Spatial Data Structures
and Speed-Up Techniques

UIf Assarsson

Department of Computer Science and
Engineering
Chalmers University of Technology

Have vou done your “homework™ :-) 2
Exercises

e Create a function (by writing code on
paper) that tests for intersection between:
— two spheres
— aray and a sphere
— view frustum and a sphere
—- Ray and triangle (e.g. use formulas from last

lecture)
e Make sure you understand matrices:

— Give a scaling matrix, translation matrix, rotation
matrix and simple orthogonal projection matrix

...e.g., the ray/sphere test /
e Ray: r(f)=o+td

e Sphere center: ¢, and radius r L

e Sphere formula: ||p-c||=r

e Replace p by r(¢), and square it: @
(o+td—c)-(o+td—c)—r" =0

t*+2((0-c¢)> dt+(0—-c) (0-c¢)—-r
2 -b ’

b
ax“ +bx +¢c=0 = x=—= ()_E

“2a” \\2a
Bool raySpherelntersect(vec3f o, d, ¢, float r, Vec3f &hitPt) {
float a = d.dot(d);
float b = 2.0f*((0-c).dot(d)); // dot is implemented in class Vec3f
float ¢ = (0-¢).dot(0-¢);
1f(b*b/4.0f<c) return false;
float t = -b/(2.0f*a) - sqrt(b*b/4.0f-c); // intersection for smallest t
if (t<0) t = -b/(2.0f*a) + sqrt(b*b/4.0f-c); // larger t
if (t<0) return false; else hitPt = o+d*t; // where * is an operator for vector multiplication
return true;

a

Misc

e Half Time wrapup slides are available in
“Schedule” on home page
— Including 3 old exams

e There is an Advanced Computer
Graphics Seminar Course in sp 4, 7.5p

— One seminar every week
e Advanced CG techniques

— Do a project of your choice.
— Register to the course

Spatial data structures
e What is it?

— Data structure that organizes geometry in 2D or 3D or
higher
— The goal is faster processing

- Needed for most "speed-up techniques”
e Faster real-time rendering
e Faster intersection testing
e Faster collision detection
e Faster ray tracing and global illumination

e Games & Movie production tools use them
extensively

Bounding-Volume Hierarchy
— BOTTOM-UP construction:

e Organizes geometry in some hierarchy

In 2D space Data structure

Scene

SN

Subscenel Subscene2

What'’s the point with hierarchies?

An example

e Assume we click on screen, and want to
find which object we clicked on

_ 1) Test the root first
click! 2) Descend recursively as needed
3) Terminate traversal when possible

In general: get O(log n) instead of O(n)

3D example

Scene

4%

Subscenel Subscene2

Bounding Volume Hierarchy (BVH)

e Most common bounding volumes (BVs):

— Axis-Aligned Bounding Boxes (AABB)

— But can also use spheres and @
Oriented Bounding Boxes (OBBs)

— AABB hierarchies are used by the NVIDIA RTX chip

e The BV does not contibute to the rendered
Image -- rather, encloses an object

e [he data structure is a tree

— Leaves hold geometry
— Internal nodes hold BVs that /\

enclose all geometry in its subtree d B A

Q

Bounding-Volume Hierarchy
— TOP-DOWN construction:

e Find minimal box, then split along longest axis

Find minimal D !/ I Called TOP-DOWN method
boxes . .
i i Works similarly for other BVs
» Y ‘

Find minimal
boxes

Split along
longest axis

Example

Killzone (2004-
PS2) used kd-
tree / AABB-

tree based
system for the
collision
detection

- L ee— ()
IR—

Kd-tree = Axis Aligned BSP tree

Binary Space Partitioning (BSP) Trees

[]
e Two different types: ;(\\\

_ Axis-aligned BSP | —
- Polygon-aligned BSP ~ Axis-aligned

e General idea: |
— Split space with a plane .
_ Divide geometry into the sub space it belongs °Clygon-aligned
— Repeat recursively

e If traversed in a certain way, we can get the
geometry sorted back-to-front or front-to-back in
w.r.t. any camera position, in constant time!

- Exact for polygon-aligned
- Approximately for axis-aligned

« Split space with a plane
* Divide geometry into the

Axis-Aligned BSP tree = saceitbelonge
— TOP-DOWN construction

e Axis-aligned => Can only choose a
splitting plane along x,y, or z

wm [E] §>ﬂ wong [::] §>ﬂ
v

>
Split along [::I'] E)(\ Split along [::I'] §>(\
>

%Qy\\% y\\

Axis-Aligned BSP tree

— tree structure

B/ D E 0
[E] i la 1b
Plane 1a

0 dued

Plane 1b
> N # s
A C S| || [

D E
\J 1D K
e Each internal node holds a divider plane
e Leaves hold geometry

e Differences compared to BVH

- BSP tree encloses entire space and provides sorting
- The BV hierarchy can have spatially overlapping nodes(no sort)
- BVHs can use any desirable type of BV

Axis-aligned BSP tree

— Rough sorting front-to-back w.r.t camera

e Test the planes, recursively from root, against the point of view. For each
traversed node (for front-to-back rendering):
- If node is leaf, draw the node’s geometry
- else
e Recurse on the "hither” side with respect to the eye (to sort front to back)
e Recurse on the farther side.

ﬁﬁ)(\ /faJ\/\E\
Qﬁ\\ AllBl1S] 2
xS s s N B 1§

BRI

e \Works in the same way for polygon-
aligned BSP trees --- but that gives
exact sorting

h p
ib‘§‘-‘ 'k:.
!) ¢
B\
“".’ ‘..L
e 'd
¥
? ('Jog

TR ; .mr‘
"7F \1 ‘“w}"ﬁf‘* :

i | g :
a4 e
= o ‘F‘ o) _"
i th‘__ |
4 4-’ W-

T ,F‘” s

Ve 5

3F

’

L NN

e iy F~'-f-"”!ﬁ=%":!’~”x
s P"pr—q» \:'f—‘ "’“‘f"‘

43/‘*er § c"“M

B r“t' ’*"smw a-waw&"ﬂw 9':;&‘1*“?»*‘
)

J" U ,.‘4 ol

T: -—— _mw—;';gnr-.;“l:
(‘f"if

Polygon-alighed BSP tree

e Allows exact sorting from camera
— Since planes clip intersecting triangles

e Very similar to axis-aligned BSP tree
— But the triangle planes are used as the splitting

planes.

Drawing Back-to-Front {
Recurse on farther side of P;

Draw P;
Recurse on hither side of P;

}
//Where hither and

farther are with respect
to viewpolnt v

class BSPtree:

Polygon-aligned BSP tree Poen®:

BSPtree behindP;
BSPtree frontOfP;

Tree CreateBSP (PolygonList L) {
If L empty, return empty tree;

Else:
T->P = arbitrary polygon in L.
T->behindP = CreateBSP (polygons behind P)
T->frontOfP = CreateBSP(polygons in front of P)
Return T.

Drawing Back-to-Front {
recurse on farther” side of P;
Draw P;
Recurse on hither” side of P;

}

With respect to viewpoint v

Octrees (1)

e A bit similar to axis-aligned BSP trees

e Will explain the quadtree, which is the 2D
variant of an octree

=N ;

7 = &

% D || O)

e In 3D, each square (or rectangle)
becomes a box, and 8 children

Example of Octree

Recursively split space
in eight parts — equaly
along x,y,z dimension

simultaneously for each
level

)
N

Example of octree

l l‘Il -\u
l'l

u" AT

Image from Lefebvre et al.

™)
N A

Example of octree

Octrees (2)

e Expensive to rebuild (BSPs are too)

e Octrees can be used to
— Speed up ray tracing
— Faster picking
— Culling techniques...

— But are not used that often these days, except
for Sparse Voxel Octrees (SVO:s)

Voxels

Triangle
36 bytes

Voxel

Volume — element
1 bit

Voxels

* Desirable to be able to use very high resolutions

(i
%%: OO
....%%%o BT

REREEY
QRS
OO0
.....:%%% S 7 A £
‘0“%%%00 \\ \\ \\\\w\w\w\“\M\\%\
%%‘ a7 7 B 9
NN

i iy 9 37 A 2

Gri1

O:sand 1:s

Voxels
One possible data structure:

e Voxel Grids — 3D array of

Sparse Voxel Octree

Each node has eight children, representing an
octant of the parent node’s volume.

1 | L T
\\ \fw m. ﬂi'dr _M
!
0[1
!

Sparse Voxel Octree

Each node has eight children, representing an
octant of the parent node’s volume.

\\ T \
) |v|)

edel BORNVOBY™ -
triangles: 15091

Octree

)

nodes: 7586
¢
@)

leafes: 6064 Y !
max depth: 9 |

selection I
depth: -1
nodes: 0

W\ &4 /‘Ml,’;’ri/f{"’! 14 A\
i n

\ VA 18

Sparse Voxel DAGs

W W W w
e SR
RERSRRITRN

1 bit
e SVDags can currently handle scene of res

e \Voxel

128.0003

— Naively with bit grid: 262 TB

— SVDAGSs => < 1GB can be possible

Sparse Voxel DAGs

For identical subgraphs, only store one instance,
and point to that instance.

nodes: 7586
leafes: 8064
max depth: 9
selection

depth: -1
nodes: 0

Sparse Voxel DAGs

/‘J "', '. .
P i 2

&
= 3

: »
=N
* N
e 1Y [

https://youtu.be/6zpbV6hZPWU

https://youtu.be/6zpbV6hZPWU

Visualizing Identical Subtrees

Epic Citadel
Resolution: 128K X 128K X
128K

Number of nodes
SVO: 5.5 billion
DAG: 45 million (0.8%)

Visualizing Identical Subtrees

Hairball
Resolution: 8K X 8K X 8K
Number of nodes

SVO: 781 million

DAG: 44 million (5.6%)

" Identical colors are identical
subvolumes of size 4 X 4 X 4

Visualizing Identical Subtrees

Node occurrence
370 586 37 326

70915 [10987
69 974 275 143

A Scene Graph is a hierarchical scene description —
more typically a logical hierarchy (than e.g. spatial)

Scene graphs

— a node hierarchy

e A scene graph is a node hierarchy, which often reflects a
logical hierarchical scene description
— often in combination with a BVH such that each node has a BV.
e Common hierarchical features include:
— Lights
- Materials
- Transforms Scene Graph: joathode

— Transparency // l\\)

Node

~ Selection (ES m ‘A D/I%\DQ
) k%

"':., 1

AN

Different culling techniques
(red objects are skipped)

view frustum = detall

backface

‘ occlusion

Backface culling

e Can be used when back-faces are never seen (closed
objects)

e OpenGL.:
e glCullFace (GL BACK) ;

e glEnable (GL CULL FACE) ;

e First, define front/back-faces

e Let counterclockwise vertex-winding order define front face
(right-hand rule). 2

2

10
front facing y back facing

How to cull backfaces

e Two ways in different spaces:

0
front back

screen space

eye

eye space

back

igelal

View-Frustum Culling

e Bound every “natural” group of primitives
by a simple volume (e.g., sphere, box)

e If a bounding volume (BV) is outside the
view frustum, then the entire contents of
that BV is also outside (not visible)

Example of Hierarchical View
Frustum Culling

Refined view frustum culling:
frustum gets smaller for each door

Portal Culling

Images courtesy of David P. Luebke and Chris Georges

——
|
=

e Average: culled 20-50% of the polys in view
e Speedup: from slightly better to 10 times

Portal culling example

e In a building from above
e Circles are objects to be rendered

Portal Culling Algorithm (1)

e "Recursively do VFC through visible
portals (i.e., doors & mirrors)”

Algorithm:

e Build a graph of the scene with cells (rooms) and
portals (doors/mirrors)

e For each frame:
— Locate cell of viewer and init 2D AABB to whole screen
-~ * Render current cell with View Frustum culling w.r.t. AABB
— Traverse to closest cells (through portals)
— Intersection of AABB & AABB of traversed portal
- Goto *

Occlusion Culling

e Main idea: Objects

that lies completely
“behind” another set of PN

objects can be culled .

e Hard problem to solve
efficiently ‘

e Has been lots of research
In this area

e OpenGL: “Occlusion Queries”

Occlusion culling algorithm

Use some kind of occlusion
representation Op

for each object g do:
if(not Occluded(Og,9))
render(g);
update(Og ,9);
end;
end;

Level-of-Detail Rendering

e Use different levels of detail at different
distances from the viewer

e More triangles closer to the viewer

e —"‘\

LOD rendering

e Not much visual difference, but a lot faster

Promm

e Use area of projection of BV to select
appropriate LOD

Far LOD rendering

e \When the object is far away, replace with
a quad of some color

e \When the object is really far away, do
not render it (called: detail culling)!

e Use projected area of BV to determine
when to skip

Exercise

e Create a function (by writing code on
paper) that performs hierarchical view
frustum culling
— void hierarchicalVFC(BVHnode* node)

What you need to know

e Describe how use BVHs.
e Top-down construction of BVH, AABSP-tree,

e Construction + sorting with AABSP and Polygon-
Aligned BSP

e Octree/quadtree
e Culling — VFC, Portal, Detail, Backface, Occlusion

— Backface culling — screenspace is robust, eyespace non-robust.

e \Whatis LODs

THE END

