Chalmers | GOTEBORGS UNIVERSITET

Principles of Concurrent Programming
TDA384/DIT391

Saturday, 27 October 2018
Exam supervisor: Sandro Stucki (sandros@chalmers.se, 076 420 86 39)
(Exam set by K. V. S. Prasad based on the course given Sep-Oct 2018)

Material permitted during the exam (hjilpmedel):
Two textbooks; four sheets of A4 paper with notes; English dictionary.

Grading: You can score a maximum of 70 points. Exam grades are:

Points in exam Grade Chalmers Grade GU

28-41 3 G
42-55 4 G
56-70 ) VG

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

Points in exam + labs Grade Chalmers Grade GU

40-59 3 G
60-79 4 G
80-100 ! VG

The exam results will be available in Ladok within 15 working days
after the exam’s date.

Instructions and rules:

o Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
not receive any points!

o Justify your answers, and clearly state any assumptions that your
solutions may depend on for correctness.

o Answer each question on a new page. Glance through the whole paper
first; six questions, numbered Q1 through Q6. Do not spend more
time on any question or part than justified by the points it carries.

o Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.



Q1. The program below is meant to guess a non-zero integer that the user
types in (at line 9). It does concurrent sequential searches, upwards
and downwards from 0, and is correct if both processes terminate after
one of them has found the goal.

1 class Guess implements Runnable {

2 int you, me;

3  public Guess (int x) {me=x; you=l-me;}

4 /% Used in lines 25, 26 to make threads p and q.

5 In p, me=0 and you=1. In q, me=1 and you=0

6 p and q share variables t, found and goal. t is 0 or 1.x%/
7 static int t=0;

8 static boolean found = false;

9 static int goal = Integer.parselnt(System.console().readLine());
10

11 public void run () {

12 int i = 0;

13 while (!found) {

14 while (t = you) {};

15 t = you;

16 if (me==0) {i++;} else {i——:};

17 if (i=goal) {found=true;};

18 i

19 if (i=goal) {System.out.println ("found " + i 4+ "\n");}
20 else {System.out.println ("done " + i + "\n");};

21 t = you;

22}

23

24 public static void main (String[] args) {

25 try { Thread p = new Thread (new Guess(0));

26 Thread q = new Thread (new Guess(1));

27 p.start (); g.start ();

28 p.join (); q.join ();

29 } catch (InterruptedException e) {System.out.println ("except");}
30}

31 }

(Part a) Is the program correct? Say why you think it is, or find
a counterexample scenario. In the latter case, say what the problem
is—omne or both processes loop, or something else. (4p)

(Part b) Comment out line 21 (t=you), and repeat Part a. Say
why you think this new program is correct, or find a counterexample
scenario. In the latter case, say what the problem is—one or both
processes loop, or something else. (4p)



1 class CS—user implements Runnable {

2 int you, me;

3 public CS—user (int x) {me=x; you=l-me;}

4 /% Used in lines 27, 28 to make threads p and q.

5 In p, me=0 and you=1. In q, me=1 and you=0.

6 p and q share variables t and z. t is 0 or 1.

7 z[i] means i is not trying to enter its CS. x/

8 static int t=0;

9 static boolean[| z = {true, true};

10 public void run () {

11 while (true) {

12 // Non—critical section (NCS) before L2, after L5.
13 // NCS code omitted. Processes can die here, but not in CS.
14 L2: z[me] = false;

15 t = you;

16 while (true) {

17 L3: if (z[you] || t=me) {

18 // Critical section (CS) after L3, before L5.
19 // CS Code omitted.

20 L5: z[me]=true;

21 break ;

22 }s //end if

23 } //end while

24 } //end while

25 } //end run

26 /* Main program, skipping details:

27 Thread p = new Thread (new CS—user (0));

28 Thread q = new Thread (new CS—user(1));

29 p.start (); q.start (); */

30 } //end CS—user

In the transition table below, pi = “p is at Li”, T" = true, and so on.

s = (pi, qi, z[0], z[1], t) | sp=next state if p moves | sq=next state if q moves
sl | (p2,q2, T, T,0) | (p3,q2, F, T,1) =5 (p2,q3, T, F,0) = s3

s2
s3 | (p2,q3, T,F,0) | (p3, a3, F,F, 1) =s7 (p2, @5, T, F, 0) = s4
s4
s5 | (p3,q2, F, T, 1) | (p5,q2, F, T, 1) =59 (p3, g3, F, F, 0) = s6
s6
s7 | (p3,q3, F, F, 1) | no move (p3, @b, F, F, 1) = s8

s8 | (p3, g5, F, F, 1) | no move (p3,q2, F, T,1) =55

9 | (p5, a2, F, T,1) | (p2, 62, T, T,1) =2 | (p5, g3, F, F, 0) = s10
s10

Figure 1: CS-user program and state-transition table for Q2 and Q3.

3



Page left deliberately blank, so you can separate page 3 for use with
Q2 and Q3.



Q2. Fig. 1 on page 3 shows a program meant to solve the critical section
(CS) problem, and an abbreviated state-transition table for the pro-
gram, with four blank rows.

The outer loop of the program (lines 11 to 24) encloses the NCS and
a pre-protocol (lines 14 and 15), followed by the inner loop (lines 16
through 23). Let 0K = z[youl || t==me. The inner loop repeats
until OK; then, the process executes its CS and post-protocol (L5)
and breaks out to the main loop.

The state transition table considers only the points L2, 1.3 and L5 in
the program. Let pi stand for p2, p3, or p5, and the boolean pi for
“process p is at Li”. Similarly for qi. Let zp=z[0] and zq=z[1]. The
values of z are abbreviated T and F.

The table represents each state by a 5-tuple (pk, ql, zp, zq, t).
The left column lists the states, sorted first on pi, then successively
on qi, zp, zq, and t. The states are named s1 through s10. The next
state if p (respectively q) next executes a step is given in the middle
(respectively last) column. In many states both p or ¢ can execute the
next step, and either may do so. But in some states, one or other of
the processes may have no move to a new state.

(Part a) Fill in the blank rows to complete the state transition table.
Each entry should show a state, and in the middle and last columns,
also give its name. (4p)

(Part b) Prove from your state transition table that the program
ensures mutual exclusion. (1p)

(Part c) Prove from your state transition table that the program does
not livelock, i.e., enter a state which neither p nor q can leave. (Ip)

(Part d) Does every state need all 5 elements of the 5-tuple to
uniquely identify it, or do some of the elements follow from the others?
Using such dependencies, what is the most concise state representation
you can reach? (4p)

(Part e) Prove that given fair scheduling, every p2-state (one where p
is at p2) will lead at some future point to a p5-state. Hint: Iteratively
build a set .S of all states that must lead to a p5-state in zero or more
moves. First, S := the set of all p5-states, i.e., S = {s9,s10}. Next,
S =S U{s6}, as s6 must lead into S. This way, find the states that
must lead finitely to a p5-state. List these states first. (3p)

For the remaining states, show that every state on every path from a
p2-state has a transition into S via a move by p. A fair scheduler has
to choose one of these moves at some point. (2p)



Q3. Refer again to Fig. 1 on page 3, and see Q2 for notation used in
reasonoing about the program. In particular, what we mean by p2,
q3, zp, zq and so on. We also use the state names from Q2.

In this question, you must argue from the program, not from the state
transition table (though you may seek inspiration from it!). You get
full credit for correct reasoning, whether you use formal logic, everyday
language, or a mixture. Formulas and logical laws make your argument
concise and precise, and help you keep track of it. With everyday
language, be careful not to be fuzzy, or to mistake wishful thinking for
proof.

The Appendix reviews briefly the notation of propositional logic and
linear temporal logic.

Let M = —(p5 A gb) and L = p2 — Op5. Your task is to prove
mutex, LIM, and liveness, (1L, assuming weak fairness: if a transition
is continually enabled, it will take place at some time.

Let N = (p2 iff zp) A (2 iff zq).

(Part a). Show that N is invariant, i.e., that the start state sl satis-
fies LIN. (2p)

(Part b). Show OM by induction. First show that the start state s1
satisfies M.

Then show that every transition preserves M. The only transitions
that could start with M and end with =M are those starting from
p3 A gd or pb A ¢3. By symmetry, we need deal only with p5 A ¢3. Use
Part a to show that in this state, each combination of zp, zq and t
allows precisely one of p and ¢ to proceed. You will need to consider
the two kinds of states that can transition to a p5 A g3 state. (5p)

(Part c). Prove (OL. Hint: Note that p can proceed from p2 to p3,
by fairness. Then show that if p is blocked, ¢ must unblock it by an
execution of g2 or ¢5. If p is unblocked but not scheduled, then ¢ will
unblock p and block itself. (5p)



Q4.

© 00 N O U= W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Consider the Erlang program below.

—module(what).
—compile(export_all).

ints (N, MAX, Pidi) when N > MAX —
skip;

ints (N, MAX, Pidi) —
Pidi!N,
ints (N+1, MAX, Pidi).

front() —
receive
N —>
X = spawn(what, front, []),
io:format("~p~n", [N]),
filter (N, X)
end .

filter (P, X) —

receive
N when N rem P — 0 —
XIN,
filter (P, X);
_ -
filter (P, X)
end .

what (P,MAX) —
Pidi = spawn(what, front, []),
spawn (what, ints, [P, MAX, Pidi]).

(Part a). Suppose we compile the program and evaluate what:
what (2,100). Draw pictures of the network as the computation takes

its first few steps. What does the program print? (5p)
(Part b). What is printed if you evaluate what: what(3,100)?
what: what(5,100)7 (2p)
(Part c). Does the program terminate? (1p)

(Part d). Does it matter whether the receiving processes read their
inputs right away, or wait till several messages accumulate? (2p)

(Part e). Change the program so that what: what(2,100) prints all
the primes from 2 to 100. (2p)



Q5. A single-lane road changing direction when there is a gap in traffic.

1 class Car implements Runnable {

2 static final int E=0, W=1;

3 static Semaphore [|] EW = {new Semaphore(0), new Semaphore(0)};
4 static Semaphore toll = new Semaphore(1);

5 static int [] q = {0, 0}, b = {0, 0};

6 int same, opp;

7  public Car (int x) {same = x; opp = 1 — same;}

8 /* Lines 39, 40 make threads Car(E) (resp. Car(W)), going east
9 (resp. west). For Car(E), opp=W. For Car(W), opp=E. The ints
10 q[E] (resp. b[E]) say how many cars are waiting to go (resp.
11 are crossing) eastwards. For west, q[W] and b[W]. Car(E) (resp.
12 Car(W)) might wait on semaphore EW[E] (resp. EW[W]). x/

13

14 public void run() {

15 try {//to wait to enter,

16 toll.acquire();

17 // Trace print car name + "registers ”);

18 if (b[opp]>0){

19 q[same]++;

20 toll.release ();

21 EW[same]. acquire ();

22 +s

23 b[same]++;

24 if (q[same] > 0){

25 q[same]——;

26 EW[same]. release ();

27 } else toll.release();

28 // Trace print car name + "crossing”).

29 toll.acquire();

30 b[same]——;

31 if(b[same] = 0 && q[opp]>0) {

32 q[opp]——;

33 EW[opp]. release ();

34 } else toll.release();

35 } catch (InterruptedException e){System.out.printin("except”);}
36}

37

38 /* The main program, skipping details , is

39 Car CE = new Car(E); Car CW = new Car(W);

40 Thread el = new Thread(CE); Thread wl = new Thread (CW),

41 etc., followed by el.start(), wl.start(), etc. */

42}



[Q5. contd.] A stretch of hill road is wide enough to fit only one
vehicle, but cars can enter from both directions. Traffic lows in only
one direction at a time; the direction, east (E) or west (W), can change
when there is a gap in the traffic.

The cars are named el, e2, wl, w2, etc., so we know which way
they are going. For convenience in the program, E and W are given
integer values 0 and 1. For each car, same is its direction, and opp is
the opposite direction.

To control traffic, there are elecronically linked toll gates at both ends
of the stretch, registering cars upon entry, and checking that every car
has left safely.

(Part a). Put trace prints at line 17 (after toll.acquire()) and
at line 28, giving car name and “registers” or "crossing”, respectively.
Suppose there are only 3 cars, two east-bound, and one west-bound.
For the printout beginning with “el registers, wl registers”, and the
one starting “wl registers”, what are the possible crossing sequences?
Show a sequence of semaphore actions that produces each crossing

sequence. (4p)
(Part b). Is a registering car sure to cross? (2p)
(Part c). Show that 0 < toll + EW[E] 4+ EW[W| < 1, where we use the
names of the semaphores to stand for their values. (4p)

(Part d). Show that the crossing cars are therefore either all east-
bound or all west-bound. (3p)



Q6.

N O O W N

0 3 O U W N

Atomiclnteger is an int value that may be updated atomically. Recall
that a non-blocking algorithm is lock-free if it guarantees system-wide
progress, and wait-free if it also gaurantees per-thread progress.

Let x be a shared variable that might be set by multiple processes.
The method compare-and-set, x.CAS(expect, new), atomically sets
X to new, and returns true, if x == expect. It returns false if x !=
expect. CAS is more expensive than ordinary reads and writes.

(Part a). The code snippet below is executed by thread t. Say, with
reasons, what properties the snippet has.

Atomiclnteger x = new Atomiclnteger (0);
%thread t executes code below

int v;

do{
v = x.get();
v =v + 1;

} while (!x.CAS(v — 1, v));
Is the code starvation free? Lock-free? Wait-free? Can the process
exit the code without updating x? (2p)

(Part b). The code snippet below is executed by thread t. Say, with
reasons, what properties the snippet has.

Atomiclnteger x = new Atomiclnteger (0);
%thread t executes code below

for (int i = 0; i < 10000; i++) {
v = x.get();
v =v + 1;
if (x.CAS(v — 1, v))
break;

}

Is the code starvation free? Lock-free? Wait-free? Can the process
exit the code without updating x? (2p)

(Part c). The above two snippets try to update a variable and retry
if need be. Under high contention this could result in a lot of retries.
For that situation, suggest a variation whose retries are cheaper. (4p)

(Part d). Under what conditions would lock-based algorithms offer
better throughput than nonblocking ones? (2p)

10



Linear Temporal Logic (LTL) notation

. An atomic proposition such as ¢2 (process ¢ is at label ¢2) holds for a
state s if and only if process g is at g2 in s.

. Let ¢ and 1 be formulas of LTL. Formulas are either atomic proposi-
tions, or are built up from other formulas using the following operators:
= for “not”, V for “or”, A for “and”, — for “implies”, 1 for “always”,
and ¢ for “eventually”. A convenient abbreviation is ¢ iff ¥ (i.e., ¢ if
and only if ¢) for (¢ — ) A (¥ — @).

These operators have the obvious meanings, but two differ from what
might be your interpretation of the names. First, ¢ V¢ (“¢ or ¢”) is
false iff both ¢ and ¢ are false. This is an “inclusive or”, so ¢ V ¥ is
also true if both ¢ and v are true. Second, ¢ — ¥ (“¢ implies ¢”) is
false iff ¢ is true and ¥ is false. So, in particular, ¢ — 1 is true if ¢ is
false. The meanings of the operators [ and ¢ are defined below.

. A path is a possible future of the system, a possibly infinite sequence
of states, each reachable from the previous state in the path. A state
s satisfies formula ¢ if every path from s satisfies ¢.

A path 7 satisfies (¢ if ¢ holds for the first state of m, and for all
subsequent states in w. The path 7 satisfies ¢¢ if ¢ holds for some
state in 7.

Note that [0 and ¢ are duals:

O¢ = ~0—¢ and Q¢ = —-¢.

11



