
Chalmers | GÖTEBORGS UNIVERSITET

Carlo A. Furia, Computer Science and Engineering

Principles of Concurrent Programming TDA384/DIT391
Saturday, 17 March 2018, 14:00–18:00

(including example solutions)

Teacher/examiner: Carlo A. Furia (furia@chalmers.se – 0317721675)
(the examiner will visit the exam rooms twice: around 15:00 and around 17:00)

Exercise 1: Concurrency properties (17 points)

Consider the following concurrent program P , where two threads t and u execute in parallel and
access two shared integer variables x and y.

int x = 0; int y = 0;

thread t thread u

1 x = 3;

int a = x; 2

int b = y; 3

y = a + b; 4

Question 1.1 (2 points): Does program P have race conditions? Justify your answer.

The final value of y may be 0 (if thread u executes line 2 before thread t executes line 1) or 3 (in
all other cases). Thus, the final value of P ’s computation depends on the interleaving of concurrent
threads, which is the definition of race conditions.

Question 1.2 (2 points): What are the critical sections of the code executed by thread t and of
the code executed by thread u?

Since both threads access shared variables (by reading or writing them) in every statement of their
code, their critical sections correspond to the whole code they each execute. If no other threads in
the system have access to variable y, u’s critical section is concretely limited to line 2, since it is as
if variable y was local to u.

Question 1.3 (1 point): List all data races that exist in program P .

There is one data race, corresponding to the instruction pair on lines (1, 2). Note that when two
threads access different memory locations there is no data race.

1

Question 1.4 (3 points): Write a complete trace corresponding to a possible executions of pro-
gram P such that the final value of y is 0. The trace must be a sequence of program states, where
each state indicates: the value of x and of y, the program counters (the line number of the statement
to be executed next) of t and of u, and the value of u’s local variables a and b.

t’S LOCAL u’S LOCAL SHARED

1 pct : 1 pcu : 2 a : ⊥ b : ⊥ x : 0 y : 0
2 pct : 1 pcu : 3 a : 0 b : ⊥ x : 0 y : 0
3 pct : 1 pcu : 4 a : 0 b : 0 x : 0 y : 0
4 pct : 1 pcu : done x : 0 y : 0
5 done pcu : done x : 3 y : 0

Question 1.5 (8 points): Build a complete state/transition diagram modeling all possible ex-
ecutions of program P . Each state of the diagram should indicate: the value of x and of y, the
program counters (the line number of the statement to be executed next) of t and of u, and the value
of u’s local variables a and b. Remember to mark the initial and final states of the diagram. (Three
states of the diagram are given to get you started.)

0, 0
.1 .2

⊥, ⊥

0, 0
.1 .3

0, ⊥

0, 0
.1 .4

0, 0

0, 0
.1 .

3, 0
. .2
⊥, ⊥

3, 0
. .3

3, ⊥

3, 0
. .4

3, 0

3, 3
. .

3, 0
. .3

0, ⊥

3, 0
. .4

0, 0

3, 0
. .

u u u

u u u

u u

t

t t t

Question 1.6 (1 point): How can you determine whether program P has race conditions exclu-
sively based on its state/transition diagram?

The state/transition diagram has two different final states, which means P has race conditions.

Exercise 2: Erlang – servers (14 points)

In this exercise, we build an Erlang program in the style of servers, which stores information about
a bank account.

A bank account stores its balance (a number, representing the money currently in the account), and
supports three operations:

• deposit adds a given amount of money to the account’s balance;

2

• withdraw removes a given amount of money from the account’s balance if it is available; if
the given amount of money is not available in the account, withdraw does not do anything;

• balance sends the account’s current balance to the client.

Correspondingly, the server accepts messages in the form {operation, Argument} where operation
is the atom deposit, withdraw, or balance, and Argument is the operation’s argument. Note that
executing deposit and withdraw does not return anything to the client.

Question 2.1 (2 points): Describe the arguments of a server event loop function account,
which implements the server behavior described above: the function’s arguments are those needed
to store the server’s state. Describe the intended type of each argument and what each argument
represents in the state.

The server needs one argument Balance, of numeric type, storing the current balance: account(Balance)

Question 2.2 (6 points): Define the server event loop function account, which implements the
server behavior described above and uses the arguments given in the answer to the previous ques-
tion.

account(Balance) ->

receive

{deposit, Amount} ->

account(Balance + Amount);

{withdraw, Amount} when Amount =< Balance ->

account(Balance - Amount);

{balance, From} ->

From ! Balance,

account(Balance)

end.

Question 2.3 (2 points): Define function start(), which spawns a process running the server
(corresponding to an empty bank account), and returns to the caller the PID (process identifier) of
the spawned process.

start() -> spawn(fun () -> account(0) end).

Question 2.4 (2 points): Define function deposit(Account, Amount), which interacts with the
bank account server with PID (process identifier) Account to execute operation deposit with the
given amount. (Note that function deposit will be called by client processes.)

deposit(Account, Amount) -> Account ! {deposit, Amount}.

3

Question 2.5 (2 points): Define function balance(Account), which interacts with the bank ac-
count server with PID (process identifier) Account to get and return the account’s balance. (Note
that function balance will be called by client processes.)

balance(Account) ->

Me = self(),

Account ! {balance, Me},

receive Balance -> Balance end.

Exercise 3: Concurrent data structures (14 points)

Recall that a data structure implementation is thread safe if its operations can be executed by
multiple concurrent threads without running into race conditions. In this exercise, you will evaluate
different implementations of a destructive operation on a linked data structure in Java, analyzing
whether they are thread safe.

Recall the various implementations of linked sets presented during the course. They are all variants
implementing the same interface, consisting of operations to remove elements, add elements, and
test whether an element is in the set. In this exercise, we extend the interface with a new operation
void cut(int n), which removes the first n nodes in the linked chain that originates from the
head. For example, cut(2) removes the first element (whatever its item value is) that is directly
connected to the head, as well as the element immediately following it. If n is greater than the
number of elements stored in the set, cut(n) empties the set completely. Note that cut(n) must
never remove the head or tail special nodes.

An implementation of method cut(int n) that works in a sequential setting is:

1 public void cut(int n) {

2 int m = 0;

3 Node<T> upto = head; // set upto to the head node

4 do {

5 upto = upto.next; // move lower to next node in chain

6 m += 1; // increment m by one

7 } while (m <= n && upto != tail) // until n nodes are scanned or tail is reached

8 head.next = upto; // redirect head to upto

9 }

Question 3.1 (3 points): Explain why the above implementation of cut(int n) is not thread
safe. To this end, describe a concrete scenario where race conditions may occur.

Without any kind of concurrency control, cut(int n) may interfere with other threads executing
operations on the list. For example, suppose a thread t is executing cut(3) while a thread u is
executing cut(2). If t and u scan the list in parallel, the final outcome depends on which thread
redirects head.next (in its last statement) before the other. If t does it first, only u’s operation has
effect, and hence two elements are removed. If u does it first, only t’s operation has effect, and
hence three elements are removed.

Question 3.2 (2 points): Recall the implementation CoarseSet of the thread-safe set data struc-
tures seen during the course (also described in Section 9.4 of Herlihy & Shavit’s book, where it is

4

called CoarseList). CoarseSet uses a variable lock of type Lock to guard access to the whole data
structure. Modify the sequential implementation of cut(int n) given above so that it uses lock to
avoid race conditions.

Since lock guards access to the whole list, it is sufficient to acquire lock at the beginning of
cut(int n) and to release it at the end:

public void cut(int n) {

lock.lock();

try {

// body of cut(int n) as above

} finally {

lock.unlock();

}

}

Question 3.3 (6 points): Recall the implementation FineSet of the thread-safe set data structures
seen during the course (also described in Section 9.5 of Herlihy & Shavit’s book, where it is called
FineList). FineSet uses a variable lock of type Lock in each node to guard access to the node.
Modify the sequential implementation of cut(int n) given above so that it locks all nodes that will
be affected by the operation, so that race conditions are avoided, and releases them after redirecting
head.

Acquiring locks incrementally from head up to and including upto prevents other threads from
accessing the portion of the list that is being modified. After removing the nodes, releasing the locks
on head and upto is enough, because the n internal nodes have been disconnected and hence they
will be garbage collected; thanks to the hand-over-hand locking protocol used by other methods of
the class, threads waiting to acquire a lock held by the thread executing cut may only be waiting
for the head node, or after the upto node.

public void cut(int n) {

int m = 0;

Node<T> upto = head;

upto.lock() // lock head

do {

upto = upto.next;

upto.lock(); // lock next node

m += 1;

} while (m <= n && upto != tail)

head.next = upto;

head.unlock(); // unlock head

upto.unlock(); // unlock upto

}

Question 3.4 (3 points): Explain why an implementation of cut(int n) in FineSet (as in the
answer to the previous question) that locks only the head node (which is the node that is physically
modified) may run into race conditions. Illustrate a concrete scenario where race conditions may
happen (you can pick a specific value of n to help make the scenario concrete).

5

For example, calling cut(1) is equivalent to calling remove(it) where it is the item in first po-
sition in the set. If cut acquires only the lock on head, this is the same as remove only locking
pred; then, another thread (executing another operation) may be redirecting the first node, which
runs into race conditions: the removal by the thread terminating first is “overwritten” by the other
thread terminating second.

Exercise 4: Semaphores (12 points)

Consider N threads that execute in parallel; N is fixed but can be any positive integer. The threads
share an array a of size N, all of whose elements are integers initially set to 0, and synchronize by
means of a shared semaphore instance sem – initialized to value 1 (the semaphore’s capacity):

Semaphore sem = new Semaphore(1); int[] a = new int[N]; // shared variables

You can assume threads have integer identifiers 0 through N − 1; calling method threadId()

returns the identifier of the running thread.

Question 4.1 (4 points): Write a method int count(int upto), which returns the number of
elements of array a at indexes between 0 (included) and upto (excluded) that are equal to 1. Method
count(int upto) must use semaphore sem to ensure that there is no interference from other threads
modifying the values of a.

int count(int upto) {

int result = 0;

sem.down();

for (int i = 0; i < upto; i++)

if (a[i] == 1)

result += 1;

sem.up()

return result;

}

Question 4.2 (6 points): Write a method void rankWaitLoop(), which implements the follow-
ing behavior. When a thread tk, with identifier k, calls rankWaitLoop(), it is delayed until all
threads with identifiers smaller than k have executed rankWaitLoop(). The solution uses busy
waiting to implement the described behavior, by synchronizing only through sem and a. The im-
plementation of rankWaitLoop() can call method count(int me) defined above. We assume that
each thread calls rankWaitLoop() exactly once.

As soon as thread tk executes rankWaitLoop() it records its “arrival” by setting a[k] to 1; then it
keeps on checking whether the threads with smaller ID have arrived yet. The semaphore is used as
a lock to regulate access to array a.

void rankWaitLoop() {

int me = threadId();

sem.down();

a[me] = 1;

6

sem.up();

int done;

do {

done = count(me);

} while (done < me);

}

Question 4.3 (2 points): Briefly explain the difference between a binary semaphore (such as
sem) and a lock. Could you have used a lock instead of a binary semaphore in solving the previous
question?

In a binary semaphore, a thread other than the one which performs a down can execute a subsequent
up. In a lock, the locking thread is the only one that can release the lock. The solution to the
previous question uses the binary semaphore as a lock, so the additional power of semaphores is
not needed.

Exercise 5: Fork/join parallelism (13 points)

Fibonacci numbers are the numeric sequence F0, F1, F2, . . . defined recursively as:

F0 = 1

F1 = 1

Fn = Fn−1 + Fn−2 for n > 1

In this exercise, you will evaluate different implementations that compute Fibonacci numbers ac-
cording to their recursive structure using parallel tasks (fork/join parallelism).

Question 5.1 (4 points): Here is an implementation of the computation of Fibonacci numbers, in
a class Fibonacci that inherits from RecursiveTask<Integer> (part of Java’s library for fork/join
parallelism). Complete the given implementation by providing the four missing parts (on lines 11,
13, 14, and 18) without changing the order of the statements.

1 public class Fibonacci extends RecursiveTask<Integer> {

2 private Integer n; // compute the Fibonacci number F_n

3

4 Fibonacci(int n) {

5 this.n = n;

6 }

7

8 @Override

9 protected Integer compute() {

10 if (n == 0 || n == 1) {

11 /* ADD CODE HERE */

12 }

13 Fibonacci F_n1 = /* ADD CODE HERE */

7

14 Fibonacci F_n2 = /* ADD CODE HERE */

15 Integer result = 0;

16 F_n1.fork();

17 result += F_n1.join();

18 /* ADD CODE HERE */

19 result += F_n2.join();

20 return result;

21 }

• Line 11: return 1;

• Line 13: new Fibonacci(n - 1);

• Line 14: new Fibonacci(n - 2);

• Line 18: F_n2.fork();

Question 5.2 (4 points): Write the implementation of an Erlang function fibonacci(N) that
computes FN by replicating the behavior of the fork/join algorithm given in Java.

fibonacci(N) when N == 0; N == 1 ->

1;

fibonacci(N) ->

Me = self(),

spawn(fun () -> Me ! fibonacci(N-1) end),

Result = receive F_n1 -> F_n1 end,

spawn(fun () -> Me ! fibonacci(N-2) end),

receive F_n2 -> Result + F_n2 end.

Question 5.3 (2 points): How many tasks (corresponding to instances of Fibonacci) can actually
run in parallel (as opposed to being blocked in a waiting operation) in the Java solution – assuming
an unlimited amount of physical cores and threads that can execute tasks? Justify your answer.

Each task forks a subtask (F_n1.fork()) and then immediately waits for it to complete
(F_n1.join()), before forking another subtask (F_n2.fork()) and then immediately waiting for it
to complete (F_n2.join()). Therefore, at any given time there is just one task that is running – the
one corresponding to the innermost recursive call – while all other tasks are recursively waiting for
it to complete.

Question 5.4 (3 points): Explain how to modify the implementation of Fibonacci in Java in a
way that it increases the number of tasks that can run in parallel (analyzed in the answer to the
previous question). Note: the modification does not need to maximize the amount of parallelism; it
just has to increase it – that is, it has to be somewhat better than the given implementation.

Switching lines 17 and 18 is enough to introduce some real parallelism: both tasks F_n1 and F_n2

can execute in parallel while the forking task waits for them to complete.

8

