
Computer Graphics

Curves and Surfaces
Interpolating/Hermite/Bezier Curves,

B-Splines, and NURBS

By
Ulf Assarsson

Most of the material is originally made by Edward Angel and is
adapted to this course by Ulf Assarsson. Some material is made by

Magnus Bondesson 1

Utah Teapot
• Most famous data set in computer graphics
• Widely available as a list of 306 3D vertices and
the indices that define 32 Bezier patches

A Bezier patch2

Curves and Curved Surfaces
• Reason: may want

– smooth shapes from few control points.
– Infinite resolutions (e.g., in movie rendering). No discretization.

• Vast topic, e.g.,
– Bezier patches:

• can describe all polynomial surfaces
– (quadratic, cubic, quartic, quintic,…).

– NURBS
• standard for CAD, more flexibility.
• Not in course book (Real-Time Rendering)

– Subdivision surfaces:
• Good for smoothing arbitrary triangle meshes
• Popular in rendering
• E.g., Loop subdivision, Catmull-Clark subdivision, …
• Often easier to grasp on your own, compared to NURBS.3

Outline
Goal is to explain NURBS curves/surfaces…
• Introduce types of curves and surfaces

– Explicit – not general, easy to compute.
– Implicit – general, non-easy to compute.
– Parametric - general and easy to compute. We choose this.

• A complete curve is split into curve segments, each defined by a
polynomial (per x,y,z coordinate), e.g., cubic polynomials.

– Introducing Interpolating/Hermite/Bezier curves.
• Adjacent segments should preferably have C2 continuity:

– Leads to B-Splines with a blending function (a spline) per control point
• Each spline consists of 4 cubical polynomials, forming a bell shape translated along u.
• (Also, four bells will overlap at each point on the complete curve.)

• NURBS – a generalization of B-Splines:
– Control points at non-uniform locations along parameter u.
– Individual weights (i.e., importance) per control point
– popular in CAD systems

4

C0 C2

Modeling with Curves

data points
approximating curve

interpolating data point

5

What Makes a Good
Representation?

•There are many ways to represent curves
and surfaces

•Want a representation that is
–Stable
–Smooth
–Easy to evaluate
–Must we interpolate or can we just come close
to data?

–Do we need derivatives?
6

Explicit Representation

•Most familiar form of curve in 2D
y=f(x)

•Cannot represent all curves
–Vertical lines
–Circles

•Extension to 3D
–y=f(x), z=g(x) – gives a curve in 3D
–The form y = f(x,z) defines a surface

x

y

x

y

z7

x

y

z

Implicit Representation
•Two dimensional curve(s)

equation: g(x,y)=0
•Much more robust

–All lines ax+by+c=0
–Circles x2+y2-r2=0

•Three dimensions g(x,y,z)=0 defines a
surface

8

Parametric Curves
• Separate equation for each spatial variable

x = x(u)
y = y(u)
z = z(u)

•For umin ≤ u ≤ umax we trace out a curve in two or
three dimensions

p(u)=[x(u), y(u), z(u)]T

p(u)

p(umin)

p(umax)

9
How should we create the parametric
functions x(u), y(u), z(u)?

Selecting Functions

• Usually we can select many “good” functions
– not unique for a given spatial curve
– Approximate or interpolate known data
– Want functions which are easy to evaluate
– Want functions which are easy to differentiate

• Computation of normals
• Connecting pieces (segments)

–Want functions which are smooth

10

We create the curves from user-given control points. But how choose a curve for
these points?:

Parametric Lines

Line connecting two points p0 and p1

p(u)=(1-u)p0+up1

We can let u be over the interval (0,1)

p(0) = p0

p(1)= p1

Ray from p0 in the direction d

p(u)=p0+ud
p(0) = p0

p(1)= p0 +d

d

11

Lines are easy…

Parametric Surfaces
•Surfaces require 2 parameters

x=x(u,v)
y=y(u,v)
z=z(u,v)

p(u,v) = [x(u,v), y(u,v), z(u,v)]T

• Want same properties as curves:
– Smoothness
– Differentiability
– Ease of evaluation

x

y

z
p(u,0)

p(1,v)

p(0,v)

p(u,1)

12

u

v

Normals
We can differentiate with respect to u and v to
obtain the normal at any point p

ú
ú
ú

û

ù

ê
ê
ê

ë

é

¶¶
¶¶
¶¶

=
¶

¶

uvu
uvu
uvu

u
vu

/),(z
/),(y
/),(x

),(p

ú
ú
ú

û

ù

ê
ê
ê

ë

é

¶¶
¶¶
¶¶

=
¶

¶

vvu
vvu
vvu

v
vu

/),(z
/),(y
/),(x

),(p

v
vu

u
vu

¶
¶

´
¶

¶
=

),(),(ppn

v

u
13

If we have the x(u,v), y(u,v), z(u,v) functions, we can compute the
normal at any point u,v.

Parametric Planes

point-vector form

p(u,v)=p0+uq+vr

n = q x r q

r

p0

n

p0

n

p1

p2

q = p1 – p0
r = p2 – p0)

€

∂p(u,v)
∂u

×
∂p(u,v)
∂v

14

Curve Segments
• We can normalize u, so each curve is written
p(u)=[x(u), y(u), z(u)]T, 0 ≤ u ≤ 1

• In classical numerical methods, we design a
single global curve.

• In computer graphics and CAD, it is better to
design small connected curve segments

p(u)

q(u)p(0)
q(1)

join point p(1) = q(0)

How should we describe curve segments?15

We create the curves from user-given control points by using curve segments…

We choose Polynomials

•Easy to evaluate
•Continuous and differentiable everywhere

–Must worry about continuity at join points
including continuity of derivatives

p(u)

q(u)

join point p(1) = q(0)
but p’(1) ¹ q’(0)

Let’s worry about that later. First let’s scrutinize the polynomials!16

Parametric Polynomial Curves

ucux i
N

i
xiå

=

=
0

)(ucuy j
M

j
yjå

=

=
0

)(ucuz k
L

k
zkå

=

=
0

)(

•Cubic polynomials gives N=M=L=3

•Noting that the curves for x, y and z are independent,
we can define each independently in an identical manner

•We will use the form

where p is any of x, y, z. It is just the numerical ck values that differ.

ucu k
L

k
kå

=

=
0

)(p

Let’s assume cubic polynomials!

Remember:
 x=x(u)
 y=y(u)
 z=z(u)

p(u)

p(umin) p(umax)

17

p(u) = c0 + c1u + c2u2 + c3u3

Cubic Parametric Polynomials

• Cubic polynomials give balance between ease of
evaluation and flexibility in design

• Four coefficients to determine for each of x, y
and z

• Seek four independent conditions for various
values of u resulting in 4 equations in 4
unknowns, for each of x, y and z

– Conditions are a mixture of continuity requirements at the join
points and conditions for fitting the data

ucu k

k
kå

=

=
3

0
)(p

18

p(u) = c0 + c1u + c2u2 + c3u3

Linear. Quadratic. Cubic. Quartic.

p0

p1

p2
p3

19

• Introduce the types of curves
– Interpolating

• Blending polynomials for interpolation of 4 control points (fit curve to 4
control points)

– Hermite
• fit curve to 2 control points + 2 derivatives (tangents)

– Bezier
• 2 interpolating control points + 2 intermediate points to define the

tangents
– B-spline – use points of adjacent curve segments

• To get C1 and C2 continuity
– NURBS

• Different weights of the control points
• The control points can be at non-uniform u,v intervalls

• Analyze them

Some Types of Curves

Matrix-Vector Form

ucu k

k
kå

=

=
3

0
)(p

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

c
c
c
c

3

2

1

0

c

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

u
u
u

3

2

1

udefine

uccu TTu ==)(pthen

20

p(u) = c0 + c1u + c2u2 + c3u3

=

Interpolating Curve

p0

p1

p2

p3

Given four data (control) points p0 , p1 ,p2 , p3
determine cubic p(u) which passes through them

Must find c0 ,c1 ,c2 , c3

Let’s create an equation system!
21

Interpolation Equations

apply the interpolating conditions at u=0, 1/3, 2/3, 1
p(0) = p0 = c0
p(1/3) = p1 = c0+(1/3)c1+(1/3)2c2+(1/3)3c3
p(2/3) = p2 = c0+(2/3)c1+(2/3)2c2+(2/3)3c3
p(1) = p3 = c0+c1+c2+c3

or in matrix form with p = [p0 p1 p2 p3]T

p=Ac p =

p0
p1
p2
p3

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=Ac =

1 0 0 0

1 1
3
'

(
)
*

+
,

1
3
'

(
)
*

+
,
2 1

3
'

(
)
*

+
,
3

1 2
3
'

(
)
*

+
,

2
3
'

(
)
*

+
,
2 2

3
'

(
)
*

+
,
3

1 1 1 1

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

c0
c1
c2
c3

!

"

#
#
#
#
#

$

%

&
&
&
&
&I.e., c=A-1p

p0

p1

p2

p3

p(u) = c0 + c1u + c2u2 + c3u3 0 1/3 2/3 1

p

u

22

Interpolation Matrix
Solving for c we find the interpolation matrix

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

--
--

--
== -

5.45.135.135.4
5.4185.229
15.495.5
0001

1AMI

Note that MI does not depend on input data and
can be used for each segment x(u), yu), and z(u)

p(u) = c0 + c1u + c2u2 + c3u3

p0

p1

p2

p3

23

Interpolation Matrix

x=x(u)=cx0 + cx1u + cx2u2 + cx3u3

y=y(u)=cy0 + cy1u + cy2u2 + cy3u3
z=z(u)=cz0 + cz1u + cz2u2 + cz3u3

where
cx = MI px
cy = MI py
cz = MI pz

p1

p0

p3p2

p(u) = c0 + c1u + c2u2 + c3u3 means:

px are the x coordinates of p0 … p3
py are the y coordinates of p0 … p3
pz are the z coordinates of p0 … p3

24

Interpolating Multiple Segments

use p = [p0 p1 p2 p3]T
use p = [p3 p4 p5 p6]T

We have continuity of the curve at the join points but not
continuity of the curve’s derivatives. I.e., curve is not smooth.
Let’s ignore that a few more slides...

25

Blending Functions

Rewriting the equation for p(u)

p(u)=uTc=uTMIp = b(u)Tp

where b(u) = [b0(u) b1(u) b2(u) b3(u)]T is
an array of blending polynomials such that
p(u) = b0(u)p0+ b1(u)p1+ b2(u)p2+ b3(u)p3

b0(u) = -4.5(u-1/3)(u-2/3)(u-1)
b1(u) = 13.5u (u-2/3)(u-1)
b2(u) = -13.5u (u-1/3)(u-1)
b3(u) = 4.5u (u-1/3)(u-2/3)

p0

p1

p2

p3

26

Blending Functions

p0

p1

p2

p3

p(u) = b0(u)p0+ b1(u)p1+ b2(u)p2+ b3(u)p3

“Weight curves for each control point p at a
certain u”

27

Blending Patches

€

p(u,v) =
i=o

3

∑ ib (u)
j=0

3

∑ jb (v) ijp = Tu IM P I
TM v

Each bi(u)bj(v) is a blending patch

Shows that we can build and analyze surfaces
from our knowledge of curves.

vucvup j

j
ij

i

oi
åå
==

=
3

0

3

),(

Curve: p(u) = uTc = uTMIp = b(u)Tp
Patch: p(u,v)= uT C v = uTMI P MI

T v = b(u)T P b(v)T

Patch:

28

Hermite Curves and Surfaces
• Our interpolating curves have discontinuities
between curve segments

–Discontinuous derivatives
at join points:

• Hermite curves solves this…

29

Hermite Form

p(0) p(1)

p’(0) p’(1)

Use two interpolating conditions and
two derivative conditions per segment

Ensures continuity and first derivative
continuity between segments

30

Charles Hermite, 1822-1901

Equations

Interpolating conditions are the same at ends

p(0) = p0 = c0
p(1) = p1 = c0+c1+c2+c3

Differentiating we find p’(u) = c1+2uc2+3u2c3

Evaluating at end points

p’(0) = p’0 = c1
p’(1) = p’1 = c1+2c2+3c3

p(u) = c0+uc1+u2c2+u3c3

p(0)=p0 p(1)=p1

p’(0) p’(1)

€

q =

0p

1p

0p'

1p'

"

$
$
$
$

%

&

'
'
'
'

=

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

"

$
$
$
$

%

&

'
'
'
'

c

31

Matrix Form

€

q =

0p

1p

0p'

1p'

"

$
$
$
$

%

&

'
'
'
'

=

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

"

$
$
$
$

%

&

'
'
'
'

c

Solving for c, we find c=MHq where MH is the Hermite matrix

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

-

=

1122
1233
0100
0001

MH

p(0) p(1)

p’(0) p’(1)

p(u) = uTc =>
p(u) = uTMHq32

Blending Polynomials
p(u) = b(u)Tq

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

-
+-

+-
+-

=

uu
uuu
uu

uu

u

23

23

23

23

2
32
132

)(b

Although these functions are smooth, the Hermite form
is not used directly in Computer Graphics and CAD
because we usually have control points but not derivatives

However, the Hermite form is the basis of the Bezier form

p(u) = uTMHq =>

33

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

-

=

1122
1233
0100
0001

MH

Continuity

• A) Non-continuous
• B) C0-continuous
• C) G1-continuous
• D) C1-continuous
• (C2-continuous)

(a) (b) (c) (d)

See page 726-727 in
Real-time Rendering,
4th ed.

34

G1-continuity Example

•Here the p and q have the same tangents
at the ends of the segment but different
derivatives (lengths)

– This generates different
Hermite curves

•This techniques is used
in drawing applications

35

Reflections should be at least C1

36

Example

37

Bezier Curves

• In graphics and CAD, we do not usually
have derivative data

•Bezier suggested using the same 4 data
points as with the interpolating curve to
approximate the derivatives in the Hermite
form

38

dp(u = 0)
du

= p'(0) ≈ 1p − 0p
1 / 3

Computing Derivatives

p0

p1
p2

p3

p1 located at u=1/3 p2 located at u=2/3

slope p’(0) slope p’(1)

39

3/1
pp)1('p 23-»

Equations

p(0) = p0 = c0
p(1) = p3 = c0+c1+c2+c3

p’(0) = 3(p1- p0) = c1
p’(1) = 3(p3- p2) = c1+2c2+3c3

Interpolating conditions are the same

Approximating derivative conditions

Solve four linear equations for c=MBp

p(u) = c0+uc1+u2c2+u3c3

p0

p1 p2

p3

3/1
pp)0('p 01-»

3/1
pp)1('p 23-»

p’(u) = c1+2uc2+3u2c3

ÞBp=Ac
Þ c=A-1Bp

40

Bezier Matrix

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

--
-

-
=

1331
0363
0033
0001

MB

p(u) = uTMBp = b(u)Tp

blending functions

41

Blending Functions

b(u) =

3(1−u)
3u 2(1−u)
3 2u (1−u)

3u

"

#

$
$
$
$
$

%

&

'
'
'
'
'

Note that all zeros are at 0 and 1 which forces
the functions to be smoother over (0,1)
Smoother because the curve stays inside the convex
hull, and therefore does not have room to fluctuate so
much.

p0

p1 p2

p3

42

Convex Hull Property
• At given u, all weights being within [0,1] and sum
of all weights = 1 ensures that all Bezier curves
lie in the convex hull of their control points

• Hence, even though we do not interpolate all the
data, we cannot be too far away

p0

p1 p2

p3

convex hull
Bezier curve

43

Bezier Patches

Using same data array P=[pij] as with interpolating form

vupvbubvup T
BB

T
ijj

i j
i MPM==åå

= =

)()(),(
3

0

3

0

Patch lies in
convex hull

vucvup j

j
ij

i

oi
åå
==

=
3

0

3

),(

44

Analysis

• Although the Bezier form is much better than
the interpolating form, the derivatives are not
continuous at join points

•What shall we do to solve this?

p0

p1 p2

p3

45

B-Splines

•Basis splines: use the data at
p=[pi-2 pi-1 pi pi+1]T to define curve only between
pi-1 and pi

•Allows us to apply more continuity
conditions to each segment

•For cubics, we can have continuity of the
function and first and second derivatives at
the join points

46

So what does the cubic B-spline
matrix look like? …

Cubic B-spline Matrix

SM =
1
6

1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

p(u) = uTMSp = b(u)Tp

47
1st and 2nd derivatives are now continuous
as we can see on the blend functions…

Blending Functions

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

-++
+-

-

=

u
uuu

uu
u

u

3

32

32

3

3331
364
)1(

6
1)(b

p(u) = uTMSp = b(u)Tp =>
p(u) = b0(u)p0+ b1(u)p1+ b2(u)p2+ b3(u)p3

uT SM = 1 u u2 u3⎡
⎣⎢

⎤
⎦⎥
1
6

1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

48

b0:

b1:

b3:

How compute the cubic B-spline matrix MS ?

49

p(u) = cTu = uTMSp = b(u)Tp

BONUS

B-Spline Patches

€

p(u,v) = ib
j=0

3

∑
i=0

3

∑ (u) jb (v) ijp = Tu SM P S
TM v

defined over only 1/9 of region

50

Basis Splines
• If we examine the cubic B-spline from the
perspective of each control (data) point,
each interior point contributes (through the
blending functions) to four segments

•We can rewrite p(u) in terms of all the data
points along the curve as

defining the basis functions {Bi(u)}

puBup ii)()(å=

51

Let the 4 splines b0..3(u) create a basis function
The blend function of each control point is just a translation along u of this basis
function.

The whole curve
can be written as:

Basis Functions

p0

p1
p2

p3

p4

i-2

i-1
i

i+1

i+2
4

p(u) = iB∑ (u) ip = 0B (u) 0p +... n−1B (u) n−1p

p0 p1 p2 p3 p4

u
Weights for each point along the curve

1 2 3 40

Over this blue segment…

…these are the blending functions for
control points p0 … p3

From the perspective of any control point pi this is
its weight, Bi(u), over the complete curve u=0…n:

Each individual blending function Bi(u) is just a
translation of the bell shape:

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

-++
+-

-

=

u
uuu

uu
u

u

3

32

32

3

3331
364
)1(

6
1)(b

b0(u)
b1(u)
b2(u)
b3(u)

=

2
21
1

1
12

2

0
)1(
)(
)1(
)2(

0

)(

3

2

1

0

+³
+<£+
+<£
<£-
-<£-

-<

ï
ï
ï

î

ï
ï
ï

í

ì

-

+
+

=

iu
iui
iui
iui
iui

iu

ub
ub
ub
ub

uBi

b3(u-i+2)

b1(u-i)
b2(u-i+1)

b0(u-i-1)

u0

1

b3(u-i+2)

b2(u-i+1) b1(u-i)

b0(u-i-1)

Bi (u): e.g.,
for p2

One more example

p0

p1
p2

p3

p4

p0 p1 p2 p3 p4

u

p0p4

u = 2.70

1

u = 2.7

p(u) = B0(u)p0+ B1(u)p1+ B2(u)p2+ B3(u)p3 + B4(u)p4

I.e.,: puBup ii)()(å=

53

B-Splines

u

p0
p1

p2

p3

p4

p5

p6 p7

p8

u=0 8
u

1 2 3 4 5 6 7

These are our control points, p0-p8, to
which we want to approximate a curve

Illustration of how the control points are evenly (uniformly)
distributed along the parameterisation u of the curve p(u).

In each point p(u) of the curve (i.e., for a given u), the point is defined as a
weighted sum of all control points (only the closest 4 surrounding will be
nonzero). Below are shown the weights for each control point along u=0®8

p0 p1 p2 p3 p4 p5 p6 p7 p8

100
%

SUMMARY

54

B-Splines

p0 p1 p2 p3 p4

u

p5 p6 p7 p8

100%

The weight function (blend function) Bi (u) for a point pi can thus be written
as a translation of a basis function B(t). Bi(u) = B(u-i)

B(t):

t

0 1 2-1-2

100%

Blendfunction B1(u)
for point p1

puBup ii)()(å=
Our complete B-spline curve
p(u) can thus be written as:

SUMMARY

In each point p(u) of the curve, for a given u, the point is defined as a
weighted sum of all control points (only the closest 4 surrounding will be
nonzero). Below are shown the weights for each control point along u=0®8

55

Generalizing Splines
• Common to use knot vector:

– array of the control-point indices: 0,1,2,3,4,5,6…
– Can have repeated knots: 0,0,0,1,2,3,4,5,5,6,

• Repeating a ctrl point 3x forces cubic spline to interpolate the point
• If you want the curve to start at the first point and end at the last point, just

repeat those 3 times: e.g., 0,0,0,1,2,3,4,5,6,6,6.

• We can extend to splines of any degree
– Not just cubic polynomials (quartic, quintic…)

• Data and conditions do not have to be given at equally
spaced u values:

– Nonuniform (vs uniform splines)
– Leads us to NURBS…

DEMO of B-Spline
curve: (make
duplicate knots)

56

(Cox-deBoor recursion
gives method of
evaluation - also known
as de Casteljau-
recursion, see page
721, RTR 4:th edition
for details)

NURBS
NURBS = Non-Uniform Rational B-Splines
NURBS is similar to B-Splines except that:
1. The control points can have different weights, wi, (heigher

weight makes the curve go closer to that control point)
2. The control points do not have to be at uniform distances

(u=0,1,2,3...) along the parameterisation u.
E.g.: u=0, 0.5, 0.9, 4, 14,…

The NURBS-curve is thus defined as:

Division with the sum of the weights,
to make the combined weights sum
up to 1, at each position along the
curve. (Otherwise, some
scaling/translation of the curve is
introduced, which is not desirable)

p(u) =
Bi (u)wii=0

n−1
∑ pi

Bi (u)wii=0

n−1
∑

57

NURBS
• Allowing control points at non-uniform distances

means that the basis functions Bpi() are being
streched and non-uniformly located.

• E.g.:

Each curve Bpi() should of course look smooth and C2 –continuous.
But it is not so easy to draw smoothly by hand...

(The sum of the weights are still =1 due to the division in previous slide.)

u

58

NURBS Surfaces - examples

59

What you need to know:

60

Bonus slides

61

• Every polynomial curve can be exactly described by a
bezier curve (by properly adjusting the control points).

• Rasterization of Bezier curves can be implemented
highly efficiently using de Casteljau recursion.

• Thus, NURBS curves are often first converted to Bezier
curves, to be efficiently rasterized.

• See following bonus slides for explanations…

Bonus

Every Polynomial Curve is a
Bezier Curve

• We can render a given polynomial using the
recursive method if we find control points for its
representation as a Bezier curve

• Suppose that p(u) is given as an interpolating
curve with control points q

• There exist Bezier control points p such that

• Equating and solving, we find p=MB
-1MI q

p(u)=uTMIq

p(u)=uTMBp

Bonus

62

deCasteljau1 Recursion

•We can use the convex hull property of
Bezier curves to obtain an efficient
recursive method that does not require any
function evaluations
–Uses only the values at the control points

•Based on the idea that “any polynomial
and any part of a polynomial is a Bezier
polynomial for properly chosen control
data”

1 Paul de Casteljau and Pierre Bezier where engineers in the car industry. De Casteljau
at Peugot at Bezier at Renault. Both developed Bezier-surfaces, unaware of each other.

Bonus

Splitting a Cubic Bezier

p0, p1 , p2 , p3 determine a cubic Bezier polynomial
and its convex hull

Consider left half l(u) and right half r(u)

deCasteljau1 Recursion: Bonus

64

l(u) and r(u)
Since l(u) and r(u) are Bezier curves, we should be able to
find two sets of control points {l0, l1, l2, l3} and {r0, r1, r2, r3}
that determine them

deCasteljau1 Recursion: Bonus

65

Convex Hulls
{l0, l1, l2, l3} and {r0, r1, r2, r3}each have a convex hull that
that is closer to p(u) than the convex hull of {p0, p1, p2, p3}
This is known as the variation diminishing property.

The polyline from l0 to l3 (= r0) to r3 is an approximation
to p(u). Repeating recursively we get better approximations.

deCasteljau1 Recursion: Bonus

66

Efficient Form

l0 = p0
r3 = p3
l1 = ½(p0 + p1)
r2 = ½(p2 + p3)
l2 = ½(l1 + ½(p1 + p2))
r1 = ½(r2 + ½(p1 + p2))
l3 = r0 = ½(l2 + r1)

Requires only shifts and adds!

deCasteljau1 Recursion:

Then, recursively continue for the two new bezier
curves {l0, l1, l2, l3} and {r0, r1, r2, r3} until desired
precission is reached.

Bonus

67

