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• Dining philosophers

• Producer-consumer

• Barriers

• Readers-writers

Today's menu
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• Today we go through several classical synchronization problems and solve them using 
threads and semaphores

• If you want to learn about many other synchronization problems and their solutions
• “The little book of semaphores” by A. B. Downey: http://greenteapress.com/semaphores/

• We use pseudo-code to simplify the details of Java syntax and libraries but which can 
be turned into fully functioning code by adding boilerplate
• On the course website: can download fully working implementations of some of the problems

• Recall that we occasionally annotate classes with invariants using the pseudo-code 
keyword invariant
• Not a valid Java keyword – that is why we highlight it in a different color – but we will use it to 

help make more explicit the behavior of classes

• We also use at(i) or at(i,j) to indicate the number of threads that are at location i or 
between locations i,j. (That’s not Java either)

A gallery of synchronization problems
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http://greenteapress.com/semaphores/


Dining philosophers
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The dining philosophers is a classic synchronization 
problem introduced by Dijkstra. It illustrates the 
problem of deadlocks using a colorful metaphor (by 
Hoare)

• Five philosophers are sitting around a dinner table, 
with a fork in between each pair of adjacent 
philosophers

• Each philosopher alternates between thinking (non-
critical section) and eating (critical section)

• In order to eat, a philosopher needs to pick up the 
two forks that lie to the philopher’s left and right

• Since the forks are shared, there is a synchronization
problem between philosophers (threads)

The dining philosophers (reminder)
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Properties of a good solution:

• support an arbitrary number of philosophers

• deadlock freedom

• starvation freedom

• reasonable efficiency: eating in parallel still 
possible

Dining philosophers: the problem
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Dining philosophers’ problem: implement Table such that: 
• forks are held exclusively by one philosopher at a time 
• each philosopher only accesses adjacent forks

interface Table {

// philosopher k picks up forks

void getForks(int k);

// philosopher k releases forks

void putForks(int k);

}



Each philosopher continuously alternate between thinking and eating; the table 
must guarantee proper synchronization when eating

The philosophers
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For convenience, we introduce a consistent numbering scheme for forks and 
philosophers, in a way that it is easy to refer to the left or right fork of each 
philosopher.

Left and right

// in classes implementing Table:

// fork to the left of philosopher k
public int left(int k) {
return k;

}

// fork to the right of philosopher k
public int right(int k) {
// N is the number of philosophers
return (k + 1) % N;

}
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Dining philosophers with locks and semaphores

• We use semaphores to enforce mutual exclusion when philosophers access the 
forks

First solution needs only locks:

Lock[] forks = new Lock[N]; // array of locks

• One lock per fork
• forks[i].lock() to pick up fork i:

forks[i] is held if fork i is held

• forks[i].unlock() to put down fork i:
forks[i] is available if fork i is available
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In the first attempt, every philosopher picks up the left fork and then the right
fork:

Dining philosophers with semaphores: first attempt

public class DeadTable implements Table {
Lock[] forks = new Lock[N];

public void getForks(int k) {

// pick up left fork

forks[left(k)].lock();

// pick up right fork

forks[right(k)].lock();

}

public void putForks(int k) {

// put down left fork

forks[left(k)].unlock();

// put down right fork

forks[right(k)].unlock();

}

All forks initially avaliable
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A deadlock may occur because of circular waiting:

Dining philosophers with semaphores: first attempt

public class DeadTable implements Table 

{ Lock[] forks = new Lock[N];

public void getForks(int k) { 

// pick up left fork 

forks[left(k)].lock(); 

// pick up right fork 

forks[right(k)].lock(); 

} 

if all philosophers hold 
left fork: deadlock!
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Having one philosopher pick up forks in a different order than the others is 
sufficient to break the symmetry, and thus to avoid deadlock

Dining philosophers solution 1: breaking the symmetry

public void getForks(int k) { 

if (k == N) { // right before left

forks[right(k)].lock(); 

forks[left(k)].lock();

} else {      // left before right

forks[left(k)].lock(); 

forks[right(k)].lock();

} 

} 

// putForks as in DeadTable
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public class AsymetricTable implements Table {

Lock[] forks = new Lock[N];
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Breaking the symmetry is a general strategy to avoid deadlock when acquiring 
multiple shared resources:

• assign a total order between the shared resources 𝑅0 < 𝑅1 < ⋯ < 𝑅𝑀
• a thread can try to obtain resource 𝑅𝑖, with 𝑖 > 𝑗, only after it has 

successfully obtained resource 𝑅𝑗

Recall the Coffman conditions from Lecture 2…:

Breaking symmetry to avoid deadlock
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1. mutual exclusion: exclusive access to the shared resources

2. hold and wait: request one resource while holding another

3. no preemption: resources cannot forcibly be released

4. circular wait: threads form a circular chain, each waiting for a resource the next is holding

Circular wait is a necessary condition for a deadlock to occur



Limiting the number of philosophers active at the table to M < N ensures that 
there are enough resources for everyone at the table, thus avoiding deadlock

Dining philosophers solution 2: bounding resources

public void getForks(int k) {

// get a seat

seats.down();

// pick up left fork

forks[left(k)].lock();

// pick up right fork

forks[right(k)].lock();

}

public void putForks(int k) {

// put down left fork

forks[left(k)].unlock();

// put down right fork

forks[right(k)].unlock();

// leave seat

seats.up();

}
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public class SeatingTable implements Table {

Lock[] forks = new Lock[N];

Semaphore seats = new Semaphore(M); // # available seats



The two solutions to the dining philosophers problem also guarantee freedom from 
starvation, under the assumption that locks/semaphores (and scheduling) are fair

In the asymmetric solution (AsymmetricTable):
• if a philosopher 𝑃 waits for a fork 𝑘, 𝑃 gets the fork as soon as 𝑃’s neighbor holding fork 
𝑘 releases it,

• 𝑃’s neighbor eventually releases fork 𝑘 because there are no deadlocks.

In the bounded-resource solution (SeatingTable):
• at most M philosophers are active at the table,
• the other N - M philosophers are waiting on seats.down(),
• the first of the M philosophers that finishes eating releases a seat,
• the philosopher 𝑃 that has been waiting on seats.down proceeds,
• similarly to the asymmetric solution, 𝑃 also eventually gets the forks.

Starvation-free philosophers
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Producer-consumer
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Producers and consumer exchange items through a shared buffer:

• producers asynchronously produce items and store them in buffer

• consumers asynchronously consume items after removing them from buffer

Producer-consumer: overview

consumer

16

producer

buffer



interface Buffer<T> {

// add item to buffer; block if full

void put(T item);

// remove item from buffer; block if empty

T get();

// number of items in buffer

int count();

}

Producer-consumer: The problem
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Producer-consumer problem: implement Buffer such that: 

• producers and consumers access the buffer in mutual exclusion 

• consumers block when the buffer is empty

• producers block when the buffer is full (bounded buffer variant)



Other properties that a good solution should have:

• support an arbitrary number of producers and consumers

• deadlock freedom

• starvation freedom

Producer-consumer: Desired properties
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Producer-consumer problem: implement Buffer such that: 

• producers and consumers access the buffer in mutual exclusion 

• consumers block when the buffer is empty

• producers block when the buffer is full (bounded buffer variant)



Producers and consumers continuously and asynchronously access the buffer, 
which must guarantee proper synchronization

Producers and consumers
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public class UnboundedBuffer<T> implements Buffer<T> {

Lock lock = new Lock(); // for exclusive access to buffer

Semaphore nItems = new Semaphore(0); // number of items in buffer

Collection storage = ...; // any collection (list, set, ...)

invariant { storage.count() == nItems.count() + at(5,15-17); }

}

Unbounded shared buffer

public void put(T item) {

lock.lock(); // lock

// store item

storage.add(item);

nItems.up();   // update nItems

lock.unlock(); // release

}

public int count() {

return nItems.count(); // locking here?

}

public T get() {

// wait until nItems > 0

nItems.down();

lock.lock(); // lock

// retrieve item

T item =storage.remove();

lock.unlock(); // release

return item;

}
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Signals to 
consumers 
waiting in get
that they can 
proceed



Buffer: method put

Executing up after unlock:

• No effects on other threads executing put: 
they only wait for lock

• If a thread is waiting for nItems > 0 in 
get: it does not have to wait again for lock
just after it has been signaled to continue

• If a thread is waiting for the lock in get: it 
may return with the buffer in a (temporarily) 
inconsistent state (broken invariant, but 
benign because temporary)
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public void put(T item) {

lock.lock(); // lock

// store item

storage.add(item);

nItems.up();   // update nItems

lock.unlock(); // release

}

public int count() {

return nItems.count(); // locking here?

}

Can we execute up after unlock? 



public void put(T item) {

lock.lock();

storage.add(item);

lock.unlock();

nItems.up();

}

public T get() {

nItems.down();

lock.lock();

T item =storage.remove();

lock.unlock();

return item;

}

Executing up after unlock
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OLD: invariant { storage.count() 

== nItems.count() + at(5,15-17); }

Different numbers than 
original program

invariant { 

storage.count() == 

nItems.count() + at(4,9-10); 

}

Old invariant needs rewriting

# elements in buffer

Value of nItem
(0 or 1)

# threads in 
these locations

Temporary  breaking 
of the invariant



public class UnboundedBuffer<T> implements Buffer<T> {

Lock lock = new Lock(); // for exclusive access to buffer

Semaphore nItems = new Semaphore(0); // number of items in buffer

Collection storage = ...; // any collection (list, set, ...)

invariant { storage.count() == nItems.count() + at(5,15-17); }

}

Unbounded shared buffer

public void put(T item) {

lock.lock(); // lock

// store item

storage.add(item);

nItems.up();   // update nItems

lock.unlock(); // release

}

public int count() {

return nItems.count(); // locking here?

}

public T get() {

// wait until nItems > 0

nItems.down();

lock.lock(); // lock

// retrieve item

T item =storage.remove();

lock.unlock(); // release

return item;

}
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public T get() {

// wait until nItems > 0

nItems.down();

lock.lock(); // lock

// retrieve item

T item =storage.remove();

lock.unlock(); // release

return item;

}
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Can we execute down after lock? 
What happens if another thread gets the lock 
just after the current threads has 
decremented the semaphore nItems?

• If the other thread is a producer, it doesn’t 
matter: as soon as get resumes execution, 
there will be one element in storage to 
remove.

• If the other thread is a consumer, it must 
have synchronized with the current thread 
on nItems.down(), and the order of 
removal of elements from the buffer 
doesn’t matter

Buffer: method get



public T get() {

// wait until nItems > 0

nItems.down();

lock.lock(); // lock

// retrieve item

T item =storage.remove();

lock.unlock(); // release

return item;

}
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Executing down after lock:

• If the buffer is empty when locking, 
there is a deadlock!
• Will not succeed executing down(): it 

blocks

Buffer: method get



Bounded shared buffer

public class BoundedBuffer<T> implements Buffer<T> {

Lock lock = new Lock(); // for exclusive access to buffer

Semaphore nItems = new Semaphore(0); // # items in buffer

Semaphore nFree = new Semaphore(N);  // # free slots in buffer

Collection storage = ...; // any collection (list, set, ...)

invariant { storage.count() == nItems.count() + 

+ at(6,13-15) == N - nFree.count() - at(4-6,16) ; }

public void put(T item) {

// wait until nFree > 0

nFree.down();

lock.lock(); // lock

// store item

storage.add(item);

nItems.up();   // update nItems

lock.unlock(); // release

}

public T get() {

// wait until nItems > 0

nItems.down();

lock.lock(); // lock

// retrieve item

T item = storage.remove();

nFree.up(); // update nFree

lock.unlock(); // release

return item;

}

Size of buffer

May deadlock
if swapped

May deadlock
if swapped

OK to swap 

OK to swap 
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// wait until there is space in the buffer

while (!(nItems.count() < N)) {};

// the buffer may be full again when locking!

lock.lock(); // lock

// store item

storage.add(item);

nItems.up();   // update nItems

lock.unlock(); // release

}

Waiting on multiple conditions?
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The operations offered by semaphores do not support waiting on multiple 
conditions (not empty and not full in our case) using one semaphore

• Busy-waiting on the semaphore will not work:



Barriers
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Barriers (also called rendezvous)

A solution to the barrier synchronization problem for 2 threads with binary semaphores
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A barrier is a form of synchronization where there is a point (the 
barrier) in a program’s execution that all threads in a group have 

to reach before any of them is allowed to continue

Capacity 0 forces up
before first down

down waits until the other
tread has reaches the barrierup done unconditionally



Barriers: variant 1

The solution still works if t0 performs down before up – or, symmetrically, if t1

does the same

This is, however, a bit less efficient: the last thread to reach the barrier has to stop 
and yield to the other (one more context switch)
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Barriers: variant 2

The solution deadlocks if both t0 and t1 perform down before up

There is a circular waiting, because no thread has a chance to signal to the other that it 
has reached the barrier
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Keeping track of 𝑛 threads reaching the barrier:
• nDone: number of threads that have reached the barrier

• lock: to update nDone atomically

• open: to release the waiting threads (“opening the barrier”)

Barriers with n threads (single use)

Total number of 
expected threads 
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Can we switch 
these?



Barriers with n threads (single use): variant

Can we open the barrier after unlock?

• In general, reading a shared variable outside a lock may give an inconsistent value
• In this case, however, only after the last thread has arrived can any thread read 
nDone == n, because nDone is only incremented

Such pairs of wait/signal are called turnstiles
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Reusable barriers

interface Barrier {

// block until expect() threads have reached barrier

void wait();

// number of threads expected at the barrier

int expect();

}

Returned from
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Reusable barrier: implement Barrier such that: 

• a thread blocks on wait until all threads have reached the barrier 
• after expect() threads have executed wait, the barrier is closed again 



Threads continuously approach the barrier, and all synchronize their access at 
the barrier

Threads at a reusable barrier
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public class NonBarrier1 implements Barrier {
int nDone = 0; // number of done threads
Semaphore open = new Semaphore(0);
final int n;

// initialize barrier for `n' threads
NonBarrier1(int n) {
this.n = n;

}

// number of threads expected at the barrier
int expect() {
return n;

}

public void wait() {
synchronized(this) {
nDone += 1;       // I'm done

}
if (nDone == n)
open.up();        // I'm the last arrived: All can go!

open.down()         // proceed when possible
open.up()           // let the next one go
synchronized(this) {
nDone -= 1;       // I've gone through

}
if (nDone == 0) 
open.down();      // I'm the last through: Close barrier!

}                             
}

Reusable barriers: first attempt

What if n threads block here until nDone == n?

More than one thread may open the 
barrier (the first open.up()): this was 
not a problem in the non-reusable 
version, but now some threads may be 
executing wait again before the barrier 
is closed again!  

What if n threads block here until nDone == 0?

More than one thread may try to 
close the barrier (last open.down()):

Deadlock! 
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Reusable barriers: second attempt

public class NonBarrier2 implements Barrier {
int nDone = 0; // number of done threads
Semaphore open = new Semaphore(0);
final int n;

// initialize barrier for `n' threads
NonBarrier2(int n) {

this.n = n;
}

// number of threads expected at the barrier
int expect() {

return n;
}

public void wait() {
synchronized(this) {

nDone += 1;                    // I'm done
if (nDone == n) open.up();     // open barrier

}   
open.down()                      // proceed when possible
open.up()                        // let the next one go
synchronized(this) {

nDone -= 1;                    // I've gone through
if (nDone == 0) open.down();   // close barrier

}
}

}

Is multiple signalling possible?

This is not prevented by strong 
semaphores: it occurs because 
the last thread through leaves 
the gate open (calls open.up())
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A fast thread may race through the 
whole method, and re-enter it before 
the barrier has been closed, thus getting 
ahead of the slower threads (still in the 
previous iteration of the barrier)

No!

Anything else going wrong?



public class NonBarrier2 {

public void wait() {

synchronized(this)

{nDone += 1;

if (nDone == n) open.up();}

open.down()

open.up()

synchronized(this)

{nDone -= 1;

if (nDone == 0) open.down();}

}

(a) All 𝑛 threads are at 8, with 
open.count() == 1

(b) The fastest thread 𝑡𝑓 completes wait

and re-enters it with nDone == n - 1

(c) Thread 𝑡𝑓 reaches 6 with nDone == n,

which it can execute because 
open.count() > 0

(d) Thread 𝑡𝑓 reaches 8 again, but it is one 

iteration ahead of all other threads!

1
2
3
4
5
6
7
8
9

10
11

Reusable barriers: second attempt
(cont’d)
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Reusable barriers: Correct solution

Photo by Photnart: Heidelberg Lock, Germany
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Reusable barriers: Correct solution

public class SemaphoreBarrier implements Barrier {

int nDone = 0; // number of done threads

Semaphore gate1 = new Semaphore(0);// first gate

Semaphore gate2 = new Semaphore(1);// second gate

final int n;

// initialize barrier for `n' threads

SemaphoreBarrier(int n) {

this.n = n;

}

// number of threads expected at the barrier

int expect() {

return n;

}

public void wait() { approach(); leave(); }

void approach() {

synchronized (this) {

nDone += 1;       // arrived

if (nDone == n) { // if last in:

gate1.up();     // open gate1

gate2.down();   // close gate2

} 

}

gate1.down(); // pass gate1

gate1.up();   // let next pass

}

void leave() {

synchronized (this) {

nDone -= 1;       // going out

if (nDone == 0) { // if last out:

gate2.up();     // open gate2

gate1.down();   // close gate1

} 

}

gate2.down(); // pass gate2

gate2.up();   // let next pass

}
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Reusable barriers: improved solution

If the semaphores support adding 𝑛 to the counter at once, we can write a 
barrier with fewer semaphore accesses

public class NSemaphoreBarrier extends SemaphoreBarrier {

Semaphore gate1 = new Semaphore(0);  // first gate

Semaphore gate2 = new Semaphore(0);  // second gate

Both gates initially closed

void approach() {
synchronized (this) {
nDone += 1;
if (nDone == n)
gate1.up(n);

}
gate1.down(); // pass gate1
// last thread here closes gate1

}

void leave() {
synchronized (this) {
nDone -= 1;
if (nDone == 0)
gate2.up(n);

}
gate2.down();
// last thread here closes gate2

}

Java semaphores support adding 𝑛 to counter (release(n))

Anyway, up(n) need not be uninterruptible, so we can also implement it with a loop

Open gate1 
for n threads

Open gate2 
for n threads
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Readers-writers

42



Readers and writers concurrently access shared data:

• readers may execute concurrently with other readers, but need to exclude 
writers

• writers need to exclude both readers and other writers

Readers-writers: overview
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The problem captures situations common in 
databases, filesystems, and other situations 
where accesses to shared data may be 
inconsistent



What's the gate for the flight to Honolulu?

H O N O L U L U A8M A L M Ö Z6

44



interface Board<T> {

// write message `msg' to board

void write(T msg);

// read current message on board

T read();

}

Readers-writers: The problem

Other properties that a good solution should have:
• support an arbitrary number of readers and writers
• no starvation of readers or writers
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Readers-writers problem: implement Board data structure such that:

• multiple reader can operate concurrently 

• each writer has exclusive access 

Invariant: #WRITERS = 0 ∨ (#WRITERS = 1 ∧ #READERS = 0)



Readers and writers continuously and asynchronously try to access the board, 
which must guarantee proper synchronization

Readers and writers
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public class SyncBoard<T> implements Board<T> {

int nReaders = 0; // # readers on board

Lock lock = new Lock(); // for exclusive access to nReaders

Semaphore empty = new Semaphore(1); // 1 iff no active threads

T message; // current message

Readers-writers board: write

public void write(T msg) {

// get exclusive access

empty.down();

message = msg; // write (cs)

// release board

empty.up();

}

invariant { nReaders == 0⟸ empty.count() == 1 }

public T read() {

lock.lock();       // lock to update nReaders

if (nReaders == 0) // if first reader,

empty.down();   //           set not empty

nReaders += 1;     // update active readers

lock.unlock();     // release lock to nReaders

T msg = message;   // read (critical section)

lock.lock();       // lock to update nReaders

nReaders -= 1;     // update active readers

if (nReaders == 0) // if last reader

empty.up();     //            set empty

lock.unlock();     // release lock to nReaders

return msg;

}
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count() becomes 1 after executing empty.up()
and it happens that nReaders = 0



We can check the following properties of the solution:
• empty is a binary semaphore

• when a writer is running, no reader can run

• one reader waiting for a writer to finish also locks out other readers

• a reader signals “empty” only when it is the last reader to leave the board

• deadlock is not possible (no circular waiting)

However, writers can starve: as long as readers come and go with at least one 
reader always active, writers are shut out of the board.

Properties of the readers-writers solution
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Readers-writers board without starvation
public class FairBoard<T> extends SyncBoard<T> {

// held by the next thread to go

Semaphore baton = new Semaphore(1, true); // fair binary sem.

public T read() {

// wait for my turn

baton.down();

// release a waiting thread

baton.up();

// read() as in SyncBoard

return super.read();

}

public void write(T msg) {

// wait for my turn

baton.down();

// write() as in SyncBoard

super.write(msg);

// release a waiting thread

baton.up();

}

49

invariant { nReaders == 0 ⟺ empty.count() == 1 }

invariant breaks temporary here when 
nReaders = 0 ; just before calling empty.up()



Readers-writers board without starvation
public class FairBoard<T> extends SyncBoard<T> {

// held by the next thread to go

Semaphore baton = new Semaphore(1, true); // fair binary sem.

public T read() {

// wait for my turn

baton.down();

// release a waiting thread

baton.up();

// read() as in SyncBoard

return super.read();

}

public void write(T msg) {

// wait for my turn

baton.down();

// write() as in SyncBoard

super.write(msg);

// release a waiting thread

baton.up();

}

Now writers do not starve: 

• Suppose a writer is waiting that all active readers 
leave: it waits on empty.down() while holding the 
baton

• If new readers arrive, they are shut out waiting for 
the baton

• As soon as the active readers terminate and leave, 
the writer is signaled empty, and thus it gets 
exclusive access to the board
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Readers-writers with priorities

The starvation free solution we have presented gives all threads the same 
priority: assuming a fair scheduler, writers and readers take turn as they try to 
access the board

In some applications it might be preferable to enforce difference priorities:

• 𝑅 = 𝑊: readers and writers have the same priority (as in FairBoard)

• 𝑅 > 𝑊: readers have higher priority than writers (as in SyncBoard)

• 𝑊 > 𝑅: writers have higher priority than readers
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