














 
Here is a sketch of solutions to the exam of 24 Aug 2015. 
 
 
Q1.  a)  The scenarios is p1, p2, q1, q2, p1.     (n=1 at the end). 
 
 
b)  Then p1, p2, q1, p1, q2, p2, p1 terminates with n=0 at the end. 
 
c)   The scenarion (p1, p2, p1, p2, q1)*  looping.  Then n becomes 1, 
then 0, and q1 only tests it when n=0.  This is fair, because both p and 
q execute infinitely often. 
 
 
 
 
Q2.   a)   Here is a sketch of a solution. 
             What happens at the bottom of the shaft is abbreviated. 
 
 
 
protected object C 
     integer array[1..3] free := [2,2,2]; 
         // array showing free places in each lift (numbered 1 through 3) 
     integer sumfree := 6; 
         // int variable showing total of free places (in any lift) 
     integer fun index; 
         // index is a function returning 0 if sumfree=0, 
 
     entry miner_top when sumfree > 0 
         sumfree--; 
         i:= index;       //find free lift i; 
         free(i)--; 
         print("on" i) 
 
     entry lift_arrive (i) 
         free(i)=2; 
         sumfree++ ++ 
 
     entry lift_depart (i) when free(i)=0 
             // go down, then: 
         print("off" i) 
         print("off" i) 
 
proc lift(i) 
     loop 
         lift_depart(i); 
         lift_arrive(i) 
 
 
proc miner; 
     miner_top 



 
 
Q2 b)   There are several solutions possible.  For example, sumfree can 
be mimicked by a signal for sumfree ++, and by a wait for sumfree --.   
The array free can be guarded by one semaphore, while three others 
record whether free(i)=0.  Call index only when you have exclusive 
access to sumfree; release this only after miner_top. 
 
 
 
Q3.  The table is 
 
s1=(p2, q2, 0)      (p3, q2, 2)=s2      (p2, q3, 5)=s3 
 
s2=(p3, q2, 2)      (p5, q2, 2)=s4      (p3, q3, 7)=s5 
 
s3=(p2, q3, 5)      (p3, q3, 3)=s6      (p2, q5, 5)=s7 
 
s4=(p5, q2, 2)      (p2, q2, 0)=s1      (p5, q3, 7)=s8 
 
s5=(p3, q3, 7)      (p5, q3, 7)=s8      no move 
 
s6=(p3, q3, 3)      no move             (p3, q5, 3)=s9 
 
s7=(p2, q5, 5)     (p3, q5, 3)=s9    (p2, q2, 4)=s10 
 
s8=(p5, q3, 7)    (p2, q3, 5)=s3    no move 
 
s9=(p3, q5, 3)    no move             (p3, q2, 2)=s2 
 
s10=(p2, q2, 4)  (p3, q2, 2)=s2      (p2, q3, 5)=s3 
 
 
Q 3 b)  There is no state (p5, q5, sn) in the table.   Remember that p5 
and q5 are in the critical section; the process only leaves that after 
executing p5 or q5. 
 
Q3 c)  There is no state where neither p nor q can move. 
 
 
Q4  a)  To get to p3 and q3, we have either 
 
                       p2 and q3 followed by doing p2.    q3 implies S=5 
or S=7.  Then p2 makes S=3. 
 
                                                           or 
 
                       p3 and q2 followed by doing q2.    p3 implies S=2 
or S=3.  In either case, q2 makes S=7. 
 
Q4 b)   If p3 and q5, we may assume S=3.  Then p3 has to wait until q5 
runs and makes S=2.   Very simple, and not worth 4p, but it merely 



checks whether the student can make a short logical argument. 
 
Q4 c)  Suppose p3, q1.   So S=2, given.  If q1 loops, it cannot reset 
S.   (We can perhaps state in the intro that p2, q2, p5 and q5 are the 
only commands that reset S, instead of assuming that the students are 
supposed to know that protocol variables are only to be accessed in pre- 
or post-protocols).    So p3 will move on to p5.   We need to assume 
fairness, otherwise q could hog all the CPU time. 
 
 
 
Q5.  a)  Assign a channel to each node, and a process to each arc.     
The channels are of type unit (they transmit beeps), but they can be 
declared to be of type int, bool, ....  We won't use the value. 
 
 
For the arc (i, j) we have a process 
 
process P(i,j)            //where i and j are channels of unit 
unit dummy; 
 
i => dummy;         // read from channel i 
loop forever 
     j <= dummy;     // write to channel j 
 
 
We also need 
 
process Start (k)    //where k is a channel of unit 
loop forever 
         k <= dummy;     // write to channel k 
 
and 
 
process End (l)    //where l is a channel of unit 
l <= dummy;     // read from channel l 
print ("ok") 
 
So to check if there is a path from k to l, Start floods k with beeps.   
All arcs from k will relay this fllod on to their end nodes.  Flood the 
whole graph until a beep reaches l.  Then we know there is a path. 
 
Q5 b)  The arcs don't synchronise with each other, so the channels can 
be synchronous or asynchronous. 
 
Q5 c)  For this, the channels are of type int.  Start floods 0 onto k.   
Each arc (i,j) receives dummy and sends dummy+1.   The end node gets a 
number giving the length of the path that reached it. 
 
 
 
Q6.  a) 



 
process S(k, l) 
 
int x; 
 
loop 
     read(k, x); 
     if x = l 
     then 
         print("ok"); 
         break 
     else 
         k := x 
end loop 
 
This will start at x  (=k to start with) and look for an arc leading 
away.  If it finds l, great, otherwise just keep going till there are no 
arcs left  (hang). 
 
If there is a path k to l, some run of S will find it (by fairness 
assumption). 
 
Q6 b)  This is simply part a except that instead of running S 
repeatedly, we run all the repetitions in parallel. 
 
Q6 is almost not about Linda, but about general ideas of parallel search. 
 


