
Collision Detection

Originally created by
Tomas Akenine-Möller
Updated by Ulf Assarsson
Department of Computer Engineering
Chalmers University of Technology

What we’ll treat today
l Three techniques:
l 1) Using ray tracing

– (Simple if you already have a ray tracer)
– Not accurate
– Very fast
– Sometimes sufficient

l 2) Using bounding volume hierarchies
– More accurate
– Slower
– Can compute exact results

l 3) Efficient CD for several hundreds of objects

Using Ray Tracing

Midtown Madness 3, DICE

Bounding Volume Hierarchies (BVH)

l If accurate result is needed, turn to BVHs:
– Use a separate BVH per object
– Test BVH against other BVH for overlap

l For all intersecting BV leaves
– Use triangle-triangle intersection test

l For primitive against primitive CD, see
http://www.realtimerendering.com/int/

l But, first, a clarification on BVH building…

http://www.realtimerendering.com/int/

BVH building example
l Can split on triangle level as well (not

clear from previous presentation)
Use split

plane
Sort using
plane, w.r.t

triangle
centroids

+
Find minimal

boxes=

…and so on.

Pseudo code for BVH against BVH

Pseudocode
deals with 4 cases:

1) Leaf against
leaf node

2) Internal node
against internal node

3) Internal against leaf
4) Leaf against internal

if return true;

if return true;

if return true;

if return true;

0: if(not overlap(A, B)) return false;

A B

l The code terminates when it finds the first triangle pair that
collides

l Simple to modify code to continue traversal and put each pair in a
list, to find all hits.

l To handle two AABB hierarchies
A, B with different rotations:
– In overlap(A,B):

l create an AABB around B in A’s coordinate system (below called C). Test
A and C against each other

l And so on, for each node-node test.

Comments on pseudocode

BVH1 BVH2

A B

Tradeoffs
l The choice of BV

– AABB, OBB, k-DOP, sphere

l In general, the tighter BV, the slower test

l Less tight BV, gives more triangle-triangle
tests in the end

l Test BV of each object against BV of other
object

l Works for small sets, but not very clever
l Reason…
l Assume moving n objects

l If m static objects, then also n*m tests:

l Gives: !(!#$)
&

tests

l There are smarter ways…

CD for many objects

CD for many objects
l Using Grids:

– Use a grid with an object list per cell, storing the objects that
intersect that cell.

– For each cell with list length > 1,
l test the cell’s objects against each other using a more

exact method (e.g., BVH vs BVH)

Sweep-and-prune algorithm
[by Ming Lin]

l Assume high frame-to-frame coherency
– Means that object is close to where it was previous

frame
l Do collision overlap three times

– One for the x,y, and z-axes
l Let’s concentrate on one axis at a time
l Each AABB on this axis is an interval, from bi

to ei, where i is AABB number

Bonus:

Tomas Akenine-Mőller © 2002

1-D Sweep and Prune

Original by Michael Zyda

Bonus:

Sweep-and-prune algorithm
l Sort all bi and ei into a list
l Traverse list from start to end
l When a b is encounted, mark

corresponding object interval as active in
an active_interval_list

l When an e is encountered, delete the
interval in active_interval_list

l All object intervals simultaneously in
active_interval_ list are
overlapping on this axis!

Bonus:

Sweep-and-prune algorithm
l Now sorting is expensive: O(n*log n)
l But, exploit frame-to-frame coherency!
l The list is not expected to change much
l Therefore, ”resort” with bubble-sort, or

insertion-sort
l Expected: O(n)

BUBBLE SORT
for (i=0; i<n-1; i++) {
 for (j=0; j<n-1-i; j++)
 //compare the two neighbors
 if (a[j+1] < a[j]) {
 // swap a[j] and a[j+1]
 tmp = a[j];
 a[j] = a[j+1];
 a[j+1] = tmp;
 }
 }

Bonus:

Sweep-and-prune algorithm

l Keep a boolean for each pair of intervals
l Invert boolean when sort order changes
l If all boolean for all three axes are true, à

overlap

If (swap(s,e)
or swap(e,s))
 -> flip bit

Bonus:

I1 I2 I3 I4

I1 0 0 0

I2 0 0

I3 1

I4

X axis

I1 I2 I3 I4

I1 0 0 0

I2 0 1

I3 1

I4

Efficient updating of the list of
colliding pairs (the gritty details)

Only flip flag bit when a start and end point is swapped.
When a flag is toggled, the overlap status indicates one of three situations:

1. All three dimensions of this bounding box pair now overlap. In this case,
we add the corresponding pair to a list of colliding pairs.

2. This bounding box pair overlapped at the previous time step. In this case,
we remove the corresponding pair from the colliding list.

3. This bounding box pair did not overlap at the previous time step and does
not overlap at the current time step. In this case, we do nothing.

Bonus:

Our research
l We use active interval lists per pixel to do

correct real-time motion blur with
transparency sorting

CD Conclusion
l Very important part of games!
l Many different algorithms to choose from
l Decide what’s best for your case,
l and implement…

• Using Ray tracing vs
using BVHs

• BVH/BVH-test
• Grids

What you need to know
l 3 types of algorithms:

– With rays
l Fast but not exact (why is it not exact?)

– With BVH
l You should be able to write pseudo code for BVH/BVH test for

collision detection between two objects.
l Slower but exact
l Examples of bounding volumes:

– Spheres, AABBs, OBBs, k-DOPs

– For many many objects.
l pruning of non-colliding objects
l E.g., Use a grid with an object list per cell, storing the objects

that intersect that cell. For each cell with list length > 1, test
those objects against each other with a more exact method
like BVHs.

