
Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT391

Saturday, 23 October 2021

Exam supervisor: N. Piterman (piterman@chalmers.se, 073 856 49 10)

(Exam set by N. Piterman, based on the courses given in
September-October 2021)

Material permitted during the exam (hjälpmedel):

Two textbooks; four sheets of A4 paper with notes; English dictionary.

Grading: You can score a maximum of 70 points. Exam grades are:

points in exam Grade Chalmers Grade GU

28�41 3 G
42�55 4 G
56�70 5 VG

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

points in exam + labs Grade Chalmers Grade GU

40�59 3 G
60�79 4 G
80�100 5 VG

The exam results will be available in Ladok within 15 working days after
the exam's date.

Instructions and rules:

� Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
receive no points!

� Justify your answers, and clearly state any assumptions that your so-
lutions may depend on for correctness.

� Answer each question on a new page. Glance through the whole paper
�rst; �ve questions, numbered Q1 through Q5. Do not spend more
time on any question or part than justi�ed by the points it carries.

� Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

1



Q1.(14p). This question is concerned with implementing the token-ring protocol
in Erlang.

The token-ring protocol coordinates a given number of processes by al-
lowing them each to work in turn. It operates by transferring a token
around the ring and only the process holding the token is allowed to
operate. Thus, the token-ring protocol is a mutual-exclusion protocol
giving a �xed turn to each of the participating processes. Here, instead
of sending each process in the token ring a function to run as a param-
eter, we will send each process a (�xed) number that it has to print.
At the end, the token_start function will spawn the entire ring and
cause it to start operation (see further details below). For example,
calling token_start([1,2,3,4,5]) would result in:

<0.106.0> 5

<0.105.0> 4

<0.104.0> 3

<0.103.0> 2

<0.102.0> 1

repeating forever.

Do not worry about token-rings with less than two processes.

(Part a). Implement the token_body function. The function should
have two parameters: a number and the PID of the next in the ring.
When it receives a message with the atom { token }, it outputs its
number (in the above example also its PID) and then sends the token
to the next process in the ring. It then calls itself recursively. (4p)

(Part b). Implement the token_spawn function. The function should
have two parameters: (1) a list of the numbers to spawn token bodies
with and (2) the PID of the �rst process in the ring. Notice that the
�rst process in the ring already exists when token_spawn is called. The
function should spawn the required number of token bodies connected
to the given PID and to each other. It should return the PID of the
last process in the ring (in order to close the ring).

(4p)

(Part c). Implement the token_start function. token_start gets a
list of numbers (to be printed by the processes of the token ring; as
above). It should initiate the process of spawning the entire ring and
putting the ring into action. You probably need a token_one function
that handles the head of the list in a special way in order to transfer
the PID of the �rst process to token_spawn and to send the �rst token
to the ring. You do not have to worry about token rings with less than
2 processes.

(6p)

2



Q2 (19p). The following is a paradigm of how to implement a monitor with mul-
tiple conditions with semaphores. The class has the following member
variables:

� Semaphore mutex initialized to capacity 1.

� Semaphore next initialized to capacity 0.

� A next_count integer counting how many are waiting on next.

� For every condition a semaphore and counter of how many are
waiting for it.

Each function should be enclosed as follows:

1 wait(mutex);

2 ...

3 function body

4 ...

5 if (next_count > 0)

6 signal(next);

7 else

8 signal(mutex);

In order to wait on a condition x you should do the following:

9 x_count++;

10 if (next_count > 0)

11 signal(next);

12 else

13 signal(mutex);

14 wait(x_sem);

15 x_count--;

In order to signal on a condition x you should do the following:

16 if (x_count > 0) {

17 next_count++;

18 signal(x_sem);

19 wait(next);

20 next_count--;

21 }

(Part a). Explain brie�y how does this implementation satisfy mutual
exclusion? (4p)

(Part b). What is the assumption on the behaviour of wait and signal?
(4p)

(Part c). What is the signaling policy applied by this monitor? (4p)

3



(Part d). Suppose that every function itself is �nite. Does this mon-
itor guarantee lack of starvation? (3p)

(Part e). What would happen if the order of lines 17 and 18 is
changed? (4p)

4



Q3 (11p). We revisit the �rst attempt at creating a lock-free set implementation.

The implementation assumes the usage of an atomic reference.

1 class AtomicReference<V> {

2

3 V get(); // return current reference

4 void set(V newRef); // set reference to newRef

5

6 // if reference == expectRef, set newRef and return true

7 // otherwise, do not change reference and return false

8 boolean compareAndSet(V expectRef, V newRef);

9 }

This is the suggested implementation of remove:

1 public boolean remove(T item) {

2 boolean done;

3 do {

4 Node<T> pred,curr = find(head,item.key());

5 if (curr.key() >= item.key()) return false; // item not in set

6 else

7 // try to remove curr by setting pred.next using CAS

8 done = pred.next().compareAndSet(pred.next(),curr.next());

9 } while (!done);

10 return true;

11 }

(Part a). Give a scenario where remove fails. (3p)

Suppose that instead, after �nding the item we want to remove we call
another �nd with the key of pred and get hold of the item before pred.
We then double check that pred has not been removed:

1 public boolean remove(T item) {

2 boolean done;

3 do {

4 Node<T> pred,curr = find(head,item.key());

5 if (curr.key() >= item.key()) return false; // item not in set

6

7 if (pred != head) {

8 Node<T> pre-pred,pred1 = find(head,pred.key());

9 if (pred1 != pred) continue; // some change before pred

10 // start again

11 // check first that pre-pred is still connected

12 // to pred

13 if (!pre-pred.next().compareAndSet(pred,pred))

5



14 continue;

15 }

16 // try to remove curr by setting pred.next using CAS

17 done = pred.next().compareAndSet(pred.next(),curr.next());

18 } while (!done);

19 return true;

20 }

(Part b). Does this new implementation work correctly? (3p)

We now introduce a super CAS that works on two references simulta-
neously:

boolean (ref1,ref2).compareAndSet(V expectedRef1, V newRef1,

V expectedRef2, V newRef2);

This new super CAS, if ref1 is expectedRef1 and ref2 is expectedRef2,
it sets ref1 to newRef1, sets ref2 to newRef2, and returns true. Other-
wise, it does no changes and returns false. All this is done atomically !

1 public boolean remove(T item) {

2 boolean done;

3 do {

4 Node<T> pre-pred,pred,curr = find(head,item.key());

5 if (curr.key() >= item.key()) return false; // item not in set

6

7 if (pred == head)

8 done = pred.next().compareAndSet(pred.next(),curr.next());

9 else {

10 Node<T> pre-pred,pred1 = find(head,pred.key());

11 if (pred1 != pred) continue; // some change before pred

12 // start again

13

14 // try to remove curr by checking pre-pred.next and setting

15 // pred.next using the new CAS

16 done =

17 (pre-pred.next(),

18 pred.next()).compareAndSet(pred,pred,

19 pred.next(),curr.next());

20 }

21 } while (!done);

22 return true;

23 }

(Part c). Is this �nal implementation correct? (5p)

6



Q4 (13p). This program is a variant of Peterson's algorithm for mutual-exclusion
for two threads. It uses a compare-and-swap operation.

The label pi can mean the command that follows pi, or the proposition
that thread p is at pi, and the next command p will execute is pi.

boolean turn= false; boolean flaga= false; boolean flagb= false;

p q

while(true) { while(true) {
p1 //NCS (non-critical section) q1 //NCS (non-critical section)
p2: flaga= true; q2: flagb= true;
p3: while(flagb && q3: while(flaga &&

!turn.CAS(false,true)) { }; !turn.CAS(false,true)) { };
p4 //CS (critical section) q4 //CS (critical section)
p5: turn= flaga= false; q5: turn=flagb= false;

} }

For simplicity, we ignore the locations p1 and p4 and similarly q1 and q4.
Process p moves directly from p3 to p5 and from p5 to p2 and similarly
for q. We treat p5 and q5 as the critical section. Our programming
language supports lazy evaluation of conditions. So in p3, if flagb is
false it does not evaluate turn.CAS(false, true). Similarly for q3.

You are going to construct the transition table of this program. A full
state is of the form (pi, qj , flaga, flagb, turn), where i and j range over
{2, 3, 5}, and flaga, flagb, and turn range over true and false. Only
11 states are reachable.

Here is a partial state transition table for the program above. As
mentioned, only 11 states are reachable from the initial state (p2, q2, 1).

state new state if p moves new state if q moves

s1 (2, 2, f, f, f) (3, 2, t, f, f) = s3 (2, 3, f, t, f) = s2

s2 (2, 3, f, t, f) (2, 5, f, t, f) = s5

s3 (3, 2, t, f, f) (5, 2, t, f, f) = s6

s4 (3, 3, t, t, f)

s5 (2, 5, f, t, f) (2, 2, f, f, f) = s1

s6 (5, 2, t, f, f) (2, 2, f, f, f) = s1

s7 (5, 3, t, t, t)

s8 (3, 5, t, t, t)

s9 (3, 5, t, t, f)

s10 (5, 3, t, t, f)

s11 (5, 5, t, t, t)

(Part a) Fill in the blank entries in the table. (6p)

(Part b) Does the protocol maintain mutual exclusion? (2p)

7



(Part c) Does the protocol avoid starvation under fair scheduling?
(5p)

8



Q5 (13p). Consider the following implementation of a barrier:

class BarrierWithManager {

final int NumThreads = 3;

static Semaphore start = new Semaphore(0), done = new Semaphore(0);

static class Manager implements Runnable {

public void run() {

while (true) {

start.release(NumThreads);

while (true) {

try {

done.acquire(NumThreads);

break;

} catch (InterruptedException e) { }

} } }

}

static class Worker implements Runnable {

public void run() {

while (true) {

while (true) {

try {

start.acquire();

break;

} catch (InterruptedException e) { }

}

doWork();

done.release();

} }

}

public static void main(String[] args) {

for (int i = 0; i<NumThreads; i++) {

new Worker().start();

}

new Manager().start();

}

}

9



(Part a). Does this barrier work correctly? If no, give an example. If
yes, explain how it is maintained. Yes/No answers with no explanation
will be rejected. (7p)

(Part b). Replace the two semaphores with binary semaphores. You
will have to increase the number of semaphores. You cannot use any
other shared variables (6p)

10


