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e Permitted materials (Hjalpmedel): Dictionary (Ordlista/ordbok)

e Maximum you can score on the exam: 68p. This paper has six questions, on pages 2 through
4, each carrying 12p, except the last, which carries 8p. An Appendix, on pages 5 and 6, sum-
marises the pseudo-code, logic and Linda notation used in this question paper.

To pass the course, you need to pass each lab, and score at least 28 p on the exam. Further:
Exam grades: (CTH): grade 3: 28-40 p, grade 4: 41-54 p, grade 5: 55-68 p.
(GU): grade G: 28-54 p, grade VG: 55-68 p.
Course grades: CTH (exam + labs): grade 3: 40-59 p, grade 4: 60-79 p, grade 5: 80-100 p.
GU (exam + labs): grade G: 40-79 p, grade VG: 80-100 p.

e Results: within 21 days.
e Notes: PLEASE READ THESE

— Time planning: Allow 3 minutes per point; you will then have half an hour to look over
your work at the end. Do not get stuck for more time than you can afford on any
question or part. You will be compensated for any errors in the question paper, but not
for extra time you spent on one question that you should have used for another.

— Start each question on a new page.

— The pseudo-code notation from the Appendix should suffice for your programs, but you
can use Java, Erlang or Promela provided the constructs you use agree with what the
question is about. The exact syntax of the programming notations you use is not so
important as long as the graders can understand the intended meaning. If you are unsure,
explain your notation.

- The correctness of some answers is clear from inspection. Other answers must be
justified, to help us judge them. If you think a question is incorrect, ambiguous, incon-
sistent, or incomplete, say so in your answer. Make the smallest changes you need to
the question, and state them. If you need assumptions beyond those given, state them.
If your solution only works under certain conditions, state the conditions. '

- Be precise. Programs are mathematical objects, and discussions about them may be
formal or informal, but are best mathematically argued. Handwaving arguments will
get only partial credit. Unnecessarily complicated solutions will lose some points.

— DON'T PANIC!



Question 1.

Question 2.

Below is an algorithm with two processes, p and q.

boolean flag:=false
integer n:=0
P q
pl: while flag = false | q1: while n=0
p2: n:=1-n skip
q2: flag :=true

After executing p1, process p’s next step is p2 if flag = false; it terminates if flag=true.
After executing q1, process q’s next step is q1 if n =0, and q2 if n # 0.

(Part a). Construct a scenario for which the program terminates. What is the value of n at the

end? (4p)
(Part b). Construct another scenario for which also the program terminates, but with a different
value of n at the end. (4p)

(Part ¢). Construct a fair scenario for which the program does not terminate. Show that your
scenario is indeed fair. (3+1p)

To write down a scenario, list the labels of the statements in the order of execution.

A mine has three lifts, each able to two carry miners. Every morning, there are very many
miners to be carried down to work. (Pretend there are an unlimited number of miners). No lift
will leave until it has two passengers. Lifts return empty from the work level to the surface.

You are to simulate this by a system that prints “on n” every time a miner enters lift number n
and “off n” every time a miner leaves lift number n.

Represent the miners and lifts as processes. The lifts go in a loop: pick up two miners—go
down—drop off two miners—go up. Each miner does just: get on—get off.

Use a protected object C to coordinate communication between the miners and the lifts. See
the Appendix if you are not sure what a protected object is. Begin with the declarations below.
Assume the function index has already been programmed.
protected object C
integer array[1..3] free := [2,2,2];
// array showing free places in each lift (numbered 1 through 3)
integer sumfree := 6;
// int variable showing total of free places (in any lift)
integer fun index;
// index is a function returning 0 if sumfree=0,
// and otherwise the number of a lift with a free place

(Part a). Write the pseudo-code for the lift and miner processes, and the rest of the protected
object C. (You get credit for making your code as simple as possible). ' (8p)

(Part b). Now suppose you were writing in a language that only gave you binary semaphores
(no monitors or protected objects), but you want to use the answer to Part a as your high level
design. How would you simulate that design using binary semaphores? Sketch the code in only
enough detail to explain the idea. (4p)



Question 3.

Question 4.

Here is yet another algorithm to solve the critical section problem, built from atomic “if” state-
ments (p2, g2 and p5, q5). The test of the condition following ‘if”, and the corresponding “then”
or “else” action, are both carried out in one step, which the other process cannot interrupt. The
/ operator is integer division, s02/2=3/2=1.

__integer S :=0

p 9

loop forever loop forever
pl: non-critical section gl: non-critical section
p2: if even(S) then S:=2 else S:=3 g2: if even(S/2) then S:=5 else S:=7
p3:  await (S# 1 A S#3) g3: await (S# 6 A S#7)
p4:  critical section q4: critical section
p5:  if odd(S/2) then S:=S-2 else skip | q5: if odd(S) then S:=S-1 else skip

Commands pl, p4, q1 and g4 (the critical and non-critical sections) do not access the variable
S, and are therefore omitted in the abbreviated state transition table (a tabular version of a state
diagram) below for the program. Many entries in the table are left blank (—).

Each state is represented by a triple (pk,ql,Sn), where pk and gl say respectively what p and
g will next execute, and Sn is the value of S. The states are listed in the order in which they
appear as the table is built up starting from (p2, g2, 0), and are named s1 through s10. (There
are 10 states in all). The left hand column lists the states. The next state if p (respectively g)
next executes a step is given in the middle (respectively last) column. In many states both p or
g are free to execute the next step, and either may do so. But in some states, such as s5 below,
one or other of the processes may be blocked. The middle and last columns show the next state
and give its name for easy reference.

State = (pk, gl, Sn) | next state if p moves | next state if g moves
sl | (p2,q2,0) (p3, g2, 2)=s2 (p2, q3, 5)=s3
§2 (P3» q29 2) - -
s3 | (p2,43,5) e —
s4 | — — —
s5 | (p3.93,7) (pS, g3, 7)=s8 no move
s6 | — — —

§7T | — — —
s8 | — — —
9 | — — -—
s10 | (p2,q2,4) (p3, q2, 2)=s2 (p2, g3, 5)=s3

(Part a) Fill in the dashes to complete the state transition table. (6p)
(Part b) Prove from your state transition table that the program ensures mutual exclusion. (3p)
(Part ¢) Prove from your state transition table that the program does not deadlock (there are
await statements, so it is possible for a process to block). (3p)

Refer again to the program in Question 3. In this question, you must argue from the program,
not from the state transition table (though you may seek inspiration from it!). You get full credit
for correct reasoning, whether you use formal logic, everyday language, or a mixture. Formulas
and logical laws make your argument concise and precise, and help you keep track of it. With
everyday language, be careful not to be fuzzy, or to mistake wishful thinking for proof.

The Appendix reviews briefly the notation of propositional logic and linear temporal logic.



Question 5.

Question 6.

Below, we write pi as a logical proposition to mean “process p is at pi”.

(Part a). Show that (p3 Ag3) — (S =3V S =7) is invariant. Hint: Reason about what must
have happened for the program to get to (p3 A g3). (4p)

(Part b) Assume that (p3 Ag5) — (S = 3). Prove that if p3 A g5, then p cannot move until after
g executes g3. (That is, mutual exclusion holds). (4p)

(Part ¢) Assume that p3Agl - (S =2) is invariant, and that g is stuck in a loop in q1. (Remem-
ber that while p4 and g4 are assumed to terminate, pl and q1 may loop). Assuming fairness,
prove that p3 Agl — OOp5. (4p)

A directed graph G consists of a set N of nodes and a set E of pairs of nodes representing one-
way arcs connecting the first node of the pair to the second. So if (i, j) € E, then i, j €N (i.e.,
both i and j are nodes), and there is an arc starting at i and ending at j. A parh from node k to
node [/, if such exists, is either the arc (k,I) or a sequence of arcs (k,n;), (n1,n2), (n2,n3), ...,
(ny,1), (where r > 1).

We make several simplifying assumptions. Given nodes { and j, we assume that there is at most
one arc (i, j) € E; there are no parallel arcs sharing the same starting node { and ending node j.
We also assume there are no self-loops, i.e., arcs of there form (7). Finally, we assume there
are no cyclic paths following which we can start at a node i and arrive again at i.

With these assumptions, write a message-passing program P using channels to take a graph with
at least 2 nodes and find if there is a path from node k to node /; here k # [. If yes, P should print
out “ok”, otherwise it may either loop or hang or print out “no path”. Assume that messages to
a channel ¢ are distributed fairly among all processes waiting on c.

(Part a) Specify the processes P consists of, and explain how it works. (6p)
(Part b) Does P work for both synchronous and asynchronous channels? Explain. p)
(Part ¢) Modify P to print out the length of the first path it finds (the number of arcs in it). (4p)

Begin again with graphs as in Question 5, with the simplifying assumptions. Assume a given
graph is loaded into a Linda space as a set of pairs, one pair for each arc in the graph.

Here you are to write two Linda programs to take a graph with at least 2 nodes and find if there
is a path from node & to node [; here k 5 [. If yes, your program should print out “ok” on at
least some runs. (We allow that on some runs your program may hang or loop even if there is a
path from node k to node [). If there is no path from node k to node [, your program may either
loop or hang or print out *no path”.

Fairness: assume that if a tuple ¢ satisfies pattern p, then r will be returned sooner or later in
answer to a remove(p) or read(p); some other tuple cannot always be chosen in preference.

(Part a) Write a single process S with k and [ in its internal memory to solve the problem in the
above sense: if there is a path from k to /, then S will find the path on at least some runs. (4p)

(Part b) Now consider a Linda program consisting of arbitrarily many copies of S. Do the
various instances of S ever wait for each other? Using the fairness assumption, show that this
parallel Linda program will find a path from k to [ if such exists. (2+2p)

——END of QUESTION PAPER——
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A Appendix
A.1 SUMMARY OF BEN-ARI’S PSEUDO-CODE NOTATION

Global variables are declared centred at the top of the program.

Data declarations are of the form integer i := lorboolean b := true, giving type, variable
name, and initial value, if any. Assignment is written := also in executable statements. Arrays are
declared giving the element type, the index range, the name of the array and the initial values. E.g.,
integer array [l..n] counts := [0, ..., 0].

Next, the statements of the processes, often in two columns headed by the names of the processes.
If several processes p (i) have the same code, parameterised by i, they are given in one column.

So in Question 1, p and g are processes that the main program runs in parallel. The declarations
of flag and n are global. Declarations local to p or g (none here) would be in the respective columns.

Numbered statements are atomic. If a continuation line is needed, it is left un-numbered or num-
bered by an underscore p_. Thus loop forever, repeat and so on are not numbered. Assignments
and expression evaluations are atomic. Indentation shows the substatements of compound statements.

The synchronisation statement await b is equivalent to while not b do nothing. This may
be literally true in machine level code, but at higher level, think of await as a sleeping version of the
busy loop.

For channels, ch => x means the value of the message received from the channel ch is assigned
to the variable x. and ch <= x means that the value of the variable x is sent on the channel ch.

When asked for a scenario, just list the labels of the statements in the order of execution. With
synchronous channels, sender and receiver act together, so show both statements as a pair being a
single move in the scenario.

EXTENSION OF BEN-ARI’S PSEUDO-CODE NOTATION You can explicitly declare pro-
cesses by a line of the kind “proctype p(integer i)” giving the name of the process and its parameters.
Then write an explicit “init” process that starts the program. Explicit commands like “run p(5); run
p(6)” are used to run processes, in this case to start process p with parameter 5, and then start another
instance of p with parameter 6.

These extensions give new expressive power. The “run” command means the number of processes
in a program can change during execution. If processes are passed channels as parameters, the network
of channels between processes can change dynamically.

PROTECTED OBJECTS These are like simplified monitors, providing encapsulation and syn-
chronisation, but without condition variables and explicit operations on them scattered all over the
code. Instead, protected object operations have boolean guards (after the keyword “when”); calling
an operation will block until its guard becomes true. Only one operation can be done at a time, and
all guards are re-evaluated after each operation. Guards that are always true need not be mentioned.
protected object Sem

integer s : =k

operation Wait when s > 0

s:=5—1
operation Signal
s:i=s5+1

Above is a protected object Sem simulating a semaphore s initialised to k. Operations Sem.Wait
and Sem.Signal now do the work of the wait and signal operations on s.



A.2 LOGIC

The symbols used here for the operators of propositional logic are: — for “not”, V for “or”, A for
“and”, and — for “implies”. These have the obvious meanings, but two differ from what might be
your interpretation of the name. Note that pV g (“p or ¢”) is false iff (if and only if) both p and g are
false. This is an “inclusive or”, so pV ¢ is true if both p and g are true. Also, note that p — g (“p
implies g”) is false iff p is true and g is false. In particular, this means p — g is true if p is false.

The particular form of logic used here is Linear Temporal Logic (LTL). LTL is propositional logic
with two added operators, [J and ¢.

A proposition such as g, (process q is at label g») is true of state s; in Question 3, because in that
state process g is at g;. This proposition g is also true of state s4 but false of state s3.

A path is a possibly infinite sequence of states. It is a possible future of the system. So from the
same table, the infinite loop of states si, 54, 53, 51, etc. is a possible future at any of the states s, 54,
and sg.

A path satisfies the formula Ogsa, say, if g2 is true of the first state of the path, and for all subsequent
states in the path. Eg., the infinite loop s, 54, S, 51, ... satisfies [lga.

A path satisfies the formula Ops, say, if ps is true of some state in the path. Eg., the infinite loop
S1. 4, $8, 81, ... satisfies ¢ ps.

Finally, we extend the satisfaction definition from paths to states. A formula ¢ holds for state s
(or, s satisfies ¢) if every path from s satisfies ¢.

Note that [ and ¢ are duals:

0o = -0-0 and O = =[0-0.

A.3 LINDA

In Linda programs, processes communicate via fuples posted on a board. The first element of a tuple
is often a constant string, saying what kind of tuple it is. Processes interact with the board through
three kinds of atomic actions.

post(t) Here t is a tuple (x1,x,..), where the x; are constants or values of variables. post(t) posts
on the board, and unblocks an arbitrary process among those waiting for a tuple of this pattern.

remove(x,x2,..) Here the parameters must be variables or constants. The command remove (x1,x2,..)
removes a tuple (x1,xz,..) that matches the pattern of the constant parameters, and assigns the
tuple values to the variable parameters. If no matching tuple exists, the process is blocked. If
there are several matching tuples, an arbitrary one is removed.

read(xi,x2,..) Like remove(xi,x2,..), but leaves the tuple on the board.

———END of APPENDIX——



Here is a sketch of solutions to the exam of 24 Aug 2015.

Q1. a) The scenarios is pl, p2, ql, g2, pl. (n=1 at the end).

b) Then pl, p2, ql, pl, g2, p2, pl terminates with n=0 at the end.

c) The scenarion (pl, p2, pl, p2, ql1)* looping. Then n becomes 1,
then 0, and g1 only tests it when n=0. This is fair, because both p and
q execute infinitely often.

Q2. a) Here is a sketch of a solution.
What happens at the bottom of the shaft is abbreviated.

protected object C
integer array[1..3] free :=[2,2,2];
// array showing free places in each lift (numbered 1 through 3)
integer sumfree := 6;
// int variable showing total of free places (in any lift)
integer fun index;
// index is a function returning 0 if sumfree=0,

entry miner_top when sumfree > 0
sumfree--;
1:= index; //find free lift 1;
free(i)--;
print("on" 1)

entry lift_arrive (1)
free(1)=2;
sumfree++ ++

entry lift depart (i) when free(i)=0
/I go down, then:
print("off" 1)
print("off" 1)

proc lift(i)
loop
lift_depart(i);
lift_arrive(i)

proc miner;
miner top



Q2 b) There are several solutions possible. For example, sumfree can
be mimicked by a signal for sumfree ++, and by a wait for sumfree --.
The array free can be guarded by one semaphore, while three others
record whether free(i)=0. Call index only when you have exclusive
access to sumfree; release this only after miner_top.

Q3. The table is

s1=(p2,q92,0) (p3,q92,2)=s2 (p2,q3,5)=s3
s2=(p3,92,2) (p5,92,2)=s4  (p3,q3, 7)=s5
s3=(p2,93,5) (p3,q3,3)=s6  (p2,q5, 5)=s7
s4=(p5,92,2) (p2,92,0)=sl  (pS,q3, 7)=s8
s5=(p3,q93,7) (p5,q3,7)=s8 no move
s6=(p3,q3,3) nomove (p3, 95, 3)=s9
s7=(p2,95,5) (p3,95,3)=s9 (p2,q2,4)=s10
s8=(p5,q3,7) (p2,q3,5)=s3 no move
s9=(p3, q5,3) no move (p3, 92, 2)=s2
s10=(p2, q2,4) (p3,q92,2)=s2 (p2,q3, 5)=s3

Q 3 b) There is no state (p5, q5, sn) in the table. Remember that p5
and g5 are in the critical section; the process only leaves that after
executing p5 or q5.

Q3 ¢) There is no state where neither p nor q can move.

Q4 a) To get to p3 and q3, we have either

p2 and g3 followed by doing p2. g3 implies S=5
or S=7. Then p2 makes S=3.

or

p3 and g2 followed by doing q2. p3 implies S=2
or S=3. In either case, g2 makes S=7.

Q4 b) Ifp3 and q5, we may assume S=3. Then p3 has to wait until g5
runs and makes S=2. Very simple, and not worth 4p, but it merely



checks whether the student can make a short logical argument.

Q4 c) Suppose p3, ql. So S=2, given. If ql loops, it cannot reset

S. (We can perhaps state in the intro that p2, q2, p5 and g5 are the
only commands that reset S, instead of assuming that the students are
supposed to know that protocol variables are only to be accessed in pre-
or post-protocols). So p3 will move on to pS. We need to assume
fairness, otherwise q could hog all the CPU time.

Q5. a) Assign a channel to each node, and a process to each arc.
The channels are of type unit (they transmit beeps), but they can be
declared to be of type int, bool, .... We won't use the value.

For the arc (i, j) we have a process

process P(i,) /Iwhere i and j are channels of unit
unit dummy;

1=> dummy; // read from channel i
loop forever
j <=dummy; // write to channel j

We also need

process Start (k) //where k is a channel of unit
loop forever
k <= dummy; // write to channel k

and

process End (I) //where 1is a channel of unit
| <= dummy; //read from channel 1
print ("ok")

So to check if there is a path from k to 1, Start floods k with beeps.
All arcs from k will relay this fllod on to their end nodes. Flood the
whole graph until a beep reaches 1. Then we know there is a path.

Q5 b) The arcs don't synchronise with each other, so the channels can
be synchronous or asynchronous.

Q5 ¢) For this, the channels are of type int. Start floods 0 onto k.

Each arc (i,j) receives dummy and sends dummy+1. The end node gets a
number giving the length of the path that reached it.

Q6. a)



process S(k, 1)
int X;

loop
read(k, x);
ifx=1
then
print("ok");
break
else
k:=x
end loop

This will start at x (=k to start with) and look for an arc leading
away. Ifit finds I, great, otherwise just keep going till there are no

arcs left (hang).

If there is a path k to I, some run of S will find it (by fairness
assumption).

Q6 b) This is simply part a except that instead of running S
repeatedly, we run all the repetitions in parallel.

Q6 is almost not about Linda, but about general ideas of parallel search.



