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Exercise 1: Concurrency properties (18 points)

Consider the following concurrent program P, where two threads ¢ and u execute in parallel and
access a shared integer variable x.

int x = 3;
thread ¢ thread u
int n; // t’s local variable int m; // u’s local variable
1 n=Xx; m = X; 3
X =1 * n; X =1 %m; 4

Question 1.1 (2 points): Does program P have race conditions? Justify your answer.

The final value of x is always 3 regardless of the order in which ¢ and u execute. Since the final
value of P’s computation does not depend on the interleaving of concurrent threads, program P
has no race conditions.

Question 1.2 (1 point): What are the critical sections of the code executed by thread ¢ and of the
code executed by thread u?

Since both threads access shared variables (by reading or writing them) in every statement of their
code, their critical sections correspond to the whole code they each execute.

Question 1.3 (3 points): List all data races that exist in program P.

There are three data races, corresponding to the instruction pairs on lines (1,4), (2,3), and (2,4).
Note that there are data races even if they are such that they do not determine race conditions.



Question 1.4 (3 points): Write a complete trace corresponding to a possible executions of pro-
gram P such that the final value of x is 3. The trace must be a sequence of program states, where
each state indicates: the value of x, the program counters (the line number of the statement to be
executed next) of ¢ and of u, and the value of ¢’s and «’s local variables n and m.

# t’SLOCAL u’S LOCAL SHARED
I pce:ln: L | peg:3m: L | x:3
2 pc:2n:3 pcy:3 m: L | x:3
3 pc:2n:3 pc.: 4 m: 3 x:3
4 done pc.:4 m:3 x:3
5 done done x: 3

Question 1.5 (8 points): Build a complete state/transition diagram modeling all possible ex-
ecutions of program P. Each state of the diagram should indicate: the value of x, the program
counters (the line number of the statement to be executed next) of ¢ and of u, and the value of u’s
local variables a and b. Remember to mark the final states of the diagram. (The initial state of the
diagram is given to get you started.)
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Question 1.6 (1 point): How can you determine whether program P has race conditions exclu-
sively based on its state/transition diagram?

The state/transition diagram has only one final state, which means P has no race conditions.

Exercise 2: Erlang — servers (17 points)

In this exercise, we build an Erlang program in the style of servers, which provides the functionality
of a distributed event counter.

An event counter is a server process Counter that counts events up to a given goal Goal (a number,
representing the number of events that must be counted); Goal is fixed when the event counter is
initialized and never changed afterwards.

Any process can notify an event occurrence by sending a message {event, Pid} to the event
counter — where Pid is the sender’s PID (process identifier). The event counter keeps tracks of
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how many event notification it has received, and of the PIDs of all processes that sent an event
notification.

As soon as the number of notified events reaches the goal, the event counter sends a message done
to all processes that sent event notifications. If the same process sent multiple event notifications,
it should only receive message done once. After sending done messages, the server resets its state
so that it can count more events up to the goal.

The event counter also accepts a message {reset, Creator} but only if Creator corresponds to
the PID of the process that initialized the event counter (that is, the process that spawned the server).
Under this condition, this message resets the counter of events to zero without notifying any process
and forgetting all stored PIDs; even in case of reset, the goal and the creator’s PID do not change.

Question 2.1 (2 points): Describe the arguments of a server event loop function counter,
which implements the server behavior described above: the function’s arguments are those needed
to store the server’s state. Describe the intended fype of each argument and what each argument
represents in the state.

counter(Done, Goal, Participants, Creator)

* Done: numeric type, number of event notifications received so far;
* Goal: numeric type, goal (events to be counted);
* Participants: list type, PIDs of all processes that sent an event notification;

* Creator: PID type, PID of process that spawned the server.

Question 2.2 (8 points): Define the server event loop function counter, which implements the
server behavior described above and uses the arguments given in the answer to the previous ques-
tion.

counter(Done, Goal, Participants, Creator) when Done == Goal -> % goal reached
[P ! done || P <- Participants], % notify all participants
counter(0, Goal, [], Creator); % reset server state
counter(Done, Goal, Participants, Creator) -> % goal not reached
receive
{event, From} -> % receive event notification

Registered = lists:member(From, Participants),
if % add PID of notifier only if it is not already in Participants

Registered =:= true -> counter(Done+l, Goal, Participants, Creator);
true -> counter(Done+1l, Goal, [From | Participants], Creator)
end;
{reset, Creator} -> % receive reset (from Creator only)

counter(0, Goal, [], Creator) % reset server state
end.



Question 2.3 (3 points): Define function start(Goal), which spawns a process running the
server (corresponding to an event counter with goal Goal), and returns to the caller the PID of the
spawned server process. Remember to keep track of the PID of the process executing start (the
“creator” of the server).

start(Goal) ->
Creator = self(),
spawn(fun () -> counter(0, Goal, [], Creator) end).

Question 2.4 (2 points): Define function event_async(Counter), which interacts with the event
counter server with PID Counter to notify an event without blocking (that is, it sends a message
and returns immediately).

event_async(Counter) ->
Me = self(),
Counter ! {event, Me}.

Question 2.5 (2 points): Define function event_sync(Counter), which interacts with the event
counter server with PID (process identifier) Counter to notify an event, and then blocks until it
receives message done (after which it returns).

event_sync(Counter) ->
event_async(Counter),
receive done -> ok end.

Exercise 3: Semaphores (12 points)

Consider two threads ¢ and « that execute in parallel. The threads share two (general counting)
semaphore variables x and y, both initialized to value 0 (the semaphores’ capacity).

Semaphore x = new Semaphore(0); Semaphore y = new Semaphore(Q); // shared variables

You can assume that no other threads have access to the same semaphores, and that a method
getPid () returns the string "t" when called by ¢, and "u" when called by u.

Question 3.1 (4 points): Write a method void go(), which behaves differently according to
whether it is called by ¢ or by u. If ¢ calls go(), it blocks until  has also called go(); then, go()
returns and ¢ is allowed to continue. If u calls go(), it does not block and simply goes through.
Method go () must use one or both semaphores x and y to achieve this synchronizing behavior of
threads ¢ and u. You can assume that ¢ and u each call go() exactly once (in any order).

This is similar to an asymmetric barrier, where ¢ waits for u but v does not wait. Only one
semaphore is needed to achieve this synchronization.



void go() {

if (getPid() == "t")

x.down () ; // t decrements x after u has incremented it
else

x.up(); // u increments x unconditionally

Question 3.2 (6 points): Write a method void guess(int require, int ensure), which syn-
chronizes t and u as follows. Threads ¢ and u call guess exactly once with any value for arguments
require and ensure; suppose ¢ calls guess(rt, et) and u calls guess(ru, eu):

e Thread t waits until u has also called guess. If rt < eu, ¢ is then allowed to continue (that
is, t’s call to guess returns); otherwise, rt > eu and ¢ blocks forever executing guess.

e Thread u waits until ¢ has also called guess. If ru < et, w is then allowed to continue (that
is, u’s call to guess returns); otherwise, ru > et and u blocks forever executing guess.

For example, if ¢ calls guess(2, 5) and w calls guess(2, 2), both ¢’s and w’s calls eventually
return; if ¢ calls guess (2, 3) and u calls guess (4, 8), t’s call eventually returns but u never does.
Hint: you can use semaphore x to count ¢’s permits and semaphore y to count u’s permits.

This is similar to a barrier with the additional requirement that each thread must ensure enough
semaphore permits that the other can continue. We use x to count the permits that ¢ has available,
and y to count those that u has.

void guess(int require, int ensure) {
Semaphore req, ens;

if (getPid() == "t") {
req = X; // t’s permits are counted by x
ens = y; // t grants permits to u using y
} else {
req =y, // u’s permits are counted by y
ens = X; // u grants permits to t using x
}

for (int i = 0; i < ensure; i++)
ens.up(); // grant ensure permits
for (int 1 = 0; i < require; i++)
req.down(); // count down at least require permits

Question 3.3 (2 points): Briefly explain the difference between a binary semaphore and a gen-
eral (counting) semaphore. Does x or y behave as a binary semaphore in any of the previous
questions 3.1 or 3.2? Justify your answer.

A binary semaphore is a semaphore used in a way that it always stores the values O or 1. x (and y
trivially) is a semaphore in 3.1, but they are general semaphores in 3.2.



Exercise 4: Synchronization with locks (10 points)

Two threads ¢ and u execute in parallel and access two integer shared variables v1 and v2. To
control access to the variables, there are two locks g1 and g2: whenever a thread wants to read or
write v1 it must first acquire lock g1; and whenever it wants to read or write v2 it must first acquire
lock g2.

// shared variables
Lock g1 = new Lock();

int vl = 0;
Lock g2 = new Lock();
int v2 = 0;

In this exercise you have to write variants of the code executed by ¢ and w; in all variants, each
threads increments both v1 and v2 by one after accessing the respective lock. The variants differ in
the concurrency properties they guarantee. Each variant may only use g1, v1, g2, and v2; but you
are free to introduce new thread-local variables.

Question 4.1 (3 points): Write code executed by ¢ and by u such that there are neither race
conditions nor deadlocks.

If both threads acquire and release locks in the same order there are no deadlocks; then, using the
locks to make the increments atomic avoids race conditions.

Lock gl = new Lock(); int vl = 0; Lock g2 = new Lock(); int v2 = 0;

thread ¢ thread u

gl.lock();
g2.lock();
vl = vl + 1;
v2 = v2 + 1;
gl.unlock();
g2.unlock();

// identical code as t

Question 4.2 (3 points): Write code executed by ¢ and by u such that there are no race conditions,
but deadlocks may occur.

If t acquires g1 first while u acquires g2 first, a deadlock may occur.



Lock g1 = new Lock(); int vl = 0; Lock g2 = new Lock(); int v2 = 0;

thread ¢ thread u
gl.lock(); g2.lock();
g2.lock(); gl.lock();

vl = vl + 1; vl = vl + 1;
v2 = v2 + 1; v2 = v2 + 1;
gl.unlock(); gl.unlock();
g2.unlock(); g2.unlock();

Question 4.3 (3 points): Write code executed by ¢ and by u such that there are no deadlocks, but
race conditions may occur.

If we allow interleaving between when a variable is read and when it is written to, race conditions
may occur. Since both threads acquire locks in the same order a deadlock is not possible.

Lock g1 = new Lock(); int vl = 0; Lock g2 = new Lock(); int v2 = 0;

thread ¢ thread u

gl.lock();
int tmp = v1;
gl.unlock();
gl.lock();

vl = tmp + 1; // identical code as t
gl.unlock();
g2.lock();
v2 = v2 + 1;
g2.unlock();

Question 4.4 (1 point): Can starvation occur in the code you provided in any of the previous
questions? Justify your answer.

A deadlock is a form of starvation, therefore the code that may deadlock may also starve. Starvation
without deadlock is not possible in this example since the code of each thread terminates in finite
time if there is no deadlock.

Exercise 5: Concurrent data structures (13 points)

Recall that a data structure implementation is thread safe if its operations can be executed by
multiple concurrent threads without running into race conditions. In this exercise, you will evaluate
different implementations of an operation on a simple data structure in Java, analyzing whether
they are thread safe.

The data structure simply stores two integers X and Y in a way that it is possible to increment both
variables at once. Class Pair is a sequential implementation of the data structure:



class Pair {
private int X;
private int Y;
public int getX() { return X; } // current value of X
public int getY() { return Y; } // current value of Y
public void incXY() { // increment X and Y
X = getX() + 1;
Y = getY() + 1;

Question 5.1 (3 points): Explain why the above implementation of Pair is not thread safe:

* Describe a concrete scenario where race conditions may occur.

* List all operations (that is, methods) that are not thread safe.

Method incXY () updates X and Y non-atomically, and hence may run into race conditions. For
example, if two threads call incXY () they may interleave so that some increments are lost (as in the
concurrent counter example). The getter methods instead are atomic and hence thread safe.

Question 5.2 (3 points): Write the implementation of a class LockedPair, which provides the
same operations as Pair but is thread-safe. To this end LockedPair introduces a single variable
lock to guard access to the data structure. (Your implementation of LockedPair may inherit from
Pair or directly modify its implementation.)

Variable lock is a private attribute attached to a Lock object. Only incXY has to be redefined since
it is the only state-modifying operation.

class LockedPair extends Pair {
private Lock lock = new Lock();

@Override
public void incXY() {
lock. lock();

try {
super.incXY();
} finally {

lock.unlock();

Question 5.3 (7 points): Recall that objects of class AtomicInteger provide integer that can
be modified atomically using the compare-and-set operation. If v is a reference to an object of
class AtomicInteger, v.compareAndSet(old_v, new_v) atomically updates v to new_v and re-
turns true if v stores value old_v; otherwise, it does not change v and returns false.

Using class AtomicInteger, write the implementation of a class TASPair, which provides the same
operations as Pair but is thread-safe without using any locks. To this end, assume that X and Y have
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type AtomicInteger. (Your implementation of LockedPair may inherit from Pair or directly
modify its implementation.)

The basic idea is to update both X and Y in separate loops. The loops terminate if the variable have
not been changed since the latest iteration; otherwise, it discards any changes and iterates anew.

class TASPair extends Pair {
private AtomicInteger X = new AtomicInteger();
private AtomicInteger Y = new AtomicInteger();
@Override public int getX() { return X.get(); }
@Override public int getY() { return Y.get(); }
@Override
public void incXY() {
do {
int oldX = getX();
if (X.compareAndSet(oldX, oldX + 1))
break;
} while (true);

do {
int oldY = getY();
if(Y.compareAndSet(oldY, oldY + 1))
break;
} while(true);



