
Lecture 7 of TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

Message-Passing Concurrency in
Erlang

Erlang combines a functional language with message-passing features:

• The functional part is sequential, and is used to define the behavior of processes

• The message-passing part is highly concurrent: it implements the actor model, where
actors are Erlang processes

This lecture covers the message-passing/concurrent part of Erlang

What is Erlang?

3

ACTORS AND MESSAGE PASSING

4

Shared Memory vs. Message Passing

6

Shared memory:

• synchronize by writing to and

reading from shared memory

• natural choice in shared memory

systems such as threads

Message passing:

• synchronize by exchanging

messages

• natural choice in distributed

memory systems such as

processes

Erlang’s message-passing concurrency mechanisms implement the actor model:

• Actors are abstractions of processes

• No shared state between actors

• Actors communicate by exchanging messages – asynchronous message
passing

The Actor Model

7

A metaphorical actor is an “active agent which plays a role on cue
according to a script” (Garner & Lukose, 1989)

Each actor is identified by an address

An actor can:

• send (finitely many) messages to other actors via their addresses

• change its behavior – what it computes, how it reacts to messages

• create (finitely many) new actors

A message includes:

• a recipient – identified by its address

• content – arbitrary information

Actor and Messages

8

The entities in the actor model correspond to features of Erlang (possibly with
some terminological change)

The Actor Model in Erlang

9

ACTOR MODEL Erlang LANGUAGE

actor sequential process

address PID (process identifier) pid type

message an Erlang term {From, Content}

behavior (defined by) functions

create actor spawning spawn

dispose actor termination

send message send expression To ! Message

receive message receive expression receive...end

SENDING AND RECEIVING MESSAGES

10

A process:

• is created by calling spawn

• is identified by a pid (process identifier)

• executes a function (passed as argument to spawn)

• when the function terminates, the process ends

A Process’s Life

11

Function spawn(M, F, Args) creates a new process:

• the process runs function F in module M with arguments Args

• evaluating spawn returns the pid of the created process

Within a process’s code, function self() returns the process’s pid

Within a module’s code, macro ?MODULE gives the module’s name

Calling spawn(fun () -> f(a1, ..., an) end) is equivalent to

spawn(?MODULE, f, [a1, ..., an]) but does not require exporting f

The spawn function

12

Processes: Examples

13

3> spawn(fun ()-> true end).

<0.82.0> % double pid of spawned process

4> self().

<0.47.0> % pid of process running shell

9

A process code: Creating processes in the shell:

3> spawn(procs, print_sum, [3, 4]).

7 % printed sum

<0.78.0> % pid of spawned process

2> spawn(procs, compute_sum, [1, 7]).

<0.80.0> % pid of spawned process

% result not visible!

-module(procs).

print_sum(X,Y) ->

io:format("~p~n", [X+Y]).

compute_sum(X,Y) -> X + Y.

A message is any term in Erlang

Typically, a message is the result of evaluating an expression

Sending Messages

14

The expression

sends the evaluation T of Message to the process with pid Pid; and returns T as result

Pid ! Message

Bang is right-associative

To send a message to multiple recipients, we can combine multiple bangs:

Pidn1 ! Pidn2 ! … ! Pidn ! Message

”Bang” operator

Every process is equipped with a mailbox, which behaves like a FIFO queue and is filled with
the messages sent to the process in the order they arrive.

Mailboxes make message-passing asynchronous: the sender does not wait for the recipient to
receive the message; messages queue in the mailbox until they are processed

To check the content of process Pid’s mailbox, use functions:

• process_info(Pid, message_queue_len): how many elements are in the mailbox

• process_info(Pid, messages): list of messages in the mailbox (oldest to newest)

• flush(): empty the current process’s mailbox

Mailboxes

N. Piterman 15Principles of Concurrent Programming

1> self() ! self() ! hello. % send ‘hello’ twice to self
2> self() ! world. % send ‘world’ to self
3> erlang:process_info(self(), messages)
{messages, [hello, hello, world]} % queue in mailbox

To receive messages use the receive expression:

receive

P1 when C1 -> E1;

Pn when Cn -> En

end

Evaluating the receive expression selects the oldest term T in the receiving process’s mailbox
that matches a pattern Pk and satisfies condition Ck. If a term T that matches exists, the
receive expression evaluates to Ek⟨Pk≜T⟩; otherwise, evaluation blocks until a suitable
message arrives.

Receiving messages

N. Piterman 16Principles of Concurrent Programming

How evaluating receive works, in pseudo-code:

The receiving algorithm

N. Piterman 17Principles of Concurrent Programming

Term receive(Queue<Term> mailbox, List<Clause> receive) {

while (true) {

await(!mailbox.isEmpty()); // block if no messages

for (Term message: mailbox) // oldest to newest

for (Clause clause: receive) // in textual order

if (message.matches(clause.pattern))

// apply bindings of pattern match

// to evaluate clause expression

return clause.expression〈clause.pattern≜message〉;
}

}

A simple echo function, which prints any message it receives:\

Sending messages to echo in the shell:

To make the receiving process permanent, it calls itself after receiving:

Receiving messages: examples

N. Piterman 18Principles of Concurrent Programming

echo() ->

receive Msg -> io:format("Received: ~p~n", [Msg]) end.

1> Echo=spawn(echo, echo, []).

% now Echo is bound to echo’s pid

2> Echo ! hello. % send ‘hello’ to Echo

Received: hello % printed by Echo

repeat_echo() ->

receive Msg -> io:format("Received: ~p~n", [Msg]) end,

repeat_echo(). % after receiving, go back to listening

tail recursive, thus no memory consumption problem!

Erlang’s runtime only provides weak guarantees of message delivery order:

• If a process S sends some messages to another process R, then R will receive the messages in the same order S
sent them

• If a process S sends some messages to two (or more) other processes R and Q, there is no guarantee about the
order in which the messages sent by S are received by R relative to when they are received by Q

In practice, pretty much all the Erlang code we will write does not rely on any assumptions about message
delivery order.

Even defining – let alone enforcing – an absolute time across multiple independent processes (which could even
be geographically distributed) would be tricky: in order to synchronize, processes can only exchange messages!

Message delivery order

N. Piterman 19Principles of Concurrent Programming

If process S sends messages a,b,c – in this order – to process R, then R will
receive them in its mailbox in the same order.

Message delivery order: single process

N. Piterman 20Principles of Concurrent Programming

sender process S:
R ! a,

R ! b,

R ! c.

receiver process R:

R’s mailbox: a b c

If process S sends messages a,b,c – in this order – to process R and to process Q,
then R and Q may receive them in any order relative to each other.

Possible scenarios:

Message delivery order: multiple processes

N. Piterman 21Principles of Concurrent Programming

sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:

R’s mailbox: a

receiver process Q:

Q’s mailbox: b c

Stateful processes

N. Piterman 22Principles of Concurrent Programming

A ping server is constantly listening for requests; to every message ping, it
replies with a message ack sent back to the sender.

In order to identify the sender, it is customary to encode messages as tuples of
the form:

Combining the echo and ping servers:

A ping server

N. Piterman 23Principles of Concurrent Programming

{SenderPid, Message}

ping() -> receive

{From, ping} -> From ! {self(), ack}; % send ack to pinger

_ -> ignore % ignore any other message

end, ping(). % next message

1> Ping = spawn(echo, ping, []), Echo = spawn(echo, repeat_echo, []).

2> Ping ! {Echo, ping}. % send ping on Echo’s behalf

Received: {<0.64.0>, ack} % ack printed by Echo

3> Ping ! {Echo, other}. % send other message to Ping

% no response

Processes can only operate on the arguments of the function they run, and on whatever is
sent to them via message passing. Thus, we store state information using arguments, whose
value gets updated by the recursive calls used to make a process permanently running.

A stateful process can implement the message-passing analogue of the concurrent counter
that used Java threads. The Erlang counter function recognizes two commands, sent as
messages:

• increment: add one to the stored value

• count: send back the currently stored value

Stateful processes

N. Piterman 24Principles of Concurrent Programming

base_counter(N) ->

receive {From, Command} -> case Command of

increment -> base_counter(N+1); % increment counter

Count -> From ! {self(), N}, % send current value

base_counter(N); % do not change value

U -> io:format("? ~p~n", [U]) % unrecognized command

end end.

Concurrent counter: first attempt
base_counter(N) ->

receive {From, Command} -> case Command of

increment -> base_counter(N+1); % increment counter

count -> From ! {self(), N}, % send current value

base_counter(N); % do not change value

U -> io:format("? ~p~n", [U]) % unrecognized command

end end.

increment_twice() ->

Counter = spawn(counter, base_counter, [0]), % counter initially 0

% function sending message ‘increment’ to Counter

FCount = fun () -> Counter ! {self(), increment} end,

spawn(FCount), spawn(FCount), % two procs running FCount

Counter ! {self(), count}, % send message ‘count’

% wait for response from Counter and print it

receive {Counter, N} -> io:format("Counter is: ~p~n", [N])
end.

Evaluated only when spawning a process running FCount

Running increment_twice does not seem to behave as expected:

1> increment_twice().

Counter is: 0

The problem is that there is no guarantee that the message delivery order is the same as the sending

order: the request for count may be delivered before the two requests for increment (or even before

the two processes have sent their increment requests).

A temporary workaround is waiting some time before asking for the count, hoping that the two

increment messages have been delivered:

wait_and_hope() ->

Counter = spawn(counter, base_counter, [0]), % counter initially 0

FCount = fun () -> Counter ! {self(), increment} end,

spawn(FCount), spawn(FCount), % two processes running FCount

timer:sleep(100), % wait for ‘increment’ 2b delivered

Counter ! {self(), count}, % send message ‘count’

receive {Counter, N} -> io:format("Counter is: ~p~n", [N])

end.

Concurrent counter: first attempt (cont’d)

N. Piterman 26Principles of Concurrent Programming

Since there is no guarantee that the message delivery order is the same as the sending order when

multiple processes are involved, the only robust mechanism for synchronization is exchanging

messages following a suitable protocol.

For example, the counter sends notifications of every update to a monitoring process:

counter(N, Log) ->

receive

{_, increment} ->
Log ! {self(), N+1}, % send notification

counter(N+1, Log); % update count

{From, count} -> % send count, next message

From ! {self(), N}, counter(N, Log)

end.

Synchronization in an asynchronous world

N. Piterman 27Principles of Concurrent Programming

counter(N, Log) ->

receive

{_, increment} ->
Log ! {self(), N+1}, % send notification

counter(N+1, Log); % update count

{From, count} -> % send count, next message

From ! {self(), N}, counter(N, Log)

end.

% set up counter and incrementers; then start monitor

Increment_and_monitor() ->

Counter = spawn(?MODULE, counter, [0, self()]),

FCount = fun () -> Counter ! {self(), increment} end,

spawn(FCount), spawn(FCount),

monitor_counter(Counter). % start monitor

monitor_counter(Counter) ->

receive

{Counter, N} -> io:format("Counter is: ~p~n", [N])

end,

monitor_counter(Counter).

Concurrent counter with monitoring process

N. Piterman 28Principles of Concurrent Programming

What happens to messages not in this format?

They stay in the mailbox!

Clients and servers

N. Piterman 29Principles of Concurrent Programming

The client/server architecture is a widely used communication model between processes using

message passing:

1. A server is available to serve requests from any clients

2. An arbitrary number of clients send commands to the server and wait for the server’s response

Many Internet services (the web, email, . . .) use the client/server architecture.

Client/server communication

N. Piterman 30Principles of Concurrent Programming

Server

Client C1

· ··

Client Cn

request request

response response

A server is a process that:

• responds to a fixed number of commands – its interface

• runs indefinitely, serving an arbitrary number of requests, until it receives a shutdown command

• can serve an arbitrary number of clients – which issue commands as messages

Each command is a message of the form:

{Command, From, Ref, Arg1, ..., Argn}

• Command is the command’s name

• From is the pid of the client issuing the command

• Ref is a unique identifier of the request (so that clients can match responses to requests)

• Arg1, ..., Argn are arguments to the command

Each command is encapsulated in a function, so that clients need not know the structure of messages to issue

commands.

Servers

N. Piterman 31Principles of Concurrent Programming

The interface of a math server consists of the following commands:

factorial(M): compute the factorial of M

status(): return the number of requests served so far (without incrementing it)

stop(): shutdown the server

We build an Erlang module with interface:

start(): start a math server, and return the server’s pid

factorial(S, M): compute factorial of M on server with pid S

status(S): return number of requests served by server with pid S

stop(S): shutdown server with pid S

-module(math_server).
-export([start/0,factorial/2,status/1,stop/1]).

A math server

N. Piterman 32Principles of Concurrent Programming

loop(N) ->

receive

% ‘factorial’ command

{factorial, From, Ref, M} ->

From ! {response, Ref, compute_factorial(M)},
loop(N+1); % increment request number

% ‘status’ command

{status, From, Ref} ->

From ! {response, Ref, N},

loop(N); % don’t increment request number

% ‘stop’ command

{stop, _From, _Ref} -> ok

end.

This function need not be exported, unless it is spawned by another function of the module using spawn(?MODULE,

loop, [0]).

(In that case, it’s called via its module, so it must be exported.)

Math server: event loop

N. Piterman 33Principles of Concurrent Programming

Ordinary Erlang function computing factorial

We start the server by spawning a process running loop(0):

% start a server, return server’s pid

start() ->

spawn(fun () -> loop(0) end).

We shutdown the server by sending a command stop:

% shutdown ‘Server’

stop(Server) ->

Server ! {stop, self(), 0}, % Ref is not needed

ok.

Math server: starting and stopping

N. Piterman 34Principles of Concurrent Programming

We compute a factorial by sending a command factorial:

% compute factorial(M) on ‘Server’

factorial(Server, M) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {factorial, self(), Ref, M},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.

We get the server’s status by sending a command status:

% return number of requests served so far by ‘Server’

status(Server) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {status, self(), Ref},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.

Math server: factorial and status

N. Piterman 35Principles of Concurrent Programming

Returns a number that is unique among connected nodes

in the system.

pid of process calling factorial

After creating a server instance, clients simply interact with the server by calling functions of module math_server:

1> Server = math_server:start().

<0.27.0>

2> math_server:factorial(Server, 12).

479001600

3> math_server:factorial(Server, 4).

24

4> math_server:status(Server).

2

5> math_server:status(Server).

2

5> math_server:stop(Server). ok

6> math_server:status(Server).

% blocks waiting for response

Math server: clients

N. Piterman 36Principles of Concurrent Programming

Generic servers

N. Piterman 37Principles of Concurrent Programming

A generic server takes care of the communication patterns behind every server. Users instantiate a generic server
by providing a suitable handling function, which implements a specific server functionality.

A generic server’s start and stop functions are almost identical to the math server’s – the only difference is that the

event loop also includes a handling function:

start(InitialState, Handler) ->

spawn(fun () -> loop(InitialState, Handler) end).

stop(Server) ->

Server ! {stop, self(), 0}, % Ref is not needed

ok.

Generic servers

N. Piterman 38Principles of Concurrent Programming

A generic server’s event loop includes the current state and the handling function as arguments:

loop(State, Handler) ->

receive

% a request from ‘From’ with data ‘Request’

{request, From, Ref, Request} ->

% run handler on request

case Handler(State, Request) of

% get handler’s output

{reply, NewState, Result} ->

% the requester gets the result

From ! {response, Ref, Result},

% the server continues with the new state

loop(NewState, Handler)

end;

{stop, _From, _Ref} -> ok

end.

Generic servers: event loop

N. Piterman 39Principles of Concurrent Programming

A generic server’s function request takes care of sending generic requests to the server, and of receiving back the

results.

% issue a request to ‘Server’; return answer

request(Server, Request) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {request, self(), Ref, Request},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.

Generic servers: issuing a request

N. Piterman 40Principles of Concurrent Programming

Here is how we can define the math server using the generic server. Starting and stopping use the handling

function math_handler:

start() -> gserver:start(0, fun math_handler/2).

stop(Server) -> gserver:stop(Server).

The handling function has two cases, one per request kind:

math_handler(N, {factorial, M}) ->
{reply, N+1, compute_factorial(M)};

math_handler(N, status) -> {reply, N, N}.

The exported functions factorial and status – which are called by clients – call the generic server’s request

function.

factorial(Server, M) -> gserver:request(Server, {factorial, M}).
status(Server) -> gserver:request(Server, status).

Math server: using the generic server

N. Piterman 41Principles of Concurrent Programming

We extend the implementation of the generic server to improve:

robustness: add support for error handling and crashes

flexibility: add support for updating the server’s functionality while the server is running

performance: discard spurious messages sent to the server, getting rid of “junk” in the mailbox

All these extensions to the generic server do not change its interface; thus instance servers relying on it

will still work, with the added benefits provided by the new functionality!

Servers: improving robustness and flexibility

N. Piterman 42Principles of Concurrent Programming

If computing the handling function on the input fails, we catch the resulting exception and notify the client that an

error has occurred.

To handle any possible exception, use the catch(E) built-in function:

if evaluating E succeeds, the result is propagated;

if evaluating E fails, the resulting exception Reason is propagated as {'EXIT', Reason}

This is how we perform exception handling in the event loop:

case catch(Handler(State, Request)) of

% in case of error

{’EXIT’, Reason} ->

% the requester gets the exception

From ! {error, Ref, Reason},

% the server continues in the same state

loop(State, Handler);

% otherwise (no error): get handler’s output

{reply, NewState, Result} ->

Robust servers

N. Piterman 43Principles of Concurrent Programming

Changing the server’s functionality requires a new kind of request, which does not change the server’s state

but it changes the handling function.

The event loop now receives also this new request kind:

% a request to swap ‘NewHandler’ for ‘Handler’

{update, From, Ref, NewHandler} ->

From ! {ok, Ref}, % ack

% the server continues with the new handler

loop(State, NewHandler);

Function update takes care of sending requests for changing handling function (similarly to what request

does for basic requests):

% change ‘Server’s handler to ‘NewHandler’

update(Server, NewHandler) ->

Ref = make_ref(), % send update request to server

Server ! {update, self(), Ref, NewHandler},

receive {ok, Ref} -> ok end. % wait for ack

Flexible servers

N. Piterman 44Principles of Concurrent Programming

If unrecognized messages are sent to a server, they remain in the mailbox indefinitely (they never pattern match in

receive). If too many such “junk” messages pile up in the mailbox, they may slow down the server.

To avoid this, it is sufficient to match any unknown messages and discard them as last clause in the event loop’s

receive:

% discard unrecognized messages

_ -> loop(State, Handler)

To avoid clients waiting forever for responses to discarded requests, we add a timeout to request:

receive

{response, Ref, Result} -> Result

% after 10 seconds, give up

after 10000 -> timeout end.

Discarding junk messages

N. Piterman 45Principles of Concurrent Programming

Location transparency and
distribution

N. Piterman 46Principles of Concurrent Programming

One needs another process’s pid to exchange messages with it. To increase the flexibility of exchanging pids

in open systems, it is possible to register processes with a symbolic name:

• register(Name, Pid): register the process Pid under Name; from now on, Name can be used wherever a

pid is required

• unregister(Name): unregister the process under Name; when a registered process terminates, it implicitly

unregisters as well

• registered(): list all names of registered processes
• whereis(Name): return pid registered under Name

In the generic server, we can add a registration function with name:

% start a server and register with ‘Name’

start(InitialState, Handler, Name) ->

register(Name, start(InitialState, Handler)).

All other server functions can be used by passing Name for Server.

Registered processes

N. Piterman 47Principles of Concurrent Programming

Message passing concurrency works in the same way independent of whether the processes run on

the same computer or in a distributed setting.

In Erlang, we can turn any application into a distributed one by running processes on different

nodes:

• start an Erlang runtime environment on each node

• connect the nodes by issuing a ping

• load the modules to be execute on all nodes in the cluster

• for convenience, register the server processes

• to identify registered process Name running on a node node@net_address use the tuple

{Name, 'node@net_address'} wherever you would normally use a registered name or pid

From concurrent to distributed

N. Piterman 48Principles of Concurrent Programming

In our simple experiments, the nodes are processes on the same physical local machine (IP address 127.0.0.1,
a.k.a. local host), but the very same commands work on different machines connected by a network.

A cookie is an identifier that all nodes in the same connected group share.

Distribution: setting up nodes

N. Piterman 49Principles of Concurrent Programming

Node server@127.0.0.1:

> erl -name ’server@127.0.0.1’ -setcookie math_cluster
s1>

Node client@127.0.0.1:

> erl -name ’client@127.0.0.1’ -setcookie math_cluster
c1>

mailto:Nodeserver@127.0.0.1
mailto:server@127.0.0.1
mailto:Nodeclient@127.0.0.1
mailto:client@127.0.0.1

Nodes are invisible to each other until a message is exchanged between them; after that, they are

connected.

Node client@127.0.0.1:

% send a ping message to connect client to server node

c1> net_adm:ping(’server@127.0.0.1’).
pong % the nodes are now connected

% list connected nodes

c2> nodes().
[’server@127.0.0.1’]

% load module ‘ms’ in all connected nodes

c3> nl(ms).

abcast % the module is now loaded

Distribution: connect nodes and load modules

N. Piterman 50Principles of Concurrent Programming

mailto:Nodeclient@127.0.0.1
mailto:server@127.0.0.1
mailto:server@127.0.0.1

We start the math server on the node server, and register it under the name mserver.

Then, we can issue request from the client node using

{mserver, 'server@127.0.0.1'} instead of pids.

The very same protocol works for an arbitrary number of client nodes.

Distribution: server setup

N. Piterman 51Principles of Concurrent Programming

Node server@127.0.0.1:

s1> register(mserver,ms:start()).

true

% server started

% and registered

Node client@127.0.0.1:

c4> ms:factorial({mserver, ’server@127.0.0.1’}, 10).

3628800

c5> ms:status({mserver, ’server@127.0.0.1’}).

1

c6> ms:status({mserver, ’server@127.0.0.1’}).

1

mailto:Nodeserver@127.0.0.1
mailto:Nodeclient@127.0.0.1
mailto:server@127.0.0.1
mailto:server@127.0.0.1
mailto:server@127.0.0.1

These slides’ licence

N. Piterman 52Principles of Concurrent Programming

© 2016–2019 Carlo A. Furia, Sandro Stucki

Except where otherwise noted, this work is licensed under the Creative Commons Attribution-ShareAlike

4.0 International License.

To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

