
Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT391
Saturday, 26 October 2019

Exam supervisor: K. V. S. Prasad (prasad@chalmers.se, 0736 30 28 22)

(Exam set by K. V. S. Prasad, Sandro Stucki and Nir Pieterman,
based on the course given Sep-Oct 2019)

Material permitted during the exam (hjälpmedel):
Two textbooks; four sheets of A4 paper with notes; English dictionary.

Grading: You can score a maximum of 70 points. Exam grades are:

points in exam Grade Chalmers Grade GU
28–41 3 G
42–55 4 G
56–70 5 VG

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

points in exam + labs Grade Chalmers Grade GU
40–59 3 G
60–79 4 G
80–100 5 VG

The exam results will be available in Ladok within 15 working days after
the exam’s date.

Instructions and rules:

• Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
not receive any points!

• Justify your answers, and clearly state any assumptions that your so-
lutions may depend on for correctness.

• Answer each question on a new page. Glance through the whole paper
first; six questions, numbered Q1 through Q6. Do not spend more time
on any question or part than justified by the points it carries.

• Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

1

Q1 (8p). Below is the pseudo-code of a program with two threads, p and q. The
variables n and flag are shared between p and q.

int n = 0;
boolean flag = false;

p q
p1: while(flag==false) { q1: while(flag==false) {
p2: n = 1 - n; q2: if(n==0) {

} q3: flag = true
}

}

The labels p1, p2, q1, q2 and q3 are given only for ease of reference.

(Part a) Construct a scenario for which the program terminates.(2p)

(Part b) What are the possible values of n when the program termi-
nates? (2p)

(Part c) Does the program terminate for all scenarios? (2p)

(Part d) Does the program terminate for all fair scenarios? (2p)

Answers:

(Part a) q1, q2, q3, p1, q1.

(Part b) n can be 0 or 1. (Only p2 changes it).

Part(a) shows termination with 0.

Termination with 1: p1, q1, q2, p2, q3, p1, q1.

(Part c) The program does not terminate for all scenarios. Consider
p1, p2, (now n=1), then follow by any number of (q1, p1, p2, p1, p2)
so that q1 executes exactly when n=1.

(Part d) The previous infinite loop was fair (both p and q run infinitely
often).

2

Q2 (18p). The pseudo-code below tries to solve the critical section (CS) problem
with two threads, p and q. The keyword atomic encloses a pair of
assignments that happen in one step, i.e., no instruction by the other
thread can occur between those two assignments. Remember that CS
must exit after a finite time, but NCS may loop.

The label pi can mean the command that follows pi, or the proposition
that thread p is at pi, and the next command p will execute is pi.

int tg= 1;
p q

int tp= 0; int tq= 0;
while(true) { while(true) {

p1 //NCS (non-critical section) q1 //NCS (non-critical section)
do{ do{

p2: atomic{tp= tg; tg= 0}; q2: atomic{tq= tg; tg= 0};
p3: } while(tp!= 1); q3: } while(tq!= 1);
p4 //CS (critical section) q4 //CS (critical section)
p5: atomic{tp= 0; tg= 1}; q5: atomic{tq= 0; tg= 1};

} }

A full state description would be a quintuple, (pi, qj , tp, tg, tq). For
a refresher on logical notation, see Appendix B.

(Part a) Show that each of the three variables tg, tp, tq can take
only the values 0 and 1. (2p)

Answer: True after p and q are initialised. Only p2, p5, q2, q5 change
tg, tp, tq and they introduce only 0 or 1.

(Part b) Let I=tp+tg+tq. Prove I=1 is invariant (always true). (3p)

Answer: I=1 at init. The values only change at p2, p5, q2 and q5. Of
these, p5 and q5 each yield I=1 when executed. For p2: Either tg=1
at p2 and tp+tg=1 before and after p2, or tg=0 at p2 and tp+tg=0
before and after p2.

Notation: Let tv stand for any one of tp, tg, tq.
Then from (Part a), ¬(tv = 1) iff tv = 0.
From (Part b), in any state, exactly one of tp, tg, tq is 1.
A state description need therefore only be a triple (pi, qj , tv), where tv is the
one out of tp, tg, tq that has value 1.

(Part c) Show that p5 → (tp = 1). (2p).

Answer: p can get to p5 only if tp = 1 at p3. Also, q can’t affect tp.

(Part d) Show that p2 → ((tp = 0) ∧ (tg = 1)). (2p).

Answer: There was an error in this question. It is true that p2 implies
(tp = 0), but not also that (tg = 1). Everyone who attempted Q2 was
given 2 points for this part.

3

(Part e) Show that ¬(p5 ∧ q5) is an invariant, i.e., that the program
guarantees mutual exclusion. (3p)

Answer: At p5∧q5, we have from (Part d), tp = tq = 1, so tp+tg+tq≥
2, which breaks the invariant I of Part(b).

(Part f) Is there a loop of states from (p2, q2, tg) that includes neither
p5 nor q5? I.e., can the system livelock, with p repeating p2 and p3,
while q repeats q2 and q3? (3p)

Answer: No. (p2, q2, tg)→ (tg = 1 ∧ tp = tq = 0), so if (p3, q2, tv) is
the next state, it will have tp = 1∧ tg = tq = 0, and p will move on to
p5. So no livelock. But an unfair scheduler can let tp = 1∧tg = tq = 0
after p2, and then starve p. Then q will loop, and neither p5 nor q5
will ever occur.

(Part g) Thread q can starve thread p if a certain command by p

never executes at a certain time. What command at what time? (3p)

Answer: If p2 is never allowed to run between the completion of q5 and
the completion of q2.

4

Q3 (10p). The program from Q2 is repeated below for convenience. Read through
Q2, including the clarifications and questions, before trying Q3.

int tg= 1;
p q

int tp= 0; int tq= 0;
while(true) { while(true) {

p1 //NCS (non-critical section) q1 //NCS (non-critical section)
do{ do{

p2: atomic{tp= tg; tg= 0}; q2: atomic{tq= tg; tg= 0};
p3: } while(tp!= 1); q3: } while(tq!= 1);
p4 //CS (critical section) q4 //CS (critical section)
p5: atomic{tp= 0; tg= 1}; q5: atomic{tq= 0; tg= 1};

} }

At the start, we expected each state to be a quintuple, (tp, tq, tp, tg, tq)
where tp and tq can take on 3 values each, and each of tp, tg, tq take
on two values each, yielding 72 possible states. But Q2 tells us each
state can be writen (tp, tq, tv), where each of tp, tq and tv can take
3 values, so we need only deal with 27 of those 72 program states.

Notation: We now also abbreviate our state notation by writing piqj to
mean (pi, qj , tg), p′iqj to mean (pi, qj , tp), and piq

′
j to mean (pi, qj , tq).

Q(2)b tells us we won’t need p′iq
′
j .

Here is a partial state transition table for the program above. You may
assume that only 11 states are reachable from the start state p2q2.

state = piqj perhaps primed new state if p moves new state if q moves
s1 p2q2 p′3q2 = s8
s2 p′3q3 = s9
s3 p2q

′
3 p2q

′
5 = s4

s4 p2q
′
5

s5 p3q
′
3 = s6

s6 p3q
′
3

s7 p3q
′
5

s8 p′3q2
s9 p′3q3
s10 p′5q2
s11 p′5q3

(Part a) Fill in the blank entries in the table. (8p)

(Part b) Pick an unreachable state out of the 27 the abbreviated
notation allows, and say why it is unreachable. (2p)

5

Answer:

state = piqj perhaps primed new state if p moves new state if q moves
s1 p2q2 p′3q2 = s8 p2q

′
3 = s3

s2 p2q3 p′3q3 = s9 p2q2 = s1
s3 p2q

′
3 p3q

′
3 = s6 p2q

′
5 = s4

s4 p2q
′
5 p3q

′
5 = s7 p2q2 = s1

s5 p3q2 p2q2 = s1 p3q
′
3 = s6

s6 p3q
′
3 p2q

′
3 = s3 p3q

′
5 = s7

s7 p3q
′
5 p2q

′
5 = s4 p3q2 = s5

s8 p′3q2 p′5q2 = s10 p′3q3 = s9
s9 p′3q3 p′5q3 = s11 p′3q2 = s8
s10 p′5q2 p2q2 = s1 p′5q3 = s11
s11 p′5q3 p2q3 = s2 p′5q2 = s10

6

Q4 (12p). Consider the following event loop of a "compute server" in Erlang.

1 server_event_loop() ->

2 receive

3 {request, Fun, Args, From} ->

4 spawn(

5 fun() ->

6 Ans = apply(Fun, Args),

7 From ! {response, Ans}

8 end)

9 end,

10 server_event_loop().

(Part a). Give a sequence of messages sent by the server in response
to the following sequence of requests sent from a single client.

1 Me = self(),

2 server ! {request, fun exp/2, [10, 5], Me},

3 server ! {request, fun lists:append/2, [[1, 2], [3]], Me},

4 server ! {request, fun(X) -> X + X end, [8], Me},

where

1 exp(_, 0) -> 1;

2 exp(X, 1) -> X;

3 exp(X, Y) -> X * exp(X, Y - 1).

(3p)

Answer: Possible Solution:

{response,100000}

{response,[1,2,3]}

{response,16}

(Part b). Is your answer to Part a the only possible sequence that
could have been observed? (2p)

Answer: No, the spawn in the server loop introduces non-determinism.

(Part c). What is the point of spawning new (sub-)processes for each
computation? (2p)

Answer: Parallelism. Without the spawn, the server would have to
compute the answers to requests sequentially, even if there are many
processor cores available to parallelize the different computations.

(Part d). Consider the following client code for sending a sequence of
requests to the server and collecting responses

7

1 %Send the messages to the server.

2 [server ! {request, fun exp/2, [Num, Exp], self()} || Num <- Nums],

3
4 %Collect answers and print them.

5 Ans = [receive {response, Ans} -> Ans end || _ <- Nums],

6 io:fwrite("~p ^ ~p = ~p~n", [Nums, Exp, Ans]).

Can this code go wrong? Will you get the expected output? (2p)

Answer: Responses may arrive in the wrong order.

(Part e). Sketch a fix for this problem (no coding necessary, just
suggest a fix in words). (3p)

Answer: Use references. Here is an example implementation:

1 server_event_loop2 ->

2 receive

3 {request, Fun, Args, From, Ref} ->

4 spawn(

5 fun() ->

6 Ans = apply(Fun, Args),

7 From ! {response, Ans, Ref}

8 end)

9 end,

10 server_event_loop2().

11
12 powers(Nums, Exp) ->

13 % We generate a new reference for each number in Nums

14 RefsNums = [{make_ref(), Num} || Num <- Nums],

15 [server ! {request, fun exp/2, [Num, Exp], self(), Ref} ||

16 {Ref, Num} <- RefsNums],

17 % Receive messages in the correct order

18 Ans = [receive {response, Ans, Ref} -> Ans end ||

19 {Ref, _} <- RefsNums],

20 io:fwrite("~p ^ ~p = ~p~n", [Nums, Exp, Ans]).

8

Q5 (10p). The following recursive Java method add() implements vector addition
for two arrays v1 and v2.

1 void add(int[] v1, int[] v2, int start, int end) {

2 if (end - start < 1) return;

3 else if (end - start == 1)

4 { v1[start] = v1[start] + v2[start]; }

5 else {

6 int mid = (start + end) / 2;

7 add(v1, v2, start, mid);

8 add(v1, v2, mid, end);

9 }

10 }

The method adds the entries of v1 and v2 from index start to index
end − 1 (excluding v1[end] and v2[end]), and writes the result back
into v1.

The class AddTask below implements a fork/join parallelization of add().
The constructor of AddTask has the same arguments as the method
add(); the compute() method computes the result and stores it in the
array v1. See Appendix A.2 for a full code listing.

1 class AddTask extends RecursiveAction {

2 private int[] v1, v2;

3 private int start, end;

4
5 AddTask(int[] v1, int[] v2, int start, int end) {

6 this.v1 = v1; this.v2 = v2;

7 this.start = start; this.end = end;

8 }

9
10 public void compute() {

11 if (end - start < 1) return;

12 else if (end - start == 1) {

13 v1[start] = v1[start] + v2[start];}

14 else {

15 int mid = (start + end) / 2;

16 AddTask t1 = new AddTask(v1, v2, start, mid);

17 AddTask t2 = new AddTask(v1, v2, mid, end);

18 t1.fork(); t2.fork();

19 t1.join(); t2.join();

20 }

21 }

22 }

9

(Part a). Draw the dependency graph for a run of AddTask(v1, v2, 0, 8)

assuming both v1 and v2 have exactly 8 elements. Each node should
represent a task instance, with leaf nodes representing the base cases
(where end-start <= 1). Edges should represent parent-child relation-
ships between tasks. How many nodes does the graph have? (2p)

Answer: there are 8 + 4 + 2 + 1 = 15 nodes.

add

add

add

v1[1] v1[2]

add

v1[3] v1[4]

add

add

v1[5] v1[6]

add

v1[7] v1[8]

(Part b). What is the approximate runtime of SumTask(arr, 0, 8)

assuming there are at least 8 CPU cores and each task takes about
one unit of time to perform its computation? How can this be inferred
from the dependency graph? (2p)

Answer: 4 time units – the depth of the dependency graph.

Note. There is an error in this question: SumTask(arr, 0, 8) should
be AddTask(v1, v2, 0, 8).

(Part c). What is the maximum number of tasks that can be executed
in parallel in this implementation (excluding parent tasks waiting for
a child task to finish)? How can this be inferred from the dependency
graph? (2p)

Answer: 8 calls – the width of the dependency graph.

(Part d). From your dependency graph, deduce the total number of
tasks started by AddTask when running an instance of AddTask(v1, v2, 0, 8).
How does this compare to the maximum number of tasks running in
parallel that you computed in Part(b)? What does this difference
correspond to? (2p)

Answer: There are 15 tasks – the same number as there are nodes in
the dependency graph – and 7 more than the maximum number of calls
that can execute in parallel. This means that there may be up to 7
blocked tasks when the “leaves” are being computed.

Note. There is an error in this question: the result should be com-
pared to Part(c), not Part(b). Correct answers received full points
irrespective of whether they compared to Part(b) or (c).

10

(Part e). Suppose an instance of AddTask(v1, v2, 0, 1000000) is
run on a machine with a 4-core processor, and that tasks are scheduled
using an optimally configured ForkJoinPool. Will this result in an
efficient parallel computation? Name one source of inefficiency. (2p)

Answer: The computation will be reasonably efficient, but not optimal.
Since every “recursive call” involves the creation of a new task object
even for very small computations (near the “leaves”), spawning over-
head will be large. In addition, most tasks are created unnecessarily
since the number of tasks ('1M tasks) far exceeds the physical capacity
for parallel execution (4 cores) and most tasks are just waiting idly for
their sub-tasks to complete. Although using fork-join tasks and a thread
pool (instead of OS threads) reduces the spawning overhead, it remains
significant for small sub-tasks (at the leaves). Here are two ways to
reduce spawning overhead:

• compute small instances of AddTask (fewer than 1000 elements)
using a sequential add() function;

• remove the call to t1.fork() and replace the call to t1.join()

with a call to t1.compute(). This reduces the total number of
tasks and avoids blocked tasks since parents now work in parallel
with their children.

11

Q6 (14p). The code on page 9 is a modified sequential singly-linked list imple-
mentation. The list stores a sorted set of integers, and the method
addIncrease adds elements in increasing order. We tried to convert it
to a lock-free thread-safe implementation using Compare and Swap.

Besides the code shown on page 9, the interface of AtomicNode contains
a getter and setter for val, and a getter for next.

In the List class on page 9, notice that the list does not use the value
field of the head node (lines 4, 11, and 18). This is intentional. The
first element in the list is held in the next field of the head. The method
addIncrease works as follows. The list is sorted in increasing order.
So, if the next element in the list is larger than the value to add, then
the value is added after the current element (lines 11–18). If the next
element in the list is the same as the value to add, then the search
stops (and the value is not added again; lines 18–20). Otherwise, the
method continues to scan the list (lines 21–23, and back to line 10).
Finally, if there is no next element, the value is added at the end (lines
24–26 just after the while-loop (lines 10–23) terminates).

But there are bugs in this implementation with multiple threads: the
list might not be sorted, or the same value may appear multiple times.

(Part a). Explain why the implementation has this issue. (4p)

Answer: The compare and swap should resume the search if a new
element was added directly after current. This means that there is a
new element that is larger than current but it could be also smaller than
the value that is begin added or the same.

The same could happen with the two CAS operations: in the middle
and in the end of the list.

(Part b). Update the code of addIncrease to fix the implementation.
You should use a CAS (compare-and-set) synchronization primitive
but no semaphores or locks. Use either Java or pseudo code. (6p)

12

1 public class AtomicNode {

2 private int val;

3 private AtomicNode next;

4 public boolean compareAndSetNext(AtomicNode existing,

5 AtomicNode updated) {

6 ...

7 }

8 }

1 class List {

2 AtomicNode head;

3 public List() { // value of head not used

4 head = new AtomicNode(0,null);

5 }

6
7 public void addIncrease(int val) {

8 AtomicNode current = this.head;

9 AtomicNode next = current.getNext();

10 while (next != null) {

11 if (next.getVal() > val) {

12 AtomicNode temp;

13 do {next = current.getNext();

14 temp = new AtomicNode(val,next);

15 } while (!current.compareAndSetNext(next,temp));

16 return;

17 }

18 if (next.getVal() == val) {

19 return;

20 }

21 current = next;

22 next = current.getNext();

23 }

24 do {next = current.getNext();

25 temp = new AtomicNode(val,next);

26 } while (!current.compareAndSetNext(next,temp));

27 }

28 }

Figure 1: The interface AtomicNode snd the class List.

13

Answer: The failure of the CAS should lead to continued search. This
is the case also for CAS failure at the end.

1 public void addIncrease(int val) {

2 AtomicNode current = this.head;

3 while (true) {

4 AtomicNode next = current.getNext();

5 if (next == null || next.getVal() > val) {

6 Node temp = new AtomicNode(val,next);

7 if (current.compareAndSetNext(next,temp)) {

8 return;

9 } else {

10 continue;

11 }

12 }

13 if (next.getVal() == val) {

14 return;

15 }

16 current = next;

17 }

18 }

You benchmark the list implementation versus the usage of the original
sequential list protected by a lock. You create threads that use the new
(thread-safe) list and run the following code:

1 for (int j = 0 ; j<100 ; ++j) {

2 l.addIncrease(j);

3 }

You create threads that use the old sequential implementation and one
additional lock and run the following code:

1 for (int j=0 ; j<100 ; ++j) {

2 lock.lock();

3 l.addIncrease(j-1,j);

4 lock.unlock();

5 }

(Part c). What happens when you run the thread-safe version vs the
sequential version with the lock in the following scenarios: (i) there
are 32 CPU cores and 32 threads, and (ii) there is 1 CPU core and 32
threads. (4p)

Answer:

(i) With 32 cores, the lock-free version works better than the lock
version. The lock version allows only one CPU to work at a time.

14

So effectively not using the different cores. In the lock-free version
all the threads work at the same time. Sometimes interfering with
each other but overall, using all the available cores.

(ii) With 1 core, the lock version works better than the lock-free one.
In the lock-free version, all the different threads are going to con-
stantly compete for the single CPU obstructing each other and
forcing each other to repetitively do the same operations. In the
lock version, the locked-out threads just go to sleep and do not
interfere with each other.

A Full code listings

A.1 Code for Q4

1 -module(q4_appendix).

2 -export([main/0]).

3
4 server_event_loop() -> % Server loop

5 receive

6 {request, Fun, Args, From} ->

7 spawn(

8 fun() ->

9 Ans = apply(Fun, Args),

10 From ! {response, Ans}

11 end)

12 end,

13 server_event_loop().

14
15 exp(_, 0) -> 1;

16 exp(X, 1) -> X;

17 exp(X, Y) -> X * exp(X, Y - 1).

18
19 main() -> % Start and register the server

20 Pid = spawn(fun server_event_loop/0),

21 register(server, Pid),

22
23 Me = self(), % For Part a:

24 server ! {request, fun exp/2, [10, 5], Me},

25 server ! {request, fun lists:append/2, [[1, 2], [3]], Me},

26 server ! {request, fun(X) -> X + X end, [8], Me},

27
28 % Receive and print the responses.

29 [receive R -> io:fwrite("~p~n", [R]) end || _ <- [1, 2, 3]],

15

30
31 Nums = [7,0,5,2], % For Part d:

32 Exp = 3,

33
34 % Send the messages to the server.

35 [server ! {request, fun exp/2, [Num, Exp], self()} || Num <- Nums],

36
37 % Collect answers and print them.

38 Ans = [receive {response, Ans} -> Ans end || _ <- Nums],

39 io:fwrite("~p ^ ~p = ~p~n", [Nums, Exp, Ans]).

A.2 Code for Q5

1 import java.util.concurrent.*;

2
3 class AddTask extends RecursiveAction {

4 private int[] v1, v2;

5 private int start, end;

6
7 AddTask(int[] v1, int[] v2, int start, int end) {

8 this.v1 = v1; this.v2 = v2;

9 this.start = start; this.end = end;

10 }

11
12 @Override public void compute() {

13 if (end - start < 1) return;

14 else if (end - start == 1) {

15 v1[start] = v1[start] + v2[start];}

16 else {

17 int mid = (start + end) / 2;

18 AddTask t1 = new AddTask(v1, v2, start, mid);

19 AddTask t2 = new AddTask(v1, v2, mid, end);

20 t1.fork(); t2.fork();

21 t1.join(); t2.join();

22 }

23 }

24 }

25
26 public static void main(String[] args) {

27 final int N = 20;

28 int[] numbers = new int[N];

29 for (int i = 0; i < N; ++i) { numbers[i] = i; }

30
31 AddTask m = new AddTask(numbers, numbers, 0, N);

16

32 ForkJoinPool.commonPool().invoke(m);

33
34 for (int i = 0; i < N; ++i) {

35 System.out.println("numbers[" + i + "] = " + numbers[i]);

36 }

37 }

38 }

B Linear Temporal Logic (LTL) notation

1. An atomic proposition such as q2 (process q is at label q2) holds for a
state s if and only if process q is at q2 in s.

2. Let φ and ψ be formulas of LTL. Formulas are either atomic proposi-
tions, or are built up from other formulas using the following operators:
¬ for “not", ∨ for “or", ∧ for “and", → for “implies", � for “always",
and ♦ for “eventually". A convenient abbreviation is φ iff ψ (i.e., φ if
and only if ψ) for (φ→ ψ) ∧ (ψ → φ).

These operators have the obvious meanings, but two differ from what
might be your interpretation of the names. First, φ ∨ ψ (“φ or ψ") is
false iff both φ and ψ are false. This is an “inclusive or", so φ ∨ ψ is
also true if both φ and ψ are true. Second, φ → ψ (“φ implies ψ") is
false iff φ is true and ψ is false. So, in particular, φ→ ψ is true if φ is
false. The meanings of the operators � and ♦ are defined below.

3. A path is a possible future of the system, a possibly infinite sequence
of states, each reachable from the previous state in the path. A state
s satisfies formula φ if every path from s satisfies φ.

A path π satisfies �φ if φ holds for the first state of π, and for all
subsequent states in π. The path π satisfies ♦φ if φ holds for some
state in π.

Note that � and ♦ are duals:

�φ ≡ ¬♦¬φ and ♦φ ≡ ¬�¬φ.

17

