
Department of Computer Engineering

Graphics Hardware

Ulf Assarsson

2

Graphics hardware – why?
l Often said to be ”100x” faster than CPU.

– Reason: Simple to parallelize triangle rendering :
l over individual triangles, pixels, (even over x,y,z,w, and r,g,b,a)
l Hardware fixed functions: clipping, rasterizer, texture filtering, fragment-merge, …

l Current hardware:
– Triangle rasterization with programmable shading.
– Massive parallel general-purpose computations:

l CUDA/OpenCL/Compute Shaders (~10.000 ALUs)

– AI computations:
l ~500 tensor cores, each performing a 4x4-matrix mul+add.

– GPU Ray tracing:
l NVIDIA RTX (via OptiX, Vulcan, Microsoft DXR api)
l Although, can write your own GPU ray-tracer (e.g., CUDA or shader based)

– or even WebGPU

Perspective-correct
interpolation of texture

coordinates
(and actually all screen-space-interpolated per-

vertex data)

4 Horizon Forbidden West, 2022

5 2 Days To Vegas – for Playstation 3

6

Perspective-correct texturing
l How is texture coordinates interpolated over a triangle?
l Linearly?

Linear interpolation Perspective-correct interpolation
l Perspective-correct interpolation gives foreshortening effect!
l Hardware does this for you, but you need to understand this

anyway!

7

8

Recall the following

l Perspective projection introduces a non-linear
transform by the homogenization step:
– Projection: p = Mv
– After projection pw is not 1!
– Homogenization: (px /pw , py /pw , pz /pw , 1)
– Gives (x, y , z , 1), where x, y are the screen-space coordinates and z is depth

p =Mv =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1/ d 0

"

#

$
$
$
$

%

&

'
'
'
'

vx
vy
vz
1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

=

vx
vy
vz

−vz / d

"

#

$
$
$
$
$

%

&

'
'
'
'
'

Vertices are projected onto
screen by non-linear
transform. Hence, tex coords
cannot be linearly interpolated
in screen space (just like a 3D-
position cannot be).

9

l Linear interpolation in screen space does not work for u,v
l Why:

– We have applied a non-linear transform to each vertex position
(x/w, y/w, z/w, w/w).
l Non-linear due to 1/w – factor from the homogenisation
l Surprisingly, we can screen-space interpolate any vertex attribute a/w (including

1/w) perspective correctly.
– For a proof, see Jim Blinn,”W Pleasure, W Fun”, IEEE Computer Graphics and

Applications, p78-82, May/June 1998

l Solution:
– Interpolate (u/w, v/w, 1/w), from each vertex,

where w is from homogeneous coordinate
(x,y,z,w). (Screen-space coord is (x/w, y/w, z/w, 1))

l Then at each pixel, get ui,vi as:
– wi = 1 / (1/w)i
– ui = (u/w)i * wi
– vi = (v/w)i * wi

Shading is automatically interpolated this way too (though, not as annoying as
textures). Perspective correct interpolation nowadays handled automatically by the GPU.

Perspective-correct interpolation

(u2/w2, v2/w2, 1/w2)

(u1/w1, v1/w1, 1/w1) (u0/w
0, v0/w

0, 1/w
0)

(u/w)i , (v/w)i , (1/w)i

10

”Intuitive explanation” (but not proof):

l Linear interpolation in screen space does not work for u,v
l Why:

– We have applied a non-linear transform to each vertex position
(x/w, y/w, z/w, w/w).
l Non-linear due to 1/w – factor from the homogenisation

l Solution:
– We must apply the same non-linear transform to u,v as for x,y,z

l E.g. (u/w, v/w). This can now be correctly screenspace interpolated since
it follows the same non-linear (1/w) transform (and interpolation) as (x/w, y/w,
z/w).

l So, linearly interpolate (u/w, v/w, 1/w), which is computed in screenspace at each
vertex.

l Then at each pixel:
– ui = (u/w)i / (1/w)i
– vi = (v/w)i / (1/w)i

Perspective-correct interpolation

Overview of GPU architecture

Take-away: bandwidth (cost of memory accesses)
is often the main problem

-History / evolution
- GPU design: Several cores consisting of many ALUs
 (NVIDIA terminology: Streaming Multiprocessors (SMs) of many cores
- GPU vs CPU

11

12

Background:
Graphics hardware architectures
l Evolution of graphics hardware has started

from the end of the pipeline
– Rasterizer was put into hardware first (most

performance to gain from this)
– Then the geometry stage
– Application will not be put into GPU hardware (?)

l Two major ways of getting better
performance:
– Pipelining
– Parallellization
– Combinations of these are often used

Department of Computer Engineering

Application

PCI-E x16

Vertex
shader

Vertex
shader

Vertex
shader

…
Primitive assembly

Clipping

Fragment Generation

Fragment
shader

Fragment
shader

Fragment
shader…

Fragment
Merge

Fragment
Merge

Fragment
Merge

…

Geo
shader

Geo
shader

Geo
shader

Vertex-, Geometry- and Fragment shaders
exectued on a pool of thousands of ALUs

Fixed function hardware

Fixed function hardware

The graphics-pipeline’s funcional
blocks and their relation to

hardware (for modern graphis card)

Department of Computer EngineeringOlder architecture (2006)

Beyond Programmable Shading 15

Graphics Processing Unit - GPU

§ NVIDIA Geforce GTX 580

1.5 GB RAM Memory

GPU

15 NVIDIA 3080 Ti (~2020)

Department of Computer EngineeringNVIDIA Maxwell
(GTX 980)

2014

Department of Computer EngineeringNVIDIA Maxwell 2014

ALU:

SMM
(core):

Department of Computer EngineeringNVIDIA Maxwell

Each Core:
• 128 ALUs
• 96KB L1 cache
• 8 TexUnits
• 32 Load/Store

units for access
to global
memory

16 Cores (“SMM”)
2MB L2 cache
64 output pixels / clock
(i.e., 64 ROPs)
2048 ALUs (“cores”)
~6 Tflops

18

GPU: 16 cores
Core: 128 ALUs

=> 2048 ALUs

Department of Computer EngineeringNVIDIA Pascal GP100
(GTX 1080 / Titan X)

3584 ALUs
11 Tflops
15.3Btrans.
16 GB Ram
4MB L2
~64KB L1
256KB regs/SM
224 tex units

2016

19

Department of Computer Engineering

4MB

2016

GPU: 60 cores
Core: 64 ALUs

=> 3840 ALUs
- disabled spill
= 3584 cores

20

Department of Computer Engineering

Department of Computer EngineeringNVIDIA Volta GV100 2018
(Dec.
2017)

GPU: 84 cores
SM: 64 ALUs

=> 5376 ALUs
- disabled spill
= 5120? ALUs

22

Department of Computer EngineeringNVIDIA Volta GV100

1 madd

2018

Core:
• 64 32-bit fp/int ALUs
• 512 16-bit ALUs

Tensor core
per clock:

Department of Computer EngineeringNVIDIA Turing TU102 2018

GPU: 36 cores
Core: 128 ALUs

=> 4608 ALUs
+ ~550 tensor cores
+ 72 RT cores
18.6 billion transistors

24

Department of Computer EngineeringNVIDIA Turing TU102 2018

25

GPU: 36 cores
Core: 128 ALUs

=> 4608 ALUs
+ ~550 tensor cores
+ 72 RT cores
18.6 billion transistors

Department of Computer EngineeringNVIDIA Turing TU102 2018

26

2022 - Ada Lovelace:
also fast BVH build

Department of Computer EngineeringNVIDIA Ampere 2020

27

GPU: 82 cores
Core: 128 ALUs

=> 10496 ALUs
+ ~328 tensor cores
+ 82 RT cores
28.3 billion transistors

Department of Computer EngineeringNVIDIA Ampere 2020

28

GPU: 82 cores
Core: 128 ALUs

Þ 10496 ALUs
~128KB L1$

+ ~328 tensor cores
+ 82 RT cores
28.3 billion transistors

6MB L2$

256 FP16/FP32
 FMA per clock

SM: 35 Tflops
Tensor: 143 Tflops:
RT: 69 Tflops
Sum: ~250 Tflops.

• INT8 allows for 624
TOPS (1248 TOPS with
sparsity).

• INT4 doubles that to
1248 / 2496 TOPS.

Department of Computer EngineeringNVIDIA Ada Lovelace 2022

29

GPU: 144 cores
Core: 128 ALUs

=> 18432 ALUs
+ ~576 tensor cores
+ 144 RT cores
76.3 billion transistors

Department of Computer EngineeringNVIDIA Ada Lovelace 2020

30

6MB L2$
GPU: 144 cores
Core: 128 ALUs

Þ 18432 ALUs
~128KB L1$

+ ~576 tensor cores
+ 144 RT cores
76.3 billion transistors

98MB L2$

Direct View Storage Tube:
• Created by Tektronix (early 70’s)

–First with ”frame buffer” (moveto/lineto)

–Did not require constant refresh
–Standard interface to computers

• Allowed for standard software
• Plot3D in Fortran

–Relatively inexpensive
• Opened door to use of computer

graphics for CAD community
– 4096 * 4096 addressable points (4096 *

3120 viewable).

Tektronix 4014
31

31

Graphics Hardware History

32

Graphics Hardware History - functionality
l 80’s:

– linear interpolation of color over a scanline
– Vector graphics

l 91’ Super Nintendo, Neo Geo,
– SN: Rasterization of 1 single 3D rectangle per frame (FZero)

l 95-96’: Playstation 1, 3dfx Voodoo 1
– Rasterization of whole triangles (Voodoo 2, 1998)

l 99’ Geforce (256)
– Transforms and Lighting (geometry stage)

l 02’ 3DLabs WildCat Viper, P10
– Pixel shaders, integers,

l 02’ ATI Radion 9700, GeforceFX
– Vertex shaders and Pixel shaders with floats

l 06’ Geforce 8800 – also unified architecture (Radion already was).
– Geometry shaders, integers and floats, logical operations

l Then: More general multiprocessor systems, higher SIMD-width, more cores

l 09’ Tesselation Shaders (Direct3D ’09, OpenGL ’10). (ATI - 2007)
l 17’ Tensor cores
l 18’ RT cores, Mesh Shaders

33

– GeForce3: 600-800 pipeline stages! 57 million transistors.
– First Pentium IV: 20 stages, 42 million transistors,

– ATI X800: 165M transistors
– ATI X1800: 320M trans, 625 MHz, 750 Mhz mem, 10Gpixels/s, 1.25G verts/s
– GeForce 6800: 222 M transistors, 400 MHz, 400 MHz core/550 MHz mem
– GeForce 7800: 302M trans, 13Gpix/s, 1.1Gverts/s, 430 MHz core, mem bw 54GB/s, 650MHz(1.3GHz)
– GeForce 8800: 681M trans, 39.2Gpix/s, 10.6Gverts/s, 612/1500 MHz core, 103.7 GB/s, 1080/2160GDDR3
– Geforce 280 GTX: 1.4G trans, 65nm, 602/1296 MHz core, 142GB/s, 1107(*2)MHz mem, 48Gtex/s
– ATI Radeon HD 5870: 2.15G trans, 40nm, 850 MHz, 153GB/s, GDDR5, 256bit mem bus,
– Geforce GTX480: 3Gtrans, 700/1401 MHz core, Mem 177.4GB/s, 1.848G(*2)GHz, 384bit mem bus, 40Gtex/s
– GXT580: 3Gtrans, 772/1544, Mem: 192.4GB/s, 2004/4008 MHz, GDDR5, 384bit mem bus, 49.4 Gtex/s
– GTX680: 3.5Gtrans (7.1 for Tesla), 1006/1058, 192.2GB/s, 6GHz GDDR5, 256-bit mem bus.
– GTX780: 7.1G, core clock: 837MHz, 336 GB/s, Mem clock: 6GHz GDDR5, 384-bit mem bus
– GTX980: 7.1G?, core clock: ~1200MHz, 224GB/s, Mem clock: 7GHz GDDR5, 256-bit mem bus
– GTX Titan X: 8Gtrans, core clock: ~1000MHz, 336GB/s, Mem clock: 7GHz GDDR5, 384-bit mem bus
– Titan X: 12/15Gtrans, core clock: ~1500MHz, 480GB/s, Mem clock: 10Gbps GDDR5X, 4096-HBM2
– Nvidia Volta: 21.1Gtrans, core clock: ~1500MHz, 600GB/s, Mem: 14Gbps 4096-bit HBM2 (or GDDR6)
– Nvidia Ampere: 54 Gtrans, ~1500MHz, 1008 GB/s, Mem: 21Gbps, 4096-bit HBM2, (or GDDR6)
– Nvidia Ada Lovelace: 76 Gtrans, 2.2-2.5 GHz, 1008 GB/s, Mem: 21Gbps, GDDR6X, 384-bit mem bus

Lesson learned: #trans doubles ~per 2 years. Core clock increases slowly. Mem clock –increases with new
technology DDR2, DDR3, GDDR5/6, HBM2, GDDR6X. We use the fastest memory available, despite costs.
– We want as fast memory as possible! Why?

l Parallelization can cover for slow core clock. Parallelization more energy efficient than high clock
frequency; power consumption is proportional to freq2.

l Memory transfers are often the bottleneck

2001

2008
2006

2004
2005

2004
2005

2010
2011

2007

2012
2013
2014
2015
2016
2018

Graphics Hardware History - specs

2020
2022

E.g., since 2004:
• #trans: ~200x increase
• Bandwidth: ~30x
• Clock freq: ~2x

GPU- Nvidia’s Ada Lovelace 2022

98 MB L2 $

RAM – GDDR6X

Core 1

L1 $

Core 1

L1 $

Core 128

L1 $ ~128 KB L1$ per
core

128 cores à
128 ALUs

Overview:

Bandwidth
~1 TB/s

Bus: 384 bits

Bus

Wish:
~16.384 ALUs à 1 float.op/clock => 64KB/clock cycle
~2.2GHz core clock => 144 TB/s request

We have ~1TB/s. Hence, would need to do ~144 computations between each RAM–read/write.
Ameliorated by L1$ + L2$ + latency hiding (warp switching) but still a main problem!

GPU core has much simpler
• instruction set
• cache hierarchy
than a CPU core.
High parallelism, but
bandwidth is a major problem.

RTX 4090:

CPU – 2021
Core 1 L1 d$

L1 i$

L2 $ 1MB

64 KB
64 KB

L3 shared $ 20 MB

MC

~16 cores à
8 SIMD floats

4x64 bits

Roughly Intel i9

• With 16 cores à 8 floats
Þ We want 512 bytes/clock

(e.g. from RAM).

• 3GHz CPU => 1.5 TByte/s.
(In addition x2, both for GPU
& CPU, since:

r1 = r2 + r3;)

We only have 85 GB/s due to
cheaper DDR4 RAM and
only 4x64 bits buses.

Solved by $-hierarchy +
registers + thread switching

Core 15 L1 d$
L1 i$

L2 $ 1MB

Core 2 L1 d$
L1 i$

L2 $ 1MB

Core 16 L1 d$
L1 i$

L2 $ 1MB

• Wish: GPU 144TB/s vs CPU 1.5 TB/s ≈ 100x diff.
• You could say bandwidth is 2 orders of magnitude more important on GPU than CPU, due to

parallelism. And GPU is ~10x more bandwidth limited than CPU (GPU has 10x higher bandwidth).

MC

36

l On top of that bandwith usage is never 100%.
l However, there are many techniques to reduce

bandwith usage:
– Texture caching with prefetching
– Texture compression
– Hierarchical Z-occlusion testing

l E.g., for every 8x8 pixel block of frame buffer, store its zmin, zmax.
– If triangle is behind pixel block, skip rasterize it.
– If triangle is in front, skip accessing 8x8 individual z-values.

Memory bandwidth usage is huge!!

8x8 pixels:

zmin
zmax

Taxonomy of hardware design
for how to resynchronize (sort) parallelized work.

Outputs to frame buffers must respect incoming triangle
order.

Take-aways: Sort-first, Sort-middle, Sort-Last Fragment,
 Sort-Last Image

Taxonomy of Hardware
l We can do many computations in parallel:

– Pixel shading, vertex shading, geometry shading
l But result on screen must be as if each triangle were

rendered one by one in their incoming order (according to
OpenGL spec)

l I.e., for every pixel, the rasterized fragments must be merged to the buffers in the
original input triangle order

l E.g., for blending/transparency, (z-culling + stencil test)

l Hence, results need to be sorted somewhere before
reaching the screen…

38

39

Taxonomy of hardware
l Need to sort the results of the parallelization

l Gives four major
architectures:
– Sort-first
– Sort-middle
– Sort-Last Fragment
– Sort-Last Image

l Will describe these briefly. Sort-last fragment
(and sort middle) are most common in
commercial hardware

Application

Geometry
stage

Fragment
generation
(= rasterization)

Fragment
shading

Fragment
Merge

Sort-First

Sort-Middle

Sort-Last Fragment

Sort-Last Image Composition

Sort- first means
redistributing
“raw” primitives—
before their
screen-space
parameters are
known. Sort-
middle means
redistributing
screen-space
primitives. Sort-
last means
redistributing
pixels, samples,
or pixel
fragments.

40

Sort-First
l Sorts primitives before geometry stage

– E.g., screen in divided into large regions
l Blocks or scanlines

– A separate pipeline is responsible for each
region (or many)

l Not explored much at all, since:
l Poor load balancing if uneven triangle distribution

between regions.
l Vertex shader can change triangle position
l GPUs are not pipelined like this any longer

Explanation of image: G is geometry, FG & FM is part of rasterizer (R)
– A fragment is all the generated information for a pixel on a triangle
– FG is Fragment Generation (finds which pixels are inside triangle)
– FM is Fragment Merge (merges the created fragments with various buffers (Z, color))

Sorting/dividing work to parallel execution units.

A B

C D

41

Sort-Middle
l Sorts betwen G and R stage

– i.e., after vertex and geometry shader
– Pretty natural, since after G, we know the screen-space

positions of the triangles
l Older cheaper hardware used this

– Examples include InfiniteReality (from SGI) and the
KYRO architecture (from Imagination)

l Spread work arbitrarily among G pipelines
l Then depending on screen-space position, sort to different R’s

– Screen can be split into ”tiles”. For example:
l Rectangular blocks (8x8 pixels)
l Or every n scanlines

l The R is responsible for rendering inside tile
l Bads (same as Sort-First):

l A triangle can be sent to many FG’s depending on overlap (over tiles)
l May give poor load balancing if triangles are unevenly distributed over

the screen tiles

A B

C D

42

Sort-Last Fragment
l Sorts betwen FG and FM

l After rasterization
l Most graphics cards use this somehow.

l Each pixel block is responsible for sorting its
fragments according to original triangle render order.
l One typical block size: 4x8 pixels

l Example how it could work:
l Take pixel block from queue, based on triangle order

l test hiearchical z-culling
l Execute shaders
l Merge

l Good load balancing for all stages before FM.
l Small pixel blocks give good load balancing on screen
l With triangle sizes roughly similar to block sizes, there are not so many

more blocks to sort vs sorting triangles in Sort-First and Sort-Middle.

43

Sort-Last Image
l Sorts after entire pipeline
l So each FG & FM has a separate frame

buffer for entire screen (Z and color)
l Typically: one whole graphics card per

pipeline.

l After all primitives have been sent to the pipeline,
the z-buffers and color buffers are merged into one
color buffer

l Can be seen as a set of independent pipelines
l Huge memory requirements!
l Used in research, but not much commerically.
l Problematic for transparency.

Department of Computer Engineering

Application

PCI-E x16

Vertex
shader

Vertex
shader

Vertex
shader…

Primitive assembly

Clipping

Fragment Generation

Fragment
shader

Fragment
shader

Fragment
shader…

Fragment
Merge

Fragment
Merge

Fragment
Merge

…

Geo
shader

Geo
shader

Geo
shader

Vertex-, Geometry- and
Fragment shaders allocated
from a pool of processors
(cores and ALUs)

Functional layout of the graphics pipeline and relation to a graphics card:

44

The history implies the future

• Cell – 2005, Sony Playstation 3
– 8 cores à 4-float SIMD, 256KB L2 cache/core, 3.2 GHz

• NVIDIA 8800 GTX – Nov 2006
– 16 cores à 8-float SIMD (GTX 280 - 30 cores à 8, june ’08)
– 16 KB L1 cache, 64KB L2 cache
– 1.2-1.625 GHz

• NVIDIA Fermi GF100 – 2010, (GF110 2011)
– 16 cores à 2x16-float SIMD (1x16 double SIMD)
– 16/48 KB L1 cache, 768 KB L2 cache

• NVIDIA Kepler 2012 - 16 cores à 2x3x16=96 float SIMD

• NVIDIA Kepler 2013 - 16 cores à 2x6x16=192 float SIMD

• NVIDIA Titan X 2016 – 60 cores à 2x4x8=64 float SIMD

• NVIDIA Volta 2018 – 84 cores à 64 float SIMD + 640 tensor cores (16-bit matrix mul+add)
NVIDIA Turing 2018 – 36 cores à 128 float SIMD + ~550 tensor cores (16-bit matrix mul+add) + 72 RT cores

• NVIDIA Ampere 2020 – 82 cores à 128 ALUs + ~328 tensor cores + 82 RT cores
• NVIDIA Ada Lovelace 2022 – 144 cores à 128 ALUs + ~576 tensor cores + 144 RT cores

45

If we have time…

How create efficient GPU
programs?

Answer: coallesced memory
accesses

Beyond Programmable Shading 48

Graphics Processing Unit - GPU

4 GB RAM Memory

GPU

512/384/320/256 bits bus

= memory element (32
bits)

Bad utilization of the
memory bus, which
typically is the
bottleneck!

Conceptual
layout:

Beyond Programmable Shading 49

512/384/320/256 bits bus

Graphics Processing Unit - GPU

4 GB RAM Memory

GPU

= memory element (32
bits)

Much better utilization
of the memory bus!

Read 32
coallesced floats
for max
bandwidth usage

Beyond Programmable Shading 50

Core 1

Core 2

Core XX

Core X

Let’s look at the GPU
Lots of GB RAM

L1
cache

L1
cache

L1
cache

N*32 ALUs or ”lanes”
or threads.
Nx32 mul/add per
~1 clock cycle

In principle, all must
do the same
instruction (add/mul),
but on different data.

L2 Cache

Terminology

CPU: Core ALU (SIMD lane)

NVIDIA: Streaming core
 Multiprocessor

AMD Compute unit stream processors

Beyond Programmable Shading 51

Core X

To RAM or
L1/L2 cache

From RAM or
L1/L2 cache

Core 1

Core 2

Core XX

Let’s look at the GPU

32 add/mul etc
in a clock cycle*

Nx

Each core:
• executes one

program
(=shader).

Each cycle:
• N*32 flops
These days, can
be a few different
instr.

Low level APIs for GPU programming

• CUDA
– C++ compiler
– Works best for NVIDIA GPUs
– CUDA SDK

• Numerous examples and documentation (most for single GPU)
• Has most functionality

• OpenCL
– C compiler
– Platform independent

• AMD
• NVIDIA

– Less control/functionality than CUDA
• Compute Shaders (DirectX, OpenGL).

CUDA
• A kernel (=CUDA program) is executed by 100:s-1M:s

threads
– A ”warp” = 32 threads, one thread per ALU
– Warps (one to ~32) are grouped into one block
– Block: executed on one core

• One to 48 warps execute on a core

Core 1

L1 $

Core 1

L1 $

Core N

L1 $

Block

Warp = 32
threadsWarp = 32

threadsWarp = 32
threads

Block

Warp = 32
threadsWarp = 32

threadsWarp = 32
threads

Block

Warp = 32
threadsWarp = 32

threadsWarp = 32
threads

Block

Warp = 32
threadsWarp = 32

threadsWarp = 32
threads

Block

Warp = 32
threadsWarp = 32

threadsWarp = 32
threads

Block

Warp = 32
threadsWarp = 32

threadsWarp = 32
threads

Block

Warp = 32
threadsWarp = 32

threadsWarp = 32
threads

Block

Warp = 32
threadsWarp = 32

threadsWarp = 32
threads

Block

Warp = 32
threadsWarp = 32

threadsWarp = 32
threads

Max one program
per block.
One program
counter per warp.

53

1 core

Read coalesced blocks

• Global mem accesses.

One transaction:

Bandwidth to GPU RAM is the
most precious resource, so

two transactions is often bad.

Fermi:54

Global memory instructions support reading or writing words of size
equal to 1, 2, 4, 8, or 16 bytes. Any access (via a variable or a
pointer) to data residing in global memory compiles to a single global
memory instruction if and only if the size of the data type is 1, 2, 4,
8, or 16 bytes and the data is naturally aligned (i.e., its address is a
multiple of that size).

Two transactions:

Beyond Programmable Shading 55

Core X

To RAM or
L1/L2 cache

From RAM or
L1/L2 cache

Core 1

Core 2

Core 16

Efficient Programming

32 add/mul etc
in 2 clock cycles

Fermi: 16 multi-processors à 2x16 SIMD width

• If your program can be constructed
this way, you are a winner!

• More often possible than anticipated
• Stream compaction
• Prefix sums
• Sorting

1 3 9 4 2 5 7 1 8 4 5 9 3

0 1 4 13 15 … … … … … … … …

input

output
19 5 100 1 63 79

1 5 19 63 79 100

Department of Computer Engineering

Shaders

// Fragment Shader:

#version 130
in vec3 outColor;
out vec4 fragColor;

void main()
{

fragColor = vec4(outColor,1);
}

// Vertex Shader
#version 130

in vec3 vertex;
in vec3 color;
out vec3 outColor;
uniform mat4 modelViewProjectionMatrix;

void main()
{
 gl_Position = modelViewProjectionMatrix*vec4(vertex,1);
 outColor = color;
}

Shaders and coallesced memory accesses
• Each core (e.g. 128-SIMD) typically executes the

same instruction per clock cycle for either a:
• Vertex shader:

– E.g. 128 vertices

• Geometry shader
– E.g. 128 triangles

• or Fragment shader:
– E.g. 128 pixels

in blocks of at least 2x2 pixels
(to compute texture filter derivatives) .
Here is an example of blocks
4x8 = 32 pixels:

– However, many architectures can
execute different instructions, of the
same shader, for different warps
(warp = group of 32 ALUs)

Core 1

L1 $

Core 2

L1 $

Core
16

L1 $

GPU

57

NVIDIA:
yellow = lane 0
purple = lane 31

Shaders and coallesced memory accesses
• For mipmap-filtered texture lookups in a

fragment shader, this can provide decently
coallesced memory accesses.

Core 1

L1 $

Core 2

L1 $

Core n

L1 $

GPU

59Screen space
Texture space

Thread utilization

• If (…)
– Then, a = b + c;
– …

• Else
– a = c + d;

…the core must
execute both paths
if any of the 32
threads need the if
and else-path.

But not if all need the
same path.

• Each core executes one program (=shader)
• Each of the 192 ALUs execute one ”thread” (a shader for a

vertex or fragment)
• Since the core executes the same instruction for at least 32

threads (as far as the programmer is concerned)...

Summary

l Perspective correct
interpolation (e.g. for textures)

l Taxonomy:
– Sort first
– sort middle
– sort last fragment
– sort last image

l Bandwidth
– Why it is a problem and how to ”solve” it

l L1 / L2 caches
l Texture caching with prefetching, (warp switching)
l Texture compression, Z-compression, Z-occlusion testing (HyperZ)

l Be able to sketch the functional blocks and relation to hardware for a
modern graphics card (next slide→)

Linearly interpolate (ui/wi, vi/wi, 1/wi) in screenspace
from each triangle vertex i.
Then at each pixel:

uip = (u/w)ip / (1/w)ip
vip = (v/w)ip / (1/w)ip

where ip = screen-space interpolated value from
the triangle vertices.

Sort-
first

Sort-middle

Sort-last
fragment
Sort-last
image

Need to know:

62

Department of Computer Engineering

Application

PCI-E x16

Vertex
shader

Vertex
shader

Vertex
shader

…
Primitive assembly

Clipping

Fragment Generation

…

Geo
shader

Geo
shader

Geo
shader

Vertex-, Geometry- and Fragment shaders
exectued on a pool of thousands of ALUs

The graphics-pipeline’s funcional
blocks and their relation to

hardware

Fixed function hardware

Fixed function hardware
Fragment
shader

Fragment
shader

Fragment
shader

Fragment
Merge

Fragment
Merge

Fragment
Merge

…
Sort

