
Chapter 4: Type Checking

Aarne Ranta

Slides for the book ”Implementing Programming Languages. An

Introduction to Compilers and Interpreters”, College Publications,

2012.



Checking that a program makes sense

Traditional notions of type checking as in C and Java

Typing rules

Syntax-directed translation

Getting started with implementation in Haskell and Java

Everything that is needed for Assignment 2



The purposes of type checking

Finding errors at compile time

• the development of programming languages shows a movement to

more and more type checking, e.g. from C to C++

Resolving ambiguities to get better machine code

• e.g. to find out if + is to be iadd or dadd

Compiling x + y needs the context to look up the types of x and y



Specifying a type checker

An implementation-language-independent way: type system with in-

ference rules.

Example:

a : bool b : bool

a && b : bool
Read: if a has type bool and b has type bool. then a && b has type

bool.



Inference rules

An inference rule has a set of premisses J1, . . . , Jn and one conclusion

J, separated by a horizontal line:

J1 . . . Jn

J

It can be read in many ways:

From the premisses J1, . . . , Jn, we can conclude J.

If J1, . . . , Jn, then J.

To check J, check J1, . . . , Jn.



Judgements

The premisses and conclusions are called judgements.

The most common judgements in type systems have the form

e : T

which is read, expression e has type T.



From typing rules to pseudocode

Convert the rule
J1 . . . Jn

J

to a pseudocode program

J :

J1

. . .

Jn

Thus the conclusion becomes a case for pattern matching, and the

premisses become recursive calls.



Type checking and type inference

Two kinds of programs:

• Type checking: given an expression e and a type T, decide if e :

T.

• Type inference: given an expression e, find a type T such that e

: T.

Both programs may be needed. They are both derivable from typing

rules.



Example: type checking for &&

check(a && b,bool) :

check(a,bool)

check(b,bool)

No patterns matching other types than bool, so type checking fails for

them.



Type inference for &&

infer(a && b) :

check(a,bool)

check(b,bool)

return bool

Notice that the function must also check that the operands are of type

bool.



From pseudocode to code

We have use concrete syntax notation for expression patterns - that

is, a&&b rather than (EAnd a b).

In real type checking code, abstract syntax must of course be used.

E.g. Haskell

inferExp :: Exp -> Type

inferExp (EAnd a b) = ...

Java:

public static class InferExp implements Exp.Visitor<Type> {

public Type visit(EAnd p) ...

}



Contexts

A variable can have any of the types available in the language.

In C and Java, the type is determined by the declaration of the vari-

able.

In inference rules, the variables are collected to a context.

In the compiler, the context is a symbol table of (variable,type) pairs.

In inference rules, the context is denoted by the Greek letter Γ, Gamma.

The judgement form for typing is generalized to

Γ ` e : T

Read: expression e has type T in context Γ.



Example:

x : int, y : int ` x+y>y : bool

This means:

x + y > y is a boolean expression in the context where x and

y are integer variables.

Notice the notation for contexts:

x1 : T1, . . . , xn : Tn

When we add a new variable to the context Γ, we write

Γ, x : T



Most judgements have the same Γ to all judgements, because the

context doesn’t change.

Γ ` a : bool Γ ` b : bool

Γ ` a && b : bool
But the context does change in the typing rules for declarations.



Typing rule for variable expressions

This is where contexts are needed.

Γ ` x : T
if x : T in Γ

Notice: the condition ”if x : T in Γ” is not a judgement but a sentence

in the metalanguage (English).

In the pseudocode, it is not a recursive call, but uses a lookup function:

infer(Γ, x) :

t := lookup(x,Γ)

return t



In Haskell code,

lookupVar :: Ident -> Context -> Err Type

inferExp :: Context -> Exp -> Err Type

inferExp gamma (EVar x) = do

typ <- lookupVar x gamma

return typ



Type checking function applications

Need to look up the type of the function

Γ ` a1 : T1 · · · Γ ` an : Tn
Γ ` f(a1, . . . , an) : T

if f : (T1, . . . , Tn)→ T in Γ

Notation:

(T1, . . . , Tn)→ T

even though there is no such type in the language described.



Proofs in a type system

Proof tree: a trace of the steps that the type checker performs, built

up rule by rule.
x : int, y : int ` x : int

x
x : int, y : int ` y : int

y

x : int, y : int ` x+y : int
+

x : int, y : int ` y : int
y

x : int, y : int ` x+y>y : bool >

Each judgement is a conclusion from the ones above with some of the

rules, indicated beside the line. This tree uses the variable rule and

the rules for + and >:

Γ ` x : T
x

Γ ` a : int Γ ` b : int

Γ ` a + b : int
+

Γ ` a : int Γ ` b : int

Γ ` a > b : bool
>



Overloading

The binary arithmetic operations (+ - * /) and comparisons (== != <

> <= >=) are in many languages overloaded, which means: usable

for different types.

If the possible types are int, double, and string, the typing rules be-

come:
Γ ` a : t Γ ` b : t

Γ ` a + b : t
if t is int or double or string

Γ ` a : t Γ ` b : t

Γ ` a == b : bool
if t is int or double or string



Type inference for overloading

First infer the type of the first operand, then check the second operand

with respect to this type:

infer(a + b) :

t := infer(a)

// check that t ∈ {int, double, string}
check(b, t)

return t

For other arithmetic operations, only int and double are possible.



Type conversions

Example: an integer can be converted into a double, i.e. used as a

double.

May sound trivial in mathematics, as integers are a subset of reals.

But for most machines, integers and doubles have totally different

binary representations and different sets of instructions.

Therefore, the compiler usually has to generate a special instruction

for type conversions.



Converting from smaller to larger type

No loss of information.

Γ ` a : t Γ ` b : u

Γ ` a + b : max(t, u)
if t, u ∈ {int, double, string}

Assume the following ordering:

int < double < string

For example:

max(int, string) = string



Thus 2 + "hello" gives the result "2hello", because string addition is

the maximum.

Quiz: what is the result of

1 + 2 + "hello" + 1 + 2

Recall that + is left associative!



The validity of statements

When type-checking a statement, we are not interested in a type, but

just in whether the statement is valid.

A new judgement form:

Γ ` s valid

Read, statement s is valid in environment Γ.

Example: while statements

Γ ` e : bool Γ ` s valid

Γ ` while (e) s valid

Checking validity may thus involve type checking some expressions.



Expression statements

We don’t need to care about what the type of the expression is, just

that it has one.

That is, that we can infer a type.

Γ ` e : t

Γ ` e; valid

This typically covers assignments and function calls.



The validity of function definitions

x1 : T1, . . . , xm : Tm ` s1 . . . sn valid

T f(T1 x1, . . . , Tm xm){s1 . . . , sn} valid

The variables declared as parameters of the function define the context.

The body statements s1 . . . sn are checked in this context.

Notice that the context may change within the body, because of dec-

larations.

The type checker also has to make sure that all variables in the pa-

rameter list are distinct.



Return statements

When checking a function definition, we could check that the function

body contains a return statement of expected type.

A more sophisticated version of this could also allow returns in if

branches, as in

if (fail()) return 1 ; else return 0 ;



Declarations and block structures

Each declaration has a scope, which is within a certain block.

Blocks in C and Java correspond (roughly) to parts of code between

curly brackets, { and }.

Two principles regulate the use of variables:

1. A variable declared in a block has its scope till the end of that

block.

2. A variable can be declared again in an inner block, but not other-

wise.



Example:

{

int x ;

{

x = 3 ; // x : int

double x ; // x : double

x = 3.14 ;

int z ;

}

x = x + 1 ; // x : int, receives the value 3 + 1

z = 8 ; // ILLEGAL! z is no more in scope

double x ; // ILLEGAL! x may not be declared again

int z ; // legal, since z is no more in scope

}



Stack of contexts

We need to refine the notion of context to deal with blocks:

Instead of a simple lookup table, Γ must be a =stack of lookup

tables.

We separate the tables with dots, for example,

Γ1.Γ2

where Γ1 is an old (i.e. outer) context and Γ2 an inner context.

The innermost context is the top of the stack.



Refining the lookup to work in a block structure

With just one context, lookup goes everywhere.

With a stack of contexts, it starts by looking in the top-most context

and goes deeper in the stack only if it doesn’t find the variable.



Refining the declaration rule

A declaration introduces a new variable in the current scope.

This variable is checked to be fresh with respect to the context.

But how do we express that the new variable is added to the context

in which the later statements are checked?

We need to have rules for sequences of statements, not just indi-

vidual statements:

Γ ` s1 . . . sn valid



A declaration extends the context used for checking the statements

that follow:

Γ, x : T ` s2 . . . sn valid

Γ ` T x; s2 . . . sn valid
x not in the top-most context in Γ

In other words: a declaration followed by some other statements

s2 . . . sn is valid, if these other statements are valid in a context where

the declared variable is added.

This addition causes the type checker to recognize the effect of the

declaration.



Checking block statements

Push a new context on the stack.

Γ. ` r1 . . . rm valid Γ ` s2 . . . sn valid

Γ ` {r1 . . . rm}s2 . . . sn valid

Only the statements inside the block are affected by the declaration,

not the statements after.



Implementing a type checker

Our first large-scale lesson in syntax-directed translation.

Inference and checking functions, plus some auxiliary functions for deal-

ing with contexts.



A summary of the functions needed

Type infer (Env Γ,Exp e) infer type of Exp
Void check (Env Γ,Exp e,Type t) check type of Exp
Void check (Env Γ,Stms s) check sequence of stms
Void check (Env Γ,Def d) check function definition
Void check (Program p) check a whole program
Type lookup (Ident x,Env Γ) look up variable
FunType lookup (Ident f,Env Γ) look up function
Env extend (Env Γ, Ident x, Type t) extend Env with variable
Env extend (Env Γ,Def d) extend Env with function
Env newBlock (Env Γ) enter new block
Env emptyEnv () empty environment



The check functions return a Void: they go through the code and

silently return if the code is correct.

If any of the functions encounters an error, it emits an error message.

Most of the types above come from the abstract syntax of the im-

plemented language, hence ultimately from its BNF grammar. The

exceptions are FunType, and Env .

We don’t need the definitions of these types in the pseudocode. But

we will show possible Haskell and Java definitions below.



Checking a whole program

A program is a sequence of function definitions. It is checked in two

passes:

1. collect the type signatures of each function by running extend

2. check each function definition in the created environment

check(d1, . . . , dn) :

Γ0 := emptyEnv()

for i = 1, . . . , n : Γi := extend(Γi−1, di)

for each i = 1, . . . , n : check(Γn, di)

Having the two passes permits mutually recursive functions.

The variables in a definition are not visible to other definitions.



Checking a function definition

check(Γ, t f (t1 x1, . . . , tm xm){s1 . . . sn} :

Γ0 := Γ

for i = 1, . . . ,m : Γi := extend(Γi−1, xi, ti)

check(Γm, s1 . . . sn)



Checking statement lists and block statements

check(Γ, t x; s2 . . . sn) :

// here, check that x is not yet in Γ

Γ′ := extend(Γ, x, t)

check(Γ′, s2 . . . sn)

check(Γ, {r1 . . . rm}s2 . . . sn) :

Γ′ := newBlock(Γ)

check(Γ′, r1 . . . rm)

check(Γ, s2 . . . sn)

Other statements work in a constant environment.



Annotating type checkers

Usually the type checker is expected to return a more informative

syntax tree to the later phases, a tree with type annotations.

Here are the type signatures of an annotating type checker:

Exp infer (Env Γ,Exp e) infer type of Exp
Exp check (Env Γ,Exp e,Type t) check type of Exp
Stms check (Env Γ,Stms s) check sequence of stms
Def check (Env Γ,Def d) check function definition
Program check (Program p) check a whole program

The abstract syntax needs to be extended with a constructor for type-

annotated expressions. We will denote them with [e : t] in the pseu-

docode.



Type inference for addition expression (without type conversions but

just overloadings)

infer(Γ, a + b) :

[a′ : t] := infer(Γ, a)

// here, check that t ∈ {int,double, string}
[b′ : t] := check(Γ, b, t)

return [a′+ b′ : t]

After running the type checker, syntax trees will have type annotations

all over the place, because every recursive call returns an annotated

subtree.



Annotated trees

An easy way to add type-annotated expressions in the abstract syntax

is to use an internal rule in BNFC:

internal ETyped. Exp ::= "[" Exp ":" Typ "]" ;

An internal rule is not added to the parser, but only to the abstract

syntax, the pretty-printer, and the syntax-directed translation skeleton.

If type conversions are wanted, they can be added by the C++ style

rule

EConv. Exp ::= Typ "(" Exp ")" ;

A conversion is added to the operand that does not have the maximal

type:



infer(Γ, a + b) :

[a′ : u] := infer(Γ, a)

[b′ : v] := infer(Γ, b)

// here, check that u, v ∈ {int,double, string}
if (u < v)

return [v(a′) + b′ : v]

else if (v < u)

return [a′+ u(b′) : u]

else

return [a′+ b′ : u]



Type checker in Haskell

(Java programmers can safely skip some slides now)

To implement the type checker in Haskell, we need three things:

• Define the appropriate auxiliary types and functions.

• Implement type checker and inference functions.

• Put the type checker into the compiler pipeline.



The compiler pipeline

Calls the lexer within the parser, reports a syntax error if the parser

fails.

Proceed to type checking, showing an error message at failure and

saying ”OK” if the check succeeds.

Later compiler phases take over from the OK branch of type checking.

The compiler is implemented in the IO monad.

Internally, it also uses an error monad, which can be implemented by

the error type defined in the BNFC generated code (the file ErrM).



compile :: String -> IO ()

compile s = case pProgram (myLexer s) of

Bad err -> do

putStrLn "SYNTAX ERROR"

putStrLn err

exitFailure

Ok tree -> case typecheck tree of

Bad err -> do

putStrLn "TYPE ERROR"

putStrLn err

exitFailure

Ok _ -> putStrLn "OK" -- or go to next compiler phase



Monads

The error type

data Err a = Ok a | Bad String

The value is either Ok of the expected type or Bad with an error message.

Whatever monad is used, its actions can be sequenced. For instance,

if

checkExp :: Env -> Exp -> Type -> Err ()

then several checks one after the other are combined with do

do checkExp env exp1 typ

checkExp env exp2 typ



You can bind variables returned from actions, and return values.

do typ1 <- inferExp env exp1

checkExp env exp2 typ1

return typ1

If you are only interested in side effects, you can use the dummy value

type () (corresponds to void in C and void or Object in Java).



Symbol tables

We use an environment with separate parts for the function type table
and the stack of variable contexts.

We use the Map type for symbol tables, and a list type for the stack.

type Env = (Sig,[Context]) -- functions and context stack

type Sig = Map Id ([Type],Type) -- function type signature

type Context = Map Id Type -- variables with their types

Auxiliary operations on the environment have the following types:

lookupVar :: Env -> Id -> Err Type

lookupFun :: Env -> Id -> Err ([Type],Type)

updateVar :: Env -> Id -> Type -> Err Env

updateFun :: Env -> Id -> ([Type],Type) -> Err Env

newBlock :: Env -> Env

emptyEnv :: Env



Data abstraction

You should keep the environment datatype abstract, that is, use it only

via these operations.

Then you can switch to another implementation if needed, for instance

to make it more efficient or add more things in the environment.

You can also more easily modify your type checker code to work as an

interpreter or a code generator, where the environment is different but

the same operations are needed.



Pattern matching for type checking and inference

Here is type inference for some expression forms, following the BNFC

case skeleton:

inferExp :: Env -> Exp -> Err Type

inferExp env x = case x of

ETrue -> return Type_bool

EInt n -> return Type_int

EId id -> lookupVar env id

EAdd exp1 exp2 ->

inferBin [Type_int, Type_double, Type_string] env exp1 exp2



Overloaded operators

A generic auxiliary for overloaded binary operations:

inferBin :: [Type] -> Env -> Exp -> Exp -> Err Type

inferBin types env exp1 exp2 = do

typ <- inferExp env exp1

if elem typ types

then

checkExp env exp2 typ

else

fail $ "wrong type of expression " ++ printTree exp1

The BNFC-generated function

printTree :: a -> String

converts a syntax tree of any type a to a string using the pretty-printer.



Checking in terms of inference

Checking expressions is defined in terms of type inference:

checkExp :: Env -> Type -> Exp -> Err ()

checkExp env typ exp = do

typ2 <- inferExp env exp

if (typ2 = typ) then

return ()

else

fail $ "type of " ++ printTree exp ++

"expected " ++ printTree typ ++

"but found " ++ printTree typ2



Checking statements

checkStm :: Env -> Type -> Stm -> Err Env

checkStm env val x = case x of

SExp exp -> do

inferExp env exp

return env

SDecl typ x ->

updateVar env id typ

SWhile exp stm -> do

checkExp env Type_bool exp

checkStm env val stm



Checking statement lists

As the statement checker may change the environment, statement lists

are simple:

checkStms :: Env -> [Stm] -> Err Env

checkStms env stms = case stms of

[] -> return env

x : rest -> do

env’ <- checkStm env x

checkStms env’ rest

A seasoned Haskell programmer would of course simply write

checkStms = foldM checkStm



Type checker in Java

(Haskell programmers can safely skip the end of this chapter.)

Main problem: how to implement pattern matching.

We want to be modular - to write separate modules for a type checker,

a code generator, an interpeter perhaps some optimizations, perhaps

an interpreter.

The solution is the visitor pattern. It is supported by BNFC, which

generates the visitor interface and skeleton code to implement a vis-

itor.

Each compiler component can be put to a separate class, which im-

plements the visitor interface.



The visitor pattern

Three ingredients:

• Visitor<R,A>, the interface to be implemented by each application

• R visit(Tree p, A arg), the interface methods in Visitor for each

constructor

• R accept(Visitor v, A arg), the abstract class method calling the

visitor

These are generated by BNFC.

The class parameters A and R make the visitor applicable to different

tasks:

• in type inference A is a context and R is a type. Let us look at the

code:



public abstract class Exp {
public abstract <R,A> R accept(Exp.Visitor<R,A> v, A arg);
public interface Visitor <R,A> {

public R visit(Arithm.Absyn.EAdd p, A arg);
public R visit(Arithm.Absyn.EMul p, A arg);
public R visit(Arithm.Absyn.EInt p, A arg);

}
}
public class EAdd extends Exp {

public final Exp exp_1, exp_2;
public <R,A> R accept(Arithm.Absyn.Exp.Visitor<R,A> v, A arg) {

return v.visit(this, arg);
}

}
public class EInt extends Exp {

public final Integer integer_;
public <R,A> R accept(Arithm.Absyn.Exp.Visitor<R,A> v, A arg) {

return v.visit(this, arg);
}

}



Example: the calculator
public class Interpreter {

public Integer eval(Exp e) {
return e.accept(new Value(), null ) ;

}
private class Value implements Exp. Visitor<Integer, Object> {

public Integer visit (EAdd p, Object arg) {
return eval(p.exp_1) + eval(p.exp_2) ;

}
public Integer visit (EMul p, Object arg) {

return eval(p.exp_1) * eval(p.exp_2) ;
}
public Integer visit (EInt p, Object arg) {

return p.integer_ ;
}

}
}

In the calculator,

• the return type R is Integer.
• the additional argument A is just Object; we don’t need it for anything.
• the main class is Interpreter and contains

– the public main method, Integer eval(Exp e), calling the visitor with accept
– the private class Value, which implements Visitor by making the visit

method evaluate the expression



Running the interpreter

To understand the code, look at what happens when the calculator is run on the
expression 2 + 3:

eval(EAdd(EInt(2),(EInt(3)))) −→ eval calls accept
EAdd(EInt(2),(EInt(3))).accept(v,null) −→ accept calls visit
visit(EAdd(EInt(2),(EInt(3))),null) −→ visit calls eval
eval(EInt(2)) + eval(EInt(3)) −→ eval calls accept, etc

The logic is less direct than in Haskell’s pattern matching:

eval (EAdd (EInt 2) (EInt 3)) −→ eval calls eval
eval (EInt 2) + eval (EInt 3) −→ eval calls eval, etc



Type checker components

To implement the type checker in Java, we need three things:

• define the appropriate R and A classes;
• implement type checker and inference visitors with R and A;
• put the type checker into the compiler pipeline.

For the return type R, we use the class Type from the abstract syntax.

We also need a representation of function types:

public static class FunType {
public LinkedList<Type> args ;
public Type val ;

}



The environment

A symbol table (HashMap) of function type signatures

A stack (LinkedList) of variable contexts

Lookup and update methods:

public static class Env {
public HashMap<String,FunType> signature ;
public LinkedList<HashMap<String,Type>> contexts ;

public static Type lookupVar(String id) { ...} ;
public static FunType lookupFun(String id) { ...} ;
public static void updateVar (String id, Type ty) {...} ;
// ...

}



Comparing types for equality

(Something that Haskell gives for free)

A special enumeration type of type codes:

public static enum TypeCode { CInt, CDouble, CString, CBool, CVoid } ;



The headers of the main classes and methods

public void typecheck(Program p) {
}

public static class CheckStm implements Stm.Visitor<Env,Env> {
public Env visit(SDecl p, Env env) {
}
public Env visit(SExp p, Env env) {
}
// ... checking different statements

public static class InferExp implements Exp.Visitor<Type,Env> {
public Type visit(EInt p, Env env) {
}
public Type visit(EAdd p, Env env) {
}
// ... inferring types of different expressions

}



The top level

On the top level, the compiler ties together the lexer, the parser, and the type
checker. Exceptions are caught at each level:

try {
l = new Yylex(new FileReader(args[0]));
parser p = new parser(l);
CPP.Absyn.Program parse_tree = p.pProgram();
new TypeChecker().typecheck(parse_tree);

} catch (TypeException e) {
System.out.println("TYPE ERROR");
System.err.println(e.toString());
System.exit(1);

} catch (IOException e) {
System.err.println(e.toString());
System.exit(1);

} catch (Throwable e) {
System.out.println("SYNTAX ERROR");
System.out.println ("At line " + String.valueOf(l.line_num())

+ ", near \"" + l.buff() + "\" :");
System.out.println(" " + e.getMessage());
System.exit(1);

}



Visitors for type checking

Written by modifying a copy of the BNFC-generated file VisitSkel.java

Statements, with declarations and expression statements as examples:

public static class CheckStm implements Stm.Visitor<Env,Env> {

public Env visit(SDecl p, Env env) {

env.updateVar(p.id_,p.type_) ;

return env ;

}

public Env visit(SExp s, Env env) {

inferExp(s.exp_, env) ;

return env ;

}

//...

}



Type inference, for overloaded multiplication expressions:

public static class InferExpType implements Exp.Visitor<Type,Env> {
public Type visit(demo.Absyn.EMul p, Env env) {

Type t1 = p.exp_1.accept(this, env);
Type t2 = p.exp_2.accept(this, env);
if (typeCode(t1) == TypeCode.CInt &&

typeCode(t2) == TypeCode.CInt)
return TInt;

else
if (typeCode(t1) == TypeCode.CDouble &&

typeCode(t2) == TypeCode.CDouble)
return TDouble;

else
throw new TypeException("Operands to * must be int or double.");

}
//...

}

The function typeCode converts source language types to their type codes:

public static TypeCode typeCode (Type ty) ...

It can be implemented by writing yet another visitor :-)


