
Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT391
Examination: Tuesday, 17 March 2020

Examiner: K. V. S. Prasad, prasad@chalmers.se, 0736 30 28 22
(based on the course given Jan-Mar 2020)

Material permitted during the exam (hjälpmedel):
Two textbooks; four sheets of A4 paper with notes; English dictionary.

Grading: You can score a maximum of 70 points. Exam grades are:

points in exam Grade Chalmers Grade GU
28–41 3 G
42–55 4 G
56–70 5 VG

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

points in exam + labs Grade Chalmers Grade GU
40–59 3 G
60–79 4 G

80–100 5 VG

The exam results will be available in Ladok within 15 working days
after the exam’s date.

Instructions and rules:

• Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
not receive any points!

• Justify your answers, and clearly state any assumptions that your
solutions may depend on for correctness.

• Answer each question on a new page. Glance through the whole paper
first; six questions, numbered Q1 through Q6. Do not spend more
time on any question or part than justified by the points it carries.

• Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

• If a part of a question asks you to prove a proposition P , you can use
P as a fact in later parts of the question, even if you didn’t prove P .

1



Q1. (8p) Consider the following “Stop the loop” program.

boolean flag = false, b = false
p q
p1: while flag == false q1: while flag == false
p2: b = !b q2: if b == false

q3: flag = true
(Part a). Give a scenario for which the program terminates. (2p)
(Part b). What are the possible values of b when the program termi-
nates? Construct a scenario for each. (2p)
(Part c). Construct a non-terminating scenario for the program. (2p)
(Part d). Is your non-terminating scenario fair? (2p)
Answers:
(a) q1, q2, q3, p1, q1.
(b) The above yields n=0. And p1, q1, q2, p2, q3, p1, q1 yields n=1.
(c) p1, p2 (so that n = 1), then an infinite repetition of (q1, q2, p1,
p2, p1, p2). This scenario never terminates.
(d) The scenario in (c) is fair (both processes run infinitely often.)

Q2. (14p) This question is about programming a rendezvous using binary semaphores,
and then using the rendezvous.
If commands ...; b1; b2 occur in thread B(oss), and commands ...;
w1; w2 occur in thread W(orker), then thread B is said to rendezvous
with thread W if b1 happens before w2 and w1 before b2. As in everyday
use, rendezvous means the one who arrives earlier waits for the later.
But in everyday use, the both people might leave at the same time,
which is not possible in an interleaving model, so we merely insist on
the sequence above. B leaves after W arrives, and vice-versa.
(Part a) Does this code implement a rendezvous between B and W?

Semaphore Ba = 0, Wa = 0 // both initialised to 0
B W
b1: // command b1 w1: // command w1
b2: Ba.release(); w2: Ba.acquire();
b3: Wa.acquire(); w3: Wa.release();
b4: // command b2 w4: // command w2

Prove that in any scenario, neither thread leaves until both have ar-
rived. (3p)
Answer: b3 must await w3. w3 awaits w2 awaits b2. So neither can
finish until the other at least starts. If W arrives first, it waits for B.
When B arrives, it wakes W and might proceed immediately to its wait

2



protected object PC

l = int[]; //buffer itself as integer circular array
int Cap = 10; //buffer capacity
int pi= 0, ci= 0; //producer, consumer indices into buffer

operation void prod (x) when pi-ci<Cap //produce
{pi=pi+1; l[pi%Cap ] = x };

operation int cons () when ci<pi //consume
{ci=ci+1; int y= l[ci%Cap ]; return y};
producer consumer

int x; int x;
while (true) { while (true) {

p1: x= //make it; c1: x=PC.cons ();
p2: PC.prod (x) ; c2: //eat x;

} }

Figure 1: Producer-consumer example to show protected object notation.

in which case it blocks, allowing W to reach its release, after which
both threads can proceed. Show all paths achieve randezvous.
(Part b) The solution in (Part a) might switch between B and W one
time more than necessary. Is there a more efficient solution? (2p)
Answer: Both release their own, then acquire the other. Then b3
awaits w2, and w3 awaits b2. So neither can finish until the other
at least starts. But the first to arrive can leave as soon as the other
arrives.
(Part c) What happens if both threads acquire before release? (1p)
Answer: Deadlock.
(Part d) Program an n-way rendezvous using binary semaphores.
When the first n − 1 threads arrive, they block until the nth thread
arrives; then all the threads proceed. Hint: Let count remember how
many threads have arrived, let semaphore mutex provide exclusive ac-
cess to count, and let semaphore barrier be locked until all threads
arrive, and unlocked after. (4p)
Answer:

mutex. wait (); count++; mutex. signal ();

if count == n then barrier. signal (); //otherwise wait at barrier

barrier. wait (); barrier. signal (); //cascade

all leave //works for single rendezvous, not repeated

3



(Part e) Repeat (Part a) using a monitor or a protected object. You
can answer using any notation you like. You will not be penalised for
getting the syntax wrong. (4p)
Answer:

prot obj barr

int N = 10 //how many will rendezcvous?

int n = 0 //how many have arrived?

bool done = false //round still ongoing

operation void arrive when not done

n++;

if n == N then done = true

operation void leave when done

n--;

if n==0 then done = false

participant

loop

barr. arrive; barr. leave

The producer-consumer problem: A producer (a cook) and a con-
sumer (a diner) share a buffer (rotating table) on which the cook places
fresh pancakes when there is a space, and from which the diner takes
a pancake when one is available. The cook needs time to make a
pancake, and the diner time to eat one, but we skip these details.
Refresher on protected objects. Figure 1 shows a protected object PC

to solve the producer-consumer problem. Like a monitor, PC provides
encapsulates access to a data structure, in this case the buffer in PC.
Only one operation of a protected object can execute at a time.
Unlike a monitor, a protected object does not provide condition vari-
ables. Instead, an operation can have a guard (a boolean condition
following the keyword when), which must hold for the operation to
execute; otherwise th e operation is blocked. Thus PC.prod can exe-
cute only when there is a slot free on the table, and PC.cons can only
run if there is a pancake on the table.
Calling processes are blocked on a FIFO queue, a separate one for
each operation. After any operation, all the guards are re-evaluated
automatically. So it is not the producer’s responsibility to explicitly

4



signal the consumer, or vice-versa. That is all done by PC, which can
also accommodate multiple cooks and diners, who all use the same
prod and cons operations. End of refresher.

5



Code below for Q3 and Q4
Let the command iaf (increment-and-fetch) be defined as below.

int iaf(int C) {
atomic{

C++;
return C;

}
}

int C= 0; T= 1; D=0 //Counter, Turn, Dummy
p q

int P=-1; //p’s turn int Q=-2; //q’s turn
while (true) { while (true) {

//NCS (non-critical section) //NCS (non-critical section)
p2: P=iaf(C) ; q2: Q=iaf(C);
p3: while (P != T) do {}; q3: while (Q != T) do {};

//CS (critical section) //CS (critical section)
p5: D=iaf(T); q5: D=iaf(T);

} }

Figure 2: Code for Q3 and Q4.

Notes: The pseudo-code above tries to solve the critical section (CS)
problem with two interleaving threads, p and q. A command in one
thread cannot overlap with a command in the other thread.
Remember that (1): an atomic sequence of commands happen as
one step, without the other thread acting partway through the atomic
sequence, (2): CS executes a finite number of commands, but NCS
may loop, and (3): We use the notation pi to mean both the label of
a command, and to mean the proposition that thread p has reached
pi, so the next command p will execute is pi.

Bridge example: A two-lane road between the towns of Persimmon and
Quince has a single lane bridge on the way, to cross which you need
a ticket (nummerlapp) from dispensers at either end of the bridge.
Persimmon-bound cars p take a ticket by the command p2 iaf(C) and
wait, move on to the bridge by p3, and leave the bridge by p5 iaf(T),
incrementing the ticket number to be served. Similarly for Quince-
bound cars q.

Q3 (22p). There are many parts to this question, and you may use the result of
earlier parts even if you don’t answer them.
First, reason some preliminaries from the program text. For a refresher
on logical notation, see the Appendix.

6



(Part a) Show that every update to any of the variables C, T, P, Q sets
it to an integer greater than or equal to 1. (1p)
Answer: The first execution of p2 or q2 sets C to 1. All further assign-
ments to these variables are increments in p2, q2, p5 or q5.

Value range of C-T. As the processes p and q run, the combination of
their program counters takes values from the set PQ, which, listed in
dictionary order, is PQ = {p2q2, p2q3, p2q5, p3q2, p3q3, p3q5, p5q2, p5q3, p5q5}.
We partition PQ into three subsets:
CT- = {p2q2}, (here, the bridge is idle, and C=T-1)
CT0 = {p2q3, p2q5, p3q2, p5q2}, (here, one car has a ticket and may be
crossing the bridge; C=T)
CT+ = {p3q3, p3q5, p5q3, p5q5} (here, two cars have tickets and may be
crossing the bridge; C=T+1)

(Part b).

1 Show that any p2 or q2 move takes the system from any pq in CT-
to a pq in CT0, and from any pq in CT0 to a pq in CT+.

2 Show that any p5 or q5 move takes the system from any pq in CT0
to a pq in CT-, and from any pq in CT1 to a pq in CT0.

3 Show that a p3 or q3 move takes the system from a pq in CT0 to
another pq in CT0, and from a pq in CT+ to another pq in CT+.

4 P is an active ticket if P ≥ T; similary Q. There can be at most
two active tickets, and these are consecutive. Why?

(4p)
Answer: 1) p2 or q2 increases C, but not T. 2) p5 or q5 increases T, but
not C. 3) p3 or q3 change neither C nor T. 4) p has to do a p2 (get a
new P) and p5 (discard P) in alteration, except if it gets stuck at p3. So
there can be at nost two new tickets, when both p and q have gotten a
new ticket but not yet discarded it. Why do we say “discard”? Because
once a P is accepted, T will increase past it and never return.
We have considered all moves in every pq, so {-1, 0, 1} are all the
possible values of C-T. But pq’s are not states of the system, which
need to keep track of P and Q too. We wouldn’t expect to find a
program state with two cars on the bridge at one time, like p5q5.
Aid for graders: Here is a table of the positions of p and q, showing
the value of C-T. The "transitions" ignore the values of P and Q, simply
assuming every move is possible. The purpose of the table is to examine
the change in value of C-T. We write "-" for C-T=-1, "0" for C-T=0, and
"+" for C-T=1. These are not real states of the program.

7



position combination = piqj, C-T new state if p moves new state if q moves
pc1 p2q2− p3q20 = pc4 p2q30 = pc2
pc2 p2q30 p3q3+ = pc5 p2q50 = pc3
pc3 p2q50 p3q5+ = pc6 p2q2− = pc1
pc4 p3q20 p5q20 = pc7 p3q3+ = pc5
pc5 p3q3+ p5q3+ = pc8 p3q5+ = pc6
pc6 p3q5+ p5q5+ = pc9 p3q20 = pc4
pc7 p5q20 p2q2− = pc1 p5q3+ = pc8
pc8 p5q3+ p2q30 = pc2 p5q5+ = pc9
pc9 p5q5+ p2q50 = pc2 p5q20 = pc7

end of teacher aid
(Part c) How can q influence the value assigned to P? (1p).
Answer: P is set only in p2, but can be influenced by q via C.
(Part d) Prove P ̸= Q is an invariant. (1p)
Answer: C is monotonically increasing. P and Q are set to C as it is
incremented, so they can never be set to the same value.
Matter subsumed by newer formulation:
We define a p-round (resp. q-round) as a return by p (resp. q) to
its NCS. So a p-round is an execution of p2, p3, and p5, possibly with
interleaved actions by q.
(Part d) Let R be (p2 ∧ q2) → (C = T− 1). Show that R is invariant.
Hint: By induction on the number of returns to p2 ∧ q2. (3p)
Answer: R holds at the start, with C=0 and T=1. Now suppose at
some point, we have p2 ∧ q2 and C=T-1. Then by the next time we
have p2 ∧ q2 again, a whole number of p-rounds and a whole number
of q-rounds would have happened. So there would have been as many
calls of iaf(C) as of iaf(T), and C and T would hve increased equally.
So C=T-1, still.
Answer: Consider (p2 ∧ q3). We can get there from (p2 ∧ q2), when C

increases from T-1 to T. Or from (p5 ∧ q3) where
Now suppose at some point, we have p2 ∧ q2 and C=T-1. Then by the
next time we have p2 ∧ q2 again, a whole number of p-rounds and a
whole number of q-rounds would have happened. So there would have
been as many calls of iaf(C) as of iaf(T), and C and T would hve
increased equally. So C=T-1, still.
End of Matter subsumed by newer formulation:
To make a state-transition table (S-T table), we need a full state de-
scription (pi, qj , P, Q, C, T), saying where p and q are, and what values

8



the variables have. To make the table manageable, we drop the paren-
theses and the commas. As with the sets above, we represent C-T by
adding a -, 0, or + after the piqj .
Note that C and T increase forever, yet the table is finite, because C

and T stay close, so it’s a small sliding window.
(Part e) Why do we need only C-T and not C and T individually? (1p)
Answer: Because p3 indirectly compares C and T, and that is the only
use made of these variables.
Q3 continues on next page.

9



Code below for Q3 and Q4
Let the command iaf (increment-and-fetch) be defined as below.

int iaf(int C) {
atomic{

C++;
return C;

}
}

The pseudo-code below tries to solve the critical section (CS) problem with
two interleaving threads, p and q. A command in one thread cannot overlap
with a command in the other thread.

int C= 0; T= 1; D=0 //Counter, Turn, Dummy
p q

int P=-1; //p’s turn int Q=-2; //q’s turn
while (true) { while (true) {

//NCS (non-critical section) //NCS (non-critical section)
p2: P=iaf(C) ; q2: Q=iaf(C);
p3: while (P != T) do {}; q3: while (Q != T) do {};

//CS (critical section) //CS (critical section)
p5: D=iaf(T); q5: D=iaf(T);

} }

Figure 3: Code for Q3 and Q4, repeated for convenience.

Note that variable P (resp. Q) is written in p2 (resp. q2), but read only
in p3 (resp. q3). So we drop P, Q except in p3 and q3. We use the
notation p3 for “p at label p3 and P̸=T”, and “p′3 for p at label p3
and P=T”. Simlarly for q3 and q′3. Beware: If T changes, the primes
change. In this abbreviated notation, here is a partial S-T table. A
“spin” entry means next state = current state.

state = piqj (un)primed, C-T new state if p moves new state if q moves
s1 p2q2− p2q

′
30 = s2

s2 p2q
′
30 p2q50 = s3

s3 p2q50 p3q5+ = s7 p2q2− = s1
s4
s5 p′3q3+ p5q3+ = s9 spin = s5
s6
s7 p3q5+ spin = s7
s8
s9 p5q3+ p2q

′
30 = s2 spin = s9

(Part f) Complete the table above. (In the answer sheet, which has
space for corrections. Write down the missing entries and rows). (6p)
Here is the full table with no blanks.

10



state = piqj (un)primed, C-T new state if p moves new state if q moves
s1 p2q2− p′3q20 = s4 p2q

′
30 = s2

s2 p2q
′
30 p3q

′
3+ = s6 p2q50 = s3

s3 p2q50 p3q5+ = s7 p2q2− = s1
s4 p′3q20 p5q20 = s8 p′3q3+ = s5
s5 p′3q3+ p5q3+ = s9 spin = s5
s6 p3q

′
3+ spin = s6 p3q5+ = s7

s7 p3q5+ spin = s7 p′3q20 = s4
s8 p′5q20 p2q2− = s1 p5q3+ = s9
s9 p5q3+ p2q

′
30 = s2 spin = s9

Here is the monster table.
state = piqj (un)primed, C-T new state if p moves new state if q moves
s1 p2q2−, P−1Q−2C0T1 p′3q20, P1Q−2C1T1=s4 p2q

′
30, P−1Q1C1T1=s2

s2 p2q
′
30, P−1Q1C1T1 p3q

′
3+, P2Q1C2T1 = s6 p2q50, P−1Q1C1T1 = s3

s3 p2q50, P−1Q1C1T1 p3q5+, P2Q1C2T1 = s7 p2q2−, P−1Q1C1T2 = s1

s4 p′3q20, P1Q−2C1T1 p5q20, P1Q−2C1T1=s8 p′3q3+, P1Q2C2T1=s5
s5 p′3q3+, P1Q2C2T1 p5q3+, P1Q2C2T1=s9 spin = s5
s6 p3q

′
3+, P2Q1C2T1 = s6 spin = s6 p3q5+, P2Q1C2T1 = s7

s7 p3q5+, P2Q1C2T1 = s7 spin = s7 p′3q20, P2Q1C2T2 = s4

s8 p5q20, P1Q−2C1T1=s8 p2q2−, P1Q−2C1T2=s1 p5q3+, P1Q2C2T1
s9 p5q3+, P1Q2C2T1=s9 p2q

′
30, P1Q2C2T2=s9 spin = s9

(Part g) Why is it sufficient to only note in the table whether P and
Q are equal to T or not? (1p)
Answer: Because P is used only in p3 to test if P=T.
(Part h) From your complete S-T table, show that p and q cannot
both be in their respective CS at the same time. (1p).
Answer: No state with p5q5.
(Part i) From your table, show that the program can’t livelock. (1p).
Answer: No state with both entries “spin”.
(Part j) Prove that given fair scheduling, every p2-state (one where p
is at p2) will lead at some future point to a p5-state. Hint: Iteratively
build a set S of all states that must lead to a p5-state in zero, one or
more moves. First, S := the set of all p5-states. Next, S := S ∪ {s5},
as s5 must lead to a p5-state. Proceed like this. The remaining states
will then form a loop. Show that every state of this loop has a p action
that leads to S. (4p)
Answer:States in S: s8, s9. Add s5 by fairness. Add s4 as both arms
lead to sS. Add s7; must lead to 4. Add s6; must lead to s7. That
leaves s1, s2, s3 loop, but by fairness, p must act some time and lead
to S.

11



(Part k) The table has very few rows. How do we know the other
combinations of variables are not relevant? (1p).
Answer: The table is closed and shows all reachable states.

Q4 (10p). In this question, you must argue from the program text, not from the
S-T table.
(Part a) Mutex: Let M be ¬(p5 ∧ q5). Prove by induction that M is
an invariant. First show that M holds for the start state s1 = p2q2−.
Then show that if M holds for any state s, then it holds for all the
successors of s. Think which states could have a successor where M
could be false. (4p)
Answer: s1 trivially satisfies M . The only way to falsify M is to start
from a state with p5 and move to a state with also q5. The only such
state is p5q3. But p5 means P=T, and T hasn’t changed. But Q̸=P, so
Q̸=T, so q3 spins, and cannot proceed to q5.
Removed quetion: (Part f) Show that (p2 ∧ q5) → (C = T). Hint:
Suppose not, and q acts. (1p)
Answer: A q action leads to Part e. So (C ̸=T) leads to a contradiction.
(Part b) Show that starting from any p2q2 state (i.e., a state where
p is at p2, and q is at q2), any sequence that leads to a p3q3 state will
result in exactly one of p or q spinning. (2p)
Answer: If p is first to act, then P=T, so p won’t spin, and q will.
(Part c) Show that starting from any p2q5 state (i.e., a state where
p is at p2, and q is at q5), any sequence that leads to a p3q3 state will
result in q spinning, and p moving on to p5. (2p)
Answer: If p acts first, then P> T, so p spins, till q acts, and will then
spin. If q acts first, we have (Part g).
(Together, (Parts b and c) help show absence of livelock).
(Part d) Suppose you were to replace command p5 : D = iaf(T) by
p5 : T = T+ 1. Similary for q5. What would happen? (2p)
Answer: Nothing. The old p5 uses iaf to atomically increment T, and
discards the value. But mutex has been shown, so p5 can increment T

without q interfering.

12



Q5 (8p). Write an insertion sort in Erlang. The idea is that given the list
[7,3,8,5] as input, the program should go through the following devel-
opment. feed(list of integers), cell(integer), and done() are processes
with parameters of the types shown. The input list is fed left-to-right
through a chain of processes. An arrow between processes I and J
means that I knows J’s Pid, and sends its output to J. A process
receives its input from the left.

- fed in: feed([7,3,8,5]) → done

7 fed in: feed([3,8,5]) → cell(7) → done

3 fed in: feed([8,5]) → cell(3) → cell(7) →
8 fed in: feed([5]) → cell(3) → cell(7) → cell(8) → done

5 fed in: feed([]) → cell(3) → cell(5) → cell(7) → cell(8) → done

(Part a) Write the code for cell and done. The exact syntax doesn’t
matter, but the intent should be clear. (4p)
(Part b) What parts of the computation to feed in 8 can overlap
computation to feed in 5? (3p)
(Part c) Sketch how to implement a command to print out the sorted
list. (1p)
Removed part:
(Part d) Sketch a recursive modification of your program to accept
rational numbers r such that 0 ≤ r < 10, with arbitrary numbers of
decimal places. If fed in [7, 3.1, 5, 3.14], the program should in effect
store [[3.1, [3.14]], 5, 7], i.e., there should be nested chains of processes
representing the nested lists. (4p)

13



public class PC

l = int[]; //buffer itself as an integer array
int Cap = 10; //buffer capacity
int pi= 0, ci= 0; //producer, consumer indices into buffer

public void prod (x) //produce
{ //pre-protocol

l[pi%Cap ]=x; pi=pi+1; //% is the modulo operator
//post-protocol

}
public int cons () //consume

{ //pre-protocol
ci=ci+1; int y= l[ci%Cap ];
//post-protocol
return y;

}
producer consumer

int x; int x;
while (true) { while (true) {

p1: x= //make it; c1: x=PC.cons ();
p2: PC.prod (x) ; c2: //eat x;

} }

Figure 4: Producer-consumer template.

Q6 (12p). A description of the producer-consumer problem can be found on
page 3. Figure 4 shows a object-based template to solve the problem.
Below, assume one prod and one cons each running on its own CPU.
(Part a) Declare any binary semaphores you need, and write code for
the pre- and post-protocols of the methods prod and cons, so that a
prod waits if the buffer is full, and a cons waits if the buffer is empty.
Under what conditions can prod and cons work in parallel? (3p)
(Part b) Using no locks, semaphores, or other locking constructs,
write code for the pre- and post-protocols of the methods prod and
cons, so that a prod does not over-write a full buffer, and a cons does
not read from an empty buffer. Under what conditions can prod and
cons work in parallel? (2p)
(Part c) Make the code in Figure 4 nicely linearizable. Where are the
linearization points? How do we use linearization points in reasoning
about the program? (4p)
(Part d) Are there linearization points in lock-based operations on a
shared object? Where are the linearization points in Figure 1? (3p)

14



A Linear Temporal Logic (LTL) notation
1. An atomic proposition such as q2 (process q is at label q2) holds for a

state s if and only if process q is at q2 in s.

2. Let ϕ and ψ be formulas of LTL. Formulas are either atomic proposi-
tions, or are built up from other formulas using the following operators:
¬ for “not", ∨ for “or", ∧ for “and", → for “implies", □ for “always",
and ♢ for “eventually". A convenient abbreviation is ϕ iff ψ (i.e., ϕ if
and only if ψ) for (ϕ→ ψ) ∧ (ψ → ϕ).
These operators have the obvious meanings, but two differ from what
might be your interpretation of the names. First, ϕ ∨ ψ (“ϕ or ψ") is
false iff both ϕ and ψ are false. This is an “inclusive or", so ϕ ∨ ψ is
also true if both ϕ and ψ are true. Second, ϕ → ψ (“ϕ implies ψ") is
false iff ϕ is true and ψ is false. So, in particular, ϕ→ ψ is true if ϕ is
false. The meanings of the operators □ and ♢ are defined below.

3. A path is a possible future of the system, a possibly infinite sequence
of states, each reachable from the previous state in the path. A state
s satisfies formula ϕ if every path from s satisfies ϕ.
A path π satisfies □ϕ if ϕ holds for the first state of π, and for all
subsequent states in π. The path π satisfies ♢ϕ if ϕ holds for some
state in π.
Note that □ and ♢ are duals:

□ϕ ≡ ¬♢¬ϕ and ♢ϕ ≡ ¬□¬ϕ.

15


