
Spatial Data Structures
and Speed-Up Techniques

Ulf Assarsson
Department of Computer Science and
Engineering
Chalmers University of Technology

1

Exercises
l Create a function (by writing code on

paper) that tests for intersection between:
– two spheres
– a ray and a sphere
– view frustum and a sphere
– Ray and triangle (e.g. use formulas from last

lecture)

l Make sure you understand matrices:
– Give a scaling matrix, translation matrix, rotation

matrix and simple orthogonal projection matrix
2

…e.g., the ray/sphere test
l Ray: r(t)=o+td
l Sphere center: c, and radius r
l Sphere formula: ||p-c||=r
l Replace p by r(t), and square it:

€

t 2 + 2((o − c)⋅ d)t + (o − c)⋅ (o − c) − r2 = 0
0)()(2 =--+×-+ rtt cdocdo

o

d

c
r

€

ax 2 +bx + c = 0 ⇒ x =
−b
2a

±
b
2a
$

%
&

'

(
)

2

−
c
a

Bool raySphereIntersect(vec3f o, d, c, float r, Vec3f &hitPt) {
 float a = d.dot(d);
 float b = 2.0f*((o-c).dot(d)); // dot is implemented in class Vec3f
 float c = (o-c).dot(o-c);
 if(b*b/4.0f<c) return false;
 float t = -b/(2.0f*a) - sqrt(b*b/4.0f-c); // intersection for smallest t
 if (t<0) t = -b/(2.0f*a) + sqrt(b*b/4.0f-c); // larger t
 if (t<0) return false; else hitPt = o+d*t; // where * is an operator for vector multiplication
 return true;
}3

Misc
l Half Time wrapup slides are available in
“Schedule” on home page
– Including 3 old exams

l There is an Advanced Computer
Graphics Seminar Course in sp 4, 7.5p
– One seminar every week

l Advanced CG techniques

– Do a project of your choice.
– Register to the course

4

Spatial data structures
l What is it?

– Data structure that organizes geometry in 2D or 3D or
higher

– The goal is faster processing
– Needed for most ”speed-up techniques”

l Faster real-time rendering
l Faster intersection testing
l Faster collision detection
l Faster ray tracing and global illumination

l Games & Movie production tools use them
extensively

5

Bounding-Volume Hierarchy
– BOTTOM-UP construction:

l Organizes geometry in some hierarchy
In 2D space Data structure

In 3D space:

6

What’s the point with hierarchies?
An example
l Assume we click on screen, and want to

find which object we clicked on

click!
1) Test the root first
2) Descend recursively as needed
3) Terminate traversal when possible
In general: get O(log n) instead of O(n)7

3D example

click!

8

Bounding Volume Hierarchy (BVH)
l Most common bounding volumes (BVs):

– Axis-Aligned Bounding Boxes (AABB)
– But can also use spheres and

Oriented Bounding Boxes (OBBs)
– AABB hierarchies are used by the NVIDIA RTX chip

l The BV does not contibute to the rendered
image -- rather, encloses an object

l The data structure is a tree
– Leaves hold geometry
– Internal nodes hold BVs that

enclose all geometry in its subtree

9

l Find minimal box, then split along longest axis

x is longest Find minimal
boxes

Split along
longest axis

Find minimal
boxes

Called TOP-DOWN method
Works similarly for other BVs

10

Bounding-Volume Hierarchy
– TOP-DOWN construction:

Example

Killzone (2004-
PS2) used kd-
tree / AABB-
tree based
system for the
collision
detection

Kd-tree = Axis Aligned BSP tree
11

Binary Space Partitioning (BSP) Trees

l Two different types:
– Axis-aligned BSP
– Polygon-aligned BSP

l General idea:
– Split space with a plane
– Divide geometry into the sub space it belongs
– Repeat recursively

l If traversed in a certain way, we can get the
geometry sorted back-to-front or front-to-back in
w.r.t. any camera position, in constant time!

– Exact for polygon-aligned
– Approximately for axis-aligned

12

Axis-aligned

Polygon-aligned

Axis-Aligned BSP tree
– TOP-DOWN construction

l Axis-aligned => Can only choose a
splitting plane along x,y, or z

Minimal
box

Split along
plane

Split along
plane

Split along
plane

• Split space with a plane
• Divide geometry into the

space it belongs
• Done recursively

13

Axis-Aligned BSP tree
– tree structure

l Each internal node holds a divider plane
l Leaves hold geometry
l Differences compared to BVH

– BSP tree encloses entire space and provides sorting
– The BV hierarchy can have spatially overlapping nodes(no sort)
– BVHs can use any desirable type of BV

A

B

C

D E

Plane 0

Plane 1a Plane 1b

Plane 2

0

1a

A B

1b

C 2

D E

14

Axis-aligned BSP tree
– Rough sorting front-to-back w.r.t camera
l Test the planes, recursively from root, against the point of view. For each

traversed node (for front-to-back rendering):
– If node is leaf, draw the node’s geometry
– else

l Recurse on the ”hither” side with respect to the eye (to sort front to back)
l Recurse on the farther side.

eye

0

1a

A B

1b

C 2

D E

1

1a 1b

2

0

23
4 5

l Works in the same way for polygon-
aligned BSP trees --- but that gives
exact sorting15

Polygon Aligned BSP tree – Quake 2

16

Polygon-aligned BSP tree
l Allows exact sorting from camera

– Since planes clip intersecting triangles

l Very similar to axis-aligned BSP tree
– But the triangle planes are used as the splitting

planes.
Drawing Back-to-Front {

Recurse on farther side of P;
Draw P;
Recurse on hither side of P;

}
//Where hither and
farther are with respect
to viewpoint v

17

Polygon-aligned BSP tree
Tree CreateBSP(PolygonList L) {

If L empty, return empty tree;
Else:

T->P = arbitrary polygon in L.
T->behindP = CreateBSP(polygons behind P)
T->frontOfP = CreateBSP(polygons in front of P)

Return T.
}

class BSPtree:
Polygon P;
BSPtree behindP;
BSPtree frontOfP;

Drawing Back-to-Front {
recurse on farther* side of P;
Draw P;
Recurse on hither* side of P;

}
*With respect to viewpoint v

18

Octrees (1)
l A bit similar to axis-aligned BSP trees
l Will explain the quadtree, which is the 2D

variant of an octree

l In 3D, each square (or rectangle)
becomes a box, and 8 children19

Example of Octree

Recursively split space
in eight parts – equaly
along x,y,z dimension
simultaneously for each
level20

Example of octree

Image from Lefebvre et al.21

Example of octree

Image from Lefebvre et al.22

Octrees (2)
l Expensive to rebuild (BSPs are too)

l Octrees can be used to
– Speed up ray tracing
– Faster picking
– Culling techniques…
– But are not used that often these days, except

for Sparse Voxel Octrees (SVO:s)

23

Voxels

Voxel
Volume – element

1 bit

Triangle
36 bytes

Voxels

• Desirable to be able to use very high resolutions

One possible data structure:

• Voxel Grids – 3D array of
 0:s and 1:s

Grid

Voxels

Sparse Voxel Octree

0 1

1

Each node has eight children, representing an
octant of the parent node’s volume.

1

Sparse Voxel Octree

0 1

1

Each node has eight children, representing an
octant of the parent node’s volume.

Sparse Voxel Octree

• SVO: Id Software, rage 6
• 1.15 bits/ non-empty voxel
• DAGs: e.g., down to 0.08

bit/non-empty voxel

Sparse Voxel DAGs

• Voxel = 1 bit.
• SVDags can currently handle scene of res =

128.0003

– Naively with bit grid: 262 TB
– SVDAGs => < 1GB can be possible

Sparse Voxel DAGs

0 1

1

For identical subgraphs, only store one instance,
and point to that instance.

https://youtu.be/6zpbV6hZPWU

Sparse Voxel DAGs

https://youtu.be/6zpbV6hZPWU

Visualizing Identical Subtrees

Epic Citadel
Resolution: 128K × 128K ×
128K
Number of nodes
 SVO: 5.5 billion
 DAG: 45 million (0.8%)

Hairball
Resolution: 8K× 8K× 8K
Number of nodes
 SVO: 781 million
 DAG: 44 million (5.6%)

Identical colors are identical
subvolumes of size 4× 4 × 4

Visualizing Identical Subtrees

Visualizing Identical Subtrees

Node occurrence
370 586
70 915
69 974

37 326
10 987
275 143

Scene graphs
– a node hierarchy

l A scene graph is a node hierarchy, which often reflects a
logical hierarchical scene description

– often in combination with a BVH such that each node has a BV.

l Common hierarchical features include:
– Lights
– Materials
– Transforms
– Transparency
– Selection

36

A Scene Graph is a hierarchical scene description –
more typically a logical hierarchy (than e.g. spatial)

Different culling techniques
(red objects are skipped)

view frustum detail

backface

portal occlusion

37

Backface culling
l Can be used when back-faces are never seen (closed

objects)
l OpenGL:

l glCullFace(GL_BACK);
l glEnable(GL_CULL_FACE);

l First, define front/back-faces
l Let counterclockwise vertex-winding order define front face

(right-hand rule).

0

1

2

front facing
01

2

back facing38

l Two ways in different spaces:

screen space

1

0

2

front
0

1

2

back

eye

front

back

eye space

How to cull backfaces

39

View-Frustum Culling
l Bound every “natural” group of primitives

by a simple volume (e.g., sphere, box)
l If a bounding volume (BV) is outside the

view frustum, then the entire contents of
that BV is also outside (not visible)

40

Example of Hierarchical View
Frustum Culling

root

camera
41

Portal Culling
Images courtesy of David P. Luebke and Chris Georges

l Average: culled 20-50% of the polys in view
l Speedup: from slightly better to 10 times

Refined view frustum culling:
frustum gets smaller for each door

42

Portal culling example
l In a building from above
l Circles are objects to be rendered

43

Portal Culling Algorithm (1)
l ”Recursively do VFC through visible

portals (i.e., doors & mirrors)”

Algorithm:
l Build a graph of the scene with cells (rooms) and

portals (doors/mirrors)
l For each frame:

– Locate cell of viewer and init 2D AABB to whole screen
– * Render current cell with View Frustum culling w.r.t. AABB
– Traverse to closest cells (through portals)
– Intersection of AABB & AABB of traversed portal
– Goto *44

Occlusion Culling

l Main idea: Objects
that lies completely
“behind” another set of
 objects can be culled

l Hard problem to solve
efficiently

l Has been lots of research
in this area
l OpenGL: “Occlusion Queries”

45

Occlusion culling algorithm
Use some kind of occlusion
representation OR

for each object g do:
 if(not Occluded(OR ,g))
 render(g);
 update(OR ,g);
 end;
end;

46

Level-of-Detail Rendering
l Use different levels of detail at different

distances from the viewer
l More triangles closer to the viewer

47

LOD rendering
l Not much visual difference, but a lot faster

l Use area of projection of BV to select
appropriate LOD48

Far LOD rendering
l When the object is far away, replace with

a quad of some color
l When the object is really far away, do

not render it (called: detail culling)!
l Use projected area of BV to determine

when to skip

49

Exercise
l Create a function (by writing code on

paper) that performs hierarchical view
frustum culling
– void hierarchicalVFC(BVHnode* node)

50

What you need to know
l Describe how use BVHs.
l Top-down construction of BVH, AABSP-tree,
l Construction + sorting with AABSP and Polygon-

Aligned BSP
l Octree/quadtree
l Culling – VFC, Portal, Detail, Backface, Occlusion

– Backface culling – screenspace is robust, eyespace non-robust.

l What is LODs

51

