important:

• Understand the Application-, Geometry- and 

Rasterization Stage

• Correlation to hardware

• Z-buffering, double buffering, screen tearing



Simple Application...
#ifdef WIN32

#include <windows.h>

#endif

#include <GL/glut.h>  // This also includes gl.h

static void drawScene(void)

{

 glColor3f(1,1,1); 

 glBegin(GL_POLYGON);

  glVertex3f( 4.0, 0, 4.0);

  glVertex3f( 4.0, 0,-4.0);

  glVertex3f(-4.0, 0,-4.0);

 glEnd();

}
Usually this and next 2 

slides are put in the 

same file main.cpp

OLD WAY
OpenGL 1.1

BONUS



void display(void)

{

 glClearColor(0.2, 0.2, 0.8, 1.0); // Set clear color

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clears the color buffer 
       and the z-buffer

 int w = glutGet((GLenum)GLUT_WINDOW_WIDTH);

 int h = glutGet((GLenum)GLUT_WINDOW_HEIGHT);

 glViewport(0, 0, w, h);  // Set viewport

 glMatrixMode(GL_PROJECTION); // Set projection matrix 

 glLoadIdentity();    

 gluPerspective(45.0,w/h, 0.2, 10000.0); // FOV, aspect ratio, near, far 

 glMatrixMode(GL_MODELVIEW); // Set modelview matrix 

 glLoadIdentity(); 

 gluLookAt(10, 10, 10,  // look from

  0, 0, 0,   // look at

  0, 0, 1);   // up vector

 drawScene();

 glutSwapBuffers();  // swap front and back buffer. This frame will now been displayed.

}

Simple Application
BONUS

Old way
OpenGL 1.1



Changing Color per Vertex
static void drawScene(void)

{

 // glColor3f(1,1,1);  

 glBegin(GL_POLYGON);

  glColor3f(1,0,0);  

  glVertex3f( 4.0, 0, 4.0);

  glColor3f(0,1,0);

  glVertex3f( 4.0, 0,-4.0);

  glColor3f(0,0,1);

  glVertex3f(-4.0, 0,-4.0);

 glEnd();

}

BONUS

Old way
OpenGL 1.1
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