Svynchronization problems with

semaphores

Lecture 4 of TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

UNIVERSITY OF
GOTHENBURG

"_ a\ S * |I_
h.‘-_\ __ >

CHALMERS

UNIVERSITY OF TECHNOLOGY

R

Qs @) CHALMERS é’,jj UNIVERSITY OF GOTHENBURG
Today's menu
Dining philosophers (CEZT__ g T
° D|n|ng philOSOpherS Producer-consumer
* Producer-consumer
* Barriers
@ saLmers | @)

Barriers

e Readers-writers

Readers-writers

i

&0, UNIVERSITY OF GOTHENBURG

A gallery of synchronization problems

* Today we go through several classical synchronization problems and solve them using
threads and semaphores

* |f you want to learn about many other synchronization problems and their solutions
* “The little book of semaphores” by A. B. Downey: http://greenteapress.com/semaphores/

* We use pseudo-code to simplify the details of Java syntax and libraries but which can
be turned into fully functioning code by adding boilerplate

* On the course website: can download fully working implementations of some of the problems

e Recall that we occasionally annotate classes with invariants using the pseudo-code
keyword invariant

* Not a valid Java keyword — that is why we highlight it in a different color — but we will use it to
help make more explicit the behavior of classes

* We also use at (i) orat(i,j) toindicate the number of threads that are at location i or
between locations i, 5. (That’s not Java either)

http://greenteapress.com/semaphores/

@%Y) UNIVERSITY OF GOTHENBURG

P

Dining philosophers

) CHALMERS é’;’s £J)) UNIVERSITY OF GOTHENBURG

The dining philosophers (reminder)

The dining philosophers is a classic synchronization
problem introduced by Dijkstra. It illustrates the

problem of deadlocks using a colorful metaphor (by
Hoare)

* Five philosophers are sitting around a dinner table,
with a fork in between each pair of adjacent
philosophers

* Each philosopher alternates between thinking (non-
critical section) and eating (critical section)

* |In order to eat, a philosopher needs to pick up the
two forks that lie to the philopher’s left and right

* Since the forks are shared, there is a synchronization
problem between philosophers (threads)

e &) UNIVERSITY OF GOTHENBURG

Dining philosophers: the problem

Properties of a good solution:
e support an arbitrary number of philosophers

e deadlock freedom

e starvation freedom
// philosopher k releases forks
F F » reasonable efficiency: eating in parallel still

void putForks (int k) ; possible

interface Table {

// philosopher k picks up forks

void getForks (int k) ;

Dining philosophers’ problem: implement Table such that:
e forks are held exclusively by one philosopher at a time

e each philosopher only accesses adjacent forks

ST,

éi "i_g UNIVERSITY OF GOTHENBURG

e

Y CHALMERS

UNIVERSITY OF TECHNOLOGY

The philosophers

Each philosopher continuously alternate between thinking and eating; the table
must guarantee proper synchronization when eating

Table table; // table shared by all philosophers

philosopher;,
while (true) {
think(); // think
table.getForks(k); // wait for forks
eat(); // eat

table.putForks(k); // release forks

3 CHALMERS

UNIVERSITY OF TECHNOLOGY

i"*ﬁ? UNIVERSITY OF GOTHENBURG

i

Left and right

For convenience, we introduce a consistent numbering scheme for forks and
philosophers, in a way that it is easy to refer to the left or rlght fork of each

philosopher.

// 1in classes implementing Table:

// fork to the left of philosopher k
public int left (int k) {
return k;

}

// fork to the right of philosopher k
public int right (int k) {
// N is the number of philosophers
return (k + 1) % Nj;
}

-]
A
P in
SR

&) UNIVERSITY OF GOTHENBURG

IIIIIIIIIIIIIIIIIIIIII

Dining philosophers with locks and semaphores

* We use semaphores to enforce mutual exclusion when philosophers access the
forks

First solution needs only locks:

Lock[] forks = new Lock[N]; // array of locks

* One lock per fork

e forks[i].lock () to pick up fork i:
forks[i] is held if fork i is held

 forks[i].unlock () to put down fork i:
forks[i] is available if fork i is available

ST,

éi "i__,j UNIVERSITY OF GOTHENBURG

s

Y CHALMERS

UNIVERSITY OF TECHNOLOGY

Dining philosophers with semaphores: first attempt

In the first attempt, every philosopher picks up the left fork and then the right
fork:

public class DeadTable implements Table {
Lock[] forks = new Lock|[N];

" All forks initially avaliable

public void getForks (int k) { public void putForks (int k) {
// pick up left fork // put down left fork
forks[left(k)].lock () ; forks[left (k)] .unlock () ;
// pick up right fork // put down right fork

forks[right (k)].lock(); forks[right (k)] .unlock();
} }

S

% CHALMERS (8%} UNIVERSITY OF GOTHENBURG
= e

UNIVERSITY OF TECHNOLOGY

Dining philosophers with semaphores: first attempt

public class DeadTable implements Table
{ Lock[] forks = new Lock[N];

public void getForks (int k) {
// pick up left fork if all philosophers hold

£oES [LEEE (8) I o Lotz () 7 «— left fork: deadlock!
// pick up right fork

forks[right (k)].lock ()
}

A deadlock may occur because of circular waiting:

AT

{®%)) UNIVERSITY OF GOTHENBURG

P

Dining philosophers solution 1: breaking the symmetry

Y CHALMERS

UNIVERSITY OF TECHNOLOGY

Having one philosopher pick up forks in a different order than the others is
sufficient to break the symmetry, and thus to avoid deadlock

public class AsymetricTable implements Table {
Lock[] forks = new Lock([N];

public void getForks (int k) {

if (k == N) { // right before left
forks[right(k)].lock();
forks[left(k)].lock();

] else { // left before right
forks[left (k)].lock();
forks[right(k)].lock();

}

}
// putForks as 1in DeadTable

&0, UNIVERSITY OF GOTHENBURG

Breaking symmetry to avoid deadlock

Breaking the symmetry is a general strategy to avoid deadlock when acquiring
multiple shared resources:

* assign a total order between the shared resources Ry < R; < - < Ry,

* a thread can try to obtain resource R;, with i > j, only after it has
successfully obtained resource R;

Recall the Coffman conditions from Lecture 2...:

1. mutual exclusion: exclusive access to the shared resources

2. hold and wait: request one resource while holding another

3. no preemption: resources cannot forcibly be released

4. circular wait: threads form a circular chain, each waiting for a resource the next is holding

Circular wait is a necessary condition for a deadlock to occur

“%y CHALMERS

UNIVERSITY OF TECHNOLOGY

&) UNIVERSITY OF GOTHENBURG

Dining philosophers solution 2: bounding resources

Limiting the number of philosophers active at the tabletoM < N ensures that
there are enough resources for everyone at the table, thus avoiding deadlock

public class SeatingTable implements Table ({
Lock[] forks = new Lock[N];

Semaphore seats = new Semaphore(M); // # available seats
public void getForks (int k) { public void putForks (int k) {

// get a seat // put down left fork
[seats.down(); forks[left (k)] .unlock();

// pick up left fork // put down right fork

forks[left(k)].lock(); forks[right (k)] .unlock();

// pick up right fork // leave seat
forks[right (k)].lock(); seats.up () ;

} }

&0, UNIVERSITY OF GOTHENBURG

Starvation-free philosophers

The two solutions to the dining philosophers problem also guarantee freedom from
starvation, under the assumption that locks/semaphores (and scheduling) are fair

In the asymmetric solution (AsymmetricTable):

* if a philosopher P waits for a fork k, P gets the fork as soon as P’s neighbor holding fork
k releases it,

* P’s neighbor eventually releases fork k because there are no deadlocks.

In the bounded-resource solution (SeatingTable):

e at most M philosophers are active at the table,
the other N - M philosophers are waiting on seats.down (),
the first of the M philosophers that finishes eating releases a seat,
the philosopher P that has been waiting on seats.down proceeds,
similarly to the asymmetric solution, P also eventually gets the forks.

%*fs)j UNIVERSITY OF GOTHENBURG

Producer-consumer

-} CHALMERS) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY —

Producer-consumer: overview

Producers and consumer exchange items through a shared buffer:
* producers asynchronously produce items and store them in buffer
* consumers asynchronously consume items after removing them from buffer

. 4 T .._ oy (7T R“L_'L_Ef‘—g’_“;!xy_:

eRevarenn

5 ELL LT Y TS
producer 2 i

buffer

consumer

{0) CHALMERS (5§) £9)) UNIVERSITY OF GOTHENBURG

Producer-consumer: The problem

Producer-consumer problem: implement Buffer such that:
e producers and consumers access the buffer in mutual exclusion

e consumers block when the buffer is empty

e producers block when the buffer is full (bounded buffer variant)

interface Buffer<T> {
// add item to buffer,; block i1f full
void put (T item);

// remove item from buffer; block if empty
T get();

// number of items 1n buffer
int count () ;

“y CHALMERS

;I UNIVERSITY OF GOTHENBURG

& q ..

Producer-consumer: Desired properties

Producer-consumer problem: implement Buffer such that:
e producers and consumers access the buffer in mutual exclusion

e consumers block when the buffer is empty

e producers block when the buffer is full (bounded buffer variant)

Other properties that a good solution should have:
e support an arbitrary number of producers and consumers
e deadlock freedom
* starvation freedom

ST,

éi "5_35 UNIVERSITY OF GOTHENBURG

s

Y CHALMERS

UNIVERSITY OF TECHNOLOGY

Producers and consumers

Producers and consumers continuously and asynchronously access the buffer,
which must guarantee proper synchronization

Buffer<Item> buffer;

producer,, consumer,,
while (true) { while (true) {
// create a new item Item item = buffer.get();
Item item = produce(); // do something with ‘item’
buffer.put(item); consume(item);
} }

ST,

éi "i__,j UNIVERSITY OF GOTHENBURG

S ':

CHALMERS

UNIVERSITY OF TECHNOLOGY

Unbounded shared buffer

public class UnboundedBuffer<T> implements Buffer<T> ({
Lock lock = new Lock(); // for exclusive access to buffer
Semaphore nltems = new Semaphore(0); // number of items in buffer

Collection storage = ...; // any collection (list, set, ...)

[invariant { storage.count () == nItems.count() + at(5,15-17); ﬂ

}
1 public void put (T item) { Signals to 2 public T get()
2 lock.lock(); // lock consumers 13 // wait until nItems > 0
3 // store item waitinginget 14 nItems.down();
4 storage.add(iﬁfﬂli/,///”’/////,thattheycan 15 lock.lock(); // lock
5 nIltems.up () ; // update nItems proceed 10 //lretrleve LIS
6 lock.unlock(); // release 17 T i1tem =storage.remove () ;

. ’ 18 lock.unlock(); // release

7} 19 return item;
8 a0)
9 public int count () {

10 return nltems.count(); // locking here?

11 }

22y CHALMERS

UNIVERSITY OF TECHNOLOGY

&) UNIVERSITY OF GOTHENBURG

Buffer: method put

? :
Can we execute up after unlock: Fxecuting up after unlock:

* No effects on other threads executing put:

{ they only wait for 1ock

1 public void put (T/ifem)

3 // store itém * If a thread is waiting for nItems > 0in

s storage. get: it does not have to wait again for 1ock
5 nltems.up () // update nItems just after it has been signaled to continue

b lock.unlock (), // release * If a thread is waiting for the lock in get: it

r may return with the buffer in a (temporarily)
8 inconsistent state (broken invariant, but

4 public int count () { benign because temporary)

10 return nltems.count(); // locking here?

11 }

Executing up after unlock

[

o

om & W

}

Different numbers than
original program

(
lock.lock () ;
storage.add
k
) ;

14

lock.unloc
nItems.up (

Old invariant needs rewriting

OLD:

invariant { storage.count ()

== nItems.count () + at(5,15-17);

invariant/ {
storage.count () ==

nItems.count () + at(4,9-10);
AN

Value of nitem
(Oor1)

}

elements in buffer

N
threads in

these locations

public void put (T item)

}

CHALMERS

UNIVERSITY OF TECHNOLOGY

)

7 public T get ()

e38 nltems.down ()

e 9 lock.lock();
e ¢ T item =storage.remove () ;

13 }

11 lock.unlock () ;
1z return item;

j UNIVERSITY OF GOTHENBURG

{

Temporary breaking
of the invariant

SHAREQ%

producer put consumer get

+1 pce: 3 pcy: 8 nItems: | buffer//{z)
+2 pci: 3 pcy: 9 nItems: O buffe 'ﬂw)
+3 pci: 4 pcy: 9 nItems: O bufférf (z,vy)
+4 pci: S pc,: 9 nItems: O buffer:|{x, y)
+5 pcr: S pc,: 10 nItems: O buffer:|(x.y)
+6 pce: S pc,: 11 nItems:()bufferu(y)
+7 pce: S pcy: 12 nItems: 0 buffer:'ir(y)
+8 pc: S done nItems: O buffer: (v)
+9 done done nItems: | buffer: (y)

%*}% UNIVERSITY OF GOTHENBURG

\'Iﬁm-'f;‘

CHALMERS

UNIVERSITY OF TECHNOLOGY

Unbounded shared buffer

public class UnboundedBuffer<T> implements Buffer<T> ({
Lock lock = new Lock(); // for exclusive access to buffer
Semaphore nltems = new Semaphore(0); // number of items in buffer
Collection storage = ...; // any collection (list, set, ...)
invariant { storage.count() == nltems.count() + at(5,15-17); }

}

1 pUbliC void put(T item) { 12 public T get() {

a2 lock.lock(); // lock 13 // wait until nItems > 0

3 // store item 14 nItems.down () ;

4 storage.add (item) ; 15 lock.lock(); // lock

5 nItems.up () ; // update nItems 10 //lretrieve item

6 lock.unlock(); // release 17 T 1tem =storage.remove () ;
’ 18 lock.unlock(); // release

7} 1g return item;

8 ag }

9 public int count () {

10 return nltems.count(); // locking here?

11 }

“%y CHALMERS

UNIVERSITY OF TECHNOLOGY

' UNIVERSITY OF GOTHENBURG

Buffer: method get

What happens if another thread gets the lock
just after the current threads has
decremented the semaphore nItems?

Can we execute down after lock?

* |f the other thread is a producer, it doesn’t
matter: as soon as get resumes execution, .,

=
¥}

there will be one element in storage to 14 nItems.doyn () ;
remove. 15 lock.lo;k();/O/lock
16 // retrieve item
17 T item =storage.remove () ;
e |f the other thread is a consumer, it must 18 lock.unlock{); // release
1g return 1tem;

have synchronized with the current thread
on nItems.down (), and the order of
removal of elements from the buffer
doesn’t matter

ST,

) CHALMERS (8} UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Buffer: method get

Executing down after 1ock: 2 public T get () {

13 // wait until nItems > 0
14 nItems.down () ;
.) 15 lock.lock(); // lock
* If the buffer is empty when locking, 6 // retrieve item
there is a deadlock! 17 T item =storage.remove () ;
e« Will d : : 18 lock.unlock(); // release
ill not succeed executing down () : it e e

blocks 20}

CHALMERS

UNIVERSITY OF TECHNOLOGY

Bounded shared buffer

public class BoundedBuffer<T> implements Buffer<T> {
Lock lock = new Lock(); // for exclusive access
Semaphore nItems = new Semaphore (0); // rtems
Semaphore nFree = new Semaphore (N)

Collection storage = ...; // any collegtfton (list, set, ...)
invariant { storage.count () == nI s.count () +
+ at(6,13-15) == N“* nFree.count() - at(4-6,16) ; }

. public void put (T item) { .o public T get () {
// wait until nFree > 0 : ;
: e o) .1 // wait until nItems > 0 May deadlock
. ook ook e ——____ May deadlock .2 nItems.down () ;< T
5 // store item if swapped 13 lock.lock(); lock
6 storage.add (item) ; g // retrieve item
7 nltems.up () ; // update nItems 15 T item = storage.remove () ;
8 lock.unlocKWy // release S e O Y G e e
9 }

17 lock.unlock(release

18 return item;

OK to swap

19 }

OK to swap

) CHALMERS ®)) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY —

Waiting on multiple conditions?

The operations offered by semaphores do not support waiting on multiple
conditions (not empty and not full in our case) using one semaphore

* Busy-waiting on the semaphore will not work:

// wait until there 1s space in the buffer
while (! (nItems.count() < N)) {};

// the buffer may be full again when locking!
lock.lock(); // lock

// store item

storage.add (item);

nItems.up(); // update nItems

lock.unlock(); // release

) CHALMERS (@) UNIVERSITY OF GOTHENBURG
e UNIVERSITY OF TECHHOLOGY 'ﬁ "

Barriers

-} CHALMERS) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY —

Barriers (also called rendezvous)

A barrier is a form of synchronization where there is a point (the

barrier) in a program’s execution that all threads in a group have
to reach before any of them is allowed to continue

A solution to the barrier synchronization problem for 2 threads with binary semaphores

Semaphore[] done = {new Semaphore(@li\ggf Semaphore(0)};

A
to 5]
Capacity 0 forces up
// code before barrier // code before barrier before first down
donelfg].up(); // t done done[?;].up(); // u done
donel[7,].down(); // wait u /daue'[’mgwn(); // wait t
// code gpfter barri // code after rier

down waits until the other

up done unconditionally tread has reaches the barrier

#) CHALMERS g"j‘_; ,; UNIVERSITY OF GOTHENBURG

Barriers: variant 1

The solution still works if to performs down before up — or, symmetrically, if i
does the same

Semaphore[] done = new Semaphore(0), new Semaphore(0);

to 1
// code before barrier // code before barrier
done[{;].down(); // wait u donel[7y].up(); // u done
done[tp].up(); // t done doneltg].down(); // wait t
// code after barrier // code after barrier

This is, however, a bit less efficient: the last thread to reach the barrier has to stop
and yield to the other (one more context switch)

Y CHALMERS

UNIVERSITY OF TECHNOLOGY

Barriers: variant 2

The solution deadlocks if both to and #: perform down before up

Semaphore[] done = new Semaphore(0), new Semaphore(0);

to i1
// code before barrier // code before barrier
done([f1].down(); // wait u done[tg].down(); // wait t
done[tp].up(); // t done done[ty].up(); // u done
// code after barrier // code after barrier

There is a circular waiting, because no thread has a chance to signal to the other that it
has reached the barrier

CHALMERS

UNIVERSITY OF TECHNOLOGY

@) UNIVERSITY OF GOTHENBURG

Barriers with nthreads (single use)

Keeping track of n threads reaching the barrier:
 nDone: number of threads that have reached the barrier
 lock: to update nDone atomically
e open: to release the waiting threads (“opening the barrier”)
int nDone = 0; // number of done threads

Lock lock = new Lock(); // mutual exclusion for nDone
Semaphore open = new Semaphore(0); // 1 iff barrier is open

thread
Total number of

expected threads

// code before barrier
lock. lock(); // lo

nDone = nDone + 1; // I'm done

if (nDone == nY open.up(); // I'm the last: we can go! Can we switch
lock.unlock(); 77 unlock nDone these?
open.down(); // proceed when possible

open.up(); // let the next one go

// code after barrier

ST,

%ﬁjlﬂﬂVERﬂTYOFGDTHENBURG

s

CHALMERS

UNIVERSITY OF TECHNOLOGY

Barriers with nthreads (single use): variant

int nDone 0; // number of done threads
Lock lock = new Lock(); // mutual exclusion for nDone
Semaphore open = new Semaphore(0); // 1 iff barrier 1is open

thread ¢,

Can we open the barrier after unlock?
// code before barrier

lock. lock(); // lock nDon
nDone = nDone + 1;
lock.unlock();

// unlock nDone

if (nDone == n) open.up(); // I’'m the last: we can go!
open.down(); // proceed when possible
open.up(); // let the next one go

// code after barrz
Such pairs of wait/signal are called turnstiles

* |ngeneral, reading a shared variable outside a lock may give an inconsistent value
* |n this case, however, only after the last thread has arrived can any thread read
nDone == n, because nDone is only incremented

“Y CHALMERS

UNIVERSITY OF TECHNOLOGY

#§)) UNIVERSITY OF GOTHENBURG

Reusable barriers

interface Barrier {
// block until expect () threads have reached barrier
volid wait () ;

// number of threads expected at the barrier
int expect();

}
Returned from

Reusable barrier: implement Barrier/ such that:

e a thread blocks on wa it until all thyeads have reached the barrier
e after expect () threads have executed wait, the barrier is closed again

ST,

éi "i_j UNIVERSITY OF GOTHENBURG

e

Threads at a reusable barrier

Threads continuously approach the barrier, and all synchronize their access at
the barrier

Barrier barrier = new Barrier(n); // barrier for n threads

thread,.

while (true) {
// code before barrier
barrier.wait(); // synchronize at barrier
// code after barrier

CHALMERS ﬂf’:g UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY --...- 4

Reusable barriers: first attempt

public class NonBarrierl implements Barrier ({
int nDone = 0; // number of done threads More than one thread mMay open the

Semaphore open = Iy Semephone (1) § barrier (the first open.up ()): this was
final int n; i
not a problem in the non-reusable
version, but now some threads may be
executing wait again before the barrier
is closed again!

public void wait() ({ What if n threads block here until nDone ==n?

synchronized (this) ({
nDone += 1; // I'm d))

} What if n threads block here until nDone == 0?

if (nDone == n)
open.up () ; // I'm the last arrived: can go!

open.down () // proceed when More than one thread may try to

open.up () // let the one go .

synchronized (this) | close the barrier (last open . down()):
nDone -= 1; /[Ve gone through

) Deadlock!

if (nDone == 0)

open.down () ; // I'm the last through: Close barrier!

CHALMERS ﬂfzs UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY --_.-

Reusable barriers: second attempt

public class NonBarrier? implements Barrier { Is mu|t|p|e Signa”ing possible? Nol
int nDone = 0; // number of done threads
Semaphore open = new Semaphore (0) ; : :
final int n: Anything else going wrong?
// initialize barrier for 'n' threads A fast thread may race through the
Nopparr ers (it) whole method, and re-enter it before
J the barrier has been closed, thus getting
// number of threads expected at the barrier ahead of the slower threads (Stl” in the
int T
T SEpeeRl) o previous iteration of the barrier)
}
public void wait () { This is not prevented by stron
synchronized (this) { P . y strong
nDone += 1; // I'm done semaphores: it occurs because
if (nDone == n) open.up(); // open barrier
| p the last thread through leaves
open.down () proceed when possible
open.up () // let the next one go the gate open (Ca”S opetl. up())
synchronized (this) ({
nDone -= 1; // I've gone through
if (nDone == 0) open.down():; // close barrier

}
}

Reusable barriers: second attempt
(cont’d)

1 public class NonBarrier2 {

2 public void wait () {

3 synchronized (this)

4 {nDone += 1;

5 if (nDone == n) open.up();}
6 open.down ()

7 open.up ()

8 synchronized (this)

S {nDone -= 1;

10 if (nDone == 0) open.down () ;}
11 3

22y CHALMERS

UNIVERSITY OF TECHNOLOGY

&) UNIVERSITY OF GOTHENBURG

(a) All n threads are at 8, with
open.count () ==
(b) The fastest thread t; completes wait
f

and re-enters it with nbone == n - 1

(c) Thread t; reaches 6 with nbone == n,
which it can execute because
open.count () > 0

(d) Thread tr reaches 8 again, but it is one

iteration ahead of all other threads!

Y CHALMERS

UNIVERSITY OF TECHNOLOGY

@) UNIVERSITY OF GOTHENBURG

Reusable barriers: Correct solution

Photo by Photnart: Heidelberg Lock, Germany

Reusable barriers: Correct solution

public class SemaphoreBarrier implements Barrier ({
int nDone = 0; // number of done threads
Semaphore gatel = new Semaphore(0);// first gate
Semaphore gate2 = new Semaphore(l);// second gate
final int n;

public void wait () { approach(); leave(); }

T

CHALMERS gﬁ

UNIVERSITY OF TECHNOLOGY

void approach () {
synchronized (this) ({
nDone += 1; //
if (nDone == n) { //
gatel.up(); //

gate2.down () ; //

}
}

gatel.down (); // pass
gatel.up()
}
void leave () {
synchronized (this) ({
nDone -= 1; //
if (nDone == 0) { //
gate2.up () ; //

gatel.down () ; //

}

}
gate2.down () ;

gateZ2.up()

// pass

UNIVERSITY OF GOTHENBURG

arrived

if last 1in:
open gatel
close gateZ

gatel

// let next pass

going out
i1f last out:
open gateZ2
close gatel

gateZ

// let next pass

o T R
) CHALMERS ®)) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY —

Reusable barriers: improved solution

If the semaphores support adding n to the counter at once, we can write a
barrier with fewer semaphore accesses

Both gates initially closed

public class NSemaphoreBarrier extends Semapho
Semaphore gatel new Semaphore (0) fi
Semaphore gate? new Semaphore (0)

gate
/ second gate

void approach() { void leave () {
synchronized (this) { synchronized (this) {
nDone += 1; nDone —-= 1;
if (nDone == n) / Open gatel if (nDone == 0)_- Open gate2
} gatel.up(n); for n threads gateZ.up(n); for n threads
}
gatel.down(); // pass gatel gate2.down () ;
// last thread here closes gatel // last thread here closes gate?’

J }

Java semaphores support adding n to counter (release (n))
Anyway, up (n) need not be uninterruptible, so we can also implement it with a loop

{8%)) UNIVERSITY OF GOTHENBURG

Readers-writers

) CHALMERS) UNIVERSITY OF GOTHENBURG

Readers-writers: overview

Readers and writers concurrently access shared data:

* readers may execute concurrently with other readers, but need to exclude
writers

e writers need to exclude both readers and other writers

barg KARLSRUHE
ACHTERSBACH

. . . Kéh DORTMVND
The problem captures situations common in KONIGSTEIN/TS

databases, filesystems, and other situations MONCHEN

MARBURG | L
yvhere.accesses to shared data may be 'RIEDST. GODDELAU 2
inconsistent

wig KOBLENZ | - 24

WIEBELSB-HEUBACH 12
E

% CHALMERS

What's the gate for the flight to Honolulu?

_, UNIVERSITY OF GOTHENBURG

;I UNIVERSITY OF GOTHENBURG

& q ..

Readers-writers: The problem

interface Board<T> {
// write message msg' to board
void write (T msqg);
// read current message on board
T read():;

Readers-writers problem: implement Board data structure such that:
 multiple reader can operate concurrently

 each writer has exclusive access
Invariant: #WRITERS =0 V (#WRITERS = 1 A #READERS = 0)

Other properties that a good solution should have:
e support an arbitrary number of readers and writers
* no starvation of readers or writers

CHALMERS g:; 5 UNIVERSITY OF GOTHENBURG

Readers and writers

Readers and writers continuously and asynchronously try to access the board,
which must guarantee proper synchronization

Board<Message> board;

reader, WIIter,,
while (true) { while (true) {
// read message from board // create a new message
Message msg = board.read(); Message msg = create();
// do something with ‘msqg’ // write ‘msqg’ to board
process(msg); board.write(msg);
} }

CHALMERS

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Readers-writers board: write

public class SyncBoard<T> implements Board<T> {
int nReaders = 0; // # readers on board
Lock lock = new Lock(); // for exclusive access to nReaders
Semaphore empty = new Semaphore(l); // 1 iff no active threads

T message; // current message

public T read() { public void write (T msg) {
lock.lock () ; // lock to update nReaders // get exclusive access
if (nReaders == 0) // if first reader, empty.down () ;
empty.down () ; // set not empty message = msqg; // write (cs)
nReaders += 1; // update active readers // release board
lock.unlock () ; // release lock to nReaders empty.up () ;
}
T msg = message; // read (critical section)
lock.lock () ; // lock to update nReaders invariant { nReaders == 0 < empty.count() == 1}
nReaders -= 1; // update active readers
if (nReaders == 0) // if last reader count () becomes 1 after executing empty.up ()
empty.up(); set empty

and it happens that nReaders = 0
lock.unlock () ; // release lock to nReaders

return msg;

—

[

CHALMERS

IIIIIIIIIIIIIIIIIIIIII

ol

Properties of the readers-writers solution

¢ #)) UNIVERSITY OF GOTHENBURG

& q ..

We can check the following properties of the solution:
* empty is abinary semaphore
* when a writer is running, no reader can run
* one reader waiting for a writer to finish also locks out other readers
* areader signals “empty” only when it is the last reader to leave the board
* deadlock is not possible (no circular waiting)

However, writers can starve: as long as readers come and go with at least one
reader always active, writers are shut out of the board.

CHALMERS

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Readers-writers board without starvation

public class FairBoard<T> extends SyncBoard<T> {
// held by the next thread to go

Semaphore baton = new Semaphore(l, true); // fair binary sem.

public T read() {
// wait for my turn
baton.down () ;
// release a waiting thread

{#%)) UNIVERSITY OF GOTHENBURG

s

Readers-writers board: write

public c¢lass SyncBoard<T> implements Board<T> {

int nReaders = 0; // # readers on board
k)Eit:()Il .llf) () = Lock lock = new Lock(): // for exclusive access to nReaders
, Semaphore empty = new Semaphore(l):; // 1 iff no active threads
// read() as in SyncBoard e
return super.read();)
public T read() { public void write(T msg) {
} lock.lock(): // lock to update nReaders // get exclusive access
if (nReaders == 0) // if first reade empty.down () ;
0 : : empty.down () ? et empt message = msq; // write (cs)
pUbllc VOld write (T mSg) { nReadErz += l:() update active readers / -"—?'—n.-i'— .’?-ﬂuf :
// Wai t for my turn lock.unlock() release lock to nReaders empty.up() s

baton.down () ;

// write() as in SyncBoard
super.write (msqg) ;

// release a waiting thread
baton.up () ;

T msg = message;

lock.lock():
nBeaders —= 1;

if (nReaders == [

empty.up()
lock.unlock() :
return msg;

}

invariant { nReaders == 0 & empty.count()==1}

invariant breaks temporary here when
nReaders = 0 ; just before calling empty.up ()

-]
ek
Froc i
S

Readers-writers board without starvation

public class FairBoard<T> extends SyncBoard<T> {
// held by the next thread to go
Semaphore baton = new Semaphore(l, true); // fair binary sem.

CHALMERS

UNIVERSITY OF TECHNOLOGY

#§)) UNIVERSITY OF GOTHENBURG

public T read() {
// wait for my turn
baton.down () ;
// release a waiting thread
baton.up () ;

Now writers do not starve:

// read() as in SyncBoard * Suppose a writer is waiting that all active readers
t . da();
} return super.read() leave: it waits on empty.down () while holding the
public void write (T msg) { ORISR
// wait for my turn * If new readers arrive, they are shut out waiting for
baton.down () ;
// write() as in SyncBoard the baton

super.write (msqg) ;

/) release o waiting thread As soon as the active readers terminate and leave,
baton.up () ; the writer is signaled empty, and thus it gets
exclusive access to the board

'I UNIVERSITY OF GOTHENBURG

Readers-writers with priorities

The starvation free solution we have presented gives all threads the same

priority: assuming a fair scheduler, writers and readers take turn as they try to
access the board

In some applications it might be preferable to enforce difference priorities:

* R = IW: readers and writers have the same priority (as in FairBoard)

* R > W: readers have higher priority than writers (as in SyncBoard)
* [/ > R: writers have higher priority than readers

Except where otherwise noted, this work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

