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Course Structure
• 14 lectures

– Book is the verbal format / more meticulous explanations
– Lecture slides are only short summary

• Perhaps not enough to fully understand

– Exam (salstentamen):
• I will only assume that you have studied the topics covered by the slides. 
• Reading instructions are pointers to more verbal descriptions in the book
• May come a few “harder” questions, intended to force you to think beyond 

what’s in the slides (and that could of course accidentally be covered by the 
book).

• Tutorials – the practical experience
– 1-6 “holds your hand”. Very fast. Intentionally lots of copy/paste. 

Do them in 2-3 weeks. No need to wait for their deadlines.
– Project – Here, you apply the knowledge from tutorial 1-6, so you 

must have understood them. 
• You will need the 3-4 weeks for the project.



The Bonus Material

• Bonus material on home page
– http://www.cse.chalmers.se/edu/course/TDA362/sched

ule.html
– Purpose: only to be of help in case lectures and course 

book is not enough for you to understand. Sometimes, it 
helps having same topics explained in a second way.

– Skip the bonus material if you are not very interested.
– No exam questions on bonus material!

http://www.cse.chalmers.se/edu/course/TDA361/schedule.html


Quick Repetition of Vector Algebra



Excellent interactive online linear 
algebra repetition:

• http://immersivemath.com/ila/index.html

http://immersivemath.com/ila/index.html


Quick Repetition of Vector Algebra for 3D graphics

A 3D vector, a, contains 3 elements: (ax, ay, az), which are coordinates (or 
lengths) along the 3 coordinage axes. 

The length of a vector is:
Normalizing a vector, n, means to scale the vector such that it becomes a unit
vector, !𝒏 , i.e., its length = 1.

E.g.,: !𝒏 = 𝒏
𝒏
= 𝒏
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, where 𝑐 = 𝑛%& + 𝑛'& + 𝑛(&

The dot product is typically used to find the angle, 𝑎, between two vectors.  
If a and b are of unit length (normalized), then cos 𝑎 = 𝒂 * 𝒃
where
The definition of the dot product is:
(so for non-normalized a and b, we must
divide with their lengths)
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Quick Repetition of Vector Algebra for 3D graphics
Cross product
Definition: Geometric meaning:

The cross product is typically used to find a vector, a, that is
perpendicular to two others (b and c): 𝒂 = 𝒃 × 𝒄

Example to find a triangle normal: n = e0 × e1, where e0=(v1-v0) and e1=(v2-v0)
In code: n = cross(e0, e1);
In maths: 

𝒏 = (𝑒0𝑦𝑒1𝑧 − 𝑒0𝑧𝑒1𝑦), (𝑒0𝑧𝑒1𝑥 − 𝑒0𝑥𝑒1𝑧), (𝑒0𝑥𝑒1𝑦 − 𝑒0𝑦𝑒1𝑥)
Note that the length of n then is two times the size of the triangle area. (So the 
cross product can be used to find the area between two vectors). We typically
want normals to be of unit length (=1), and therefore we normalize n:
In code: n = normalize(n);

v0
v1

v2

e0

e1
n



Structure of today’s lecture
• Matrices

– Matrix mult.
– Transformation Pipeline
– Practical usage of matrices
– Rotations
– Translations
– Homogeneous coordinates
– Shear / scale / normal matrix
– Euler matrices
– Quaternions
– Projections

• Bresenham’s line drawing algorithm
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Why transforms?
l We want to be able to animate objects 

and the camera
– Translations
– Rotations
– Shears
– …

l We want to be able to use projection
transforms
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How implement transforms?
l Matrices!
l Can you really do everything with a 

matrix?
l Not everything, but a lot!
l We use 3x3 and 4x4 matrices
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Matrix multiplication
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Matrix-vector multiplication:



Matrix multiplication
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Matrix-vector multiplication:



Matrix multiplication
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Matrix-vector multiplication:



Matrix multiplication
Matrix-matrix multiplication:
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Model space
World space

View space

Model to World 
Matrix

World to 
View 
Matrix

ModelViewMtx = ”Model to View 
Matrix”

ModelViewMtx * v = 
(MVçW * MWçM) * v

x

y

z

World space

View space



cameraModel space World space View space

Model to World 
Matrix

World to View
Matrix

ModelViewMtx = ”Model to View Matrix”

ModelViewMtx * v = (MVçW * MWçM) * v

Full projection:

Vclip_space = projectionMatrix * ModelViewMatrix * vmodel_space
Or simply: vclip_space = MMVP * v

x

y

z

Projection
Matrix
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v
e
r
t
e
x

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transform

Modelview

Modelview

Projection

l
l
l

object
space

View/Eye/
Camera
space

Unit-cube 
space /
Normalized

device coords

Window 
coords.
Screen 
space

Transformation
Pipeline

OpenGL | Geometry stage | done on GPU

Done by the vertex shader:

gl_Position = modelViewProjectionMatrix*vec4(vertex,1);

Homogeneous 
coord. space

Clip space: clipping is nowadays typically done in 
homogeneous space. However, it used to be done in 
unit-cube space. Both terminologies are still used.



The OpenGL Pipeline

From http://deltronslair.com/glpipe.html



How do I use transforms 
practically?
l Say you have a circle with origin at (0,0,0) and with 

radius 1, i.e., a unit circle

l mat4 m = translate({8,0,0}); // create translation matrix
l RenderCircle(m); // Draw circle using m as 

// model-to-world matrix

l mat4 s = scale({2,2,2}); // create scaling matrix
l mat4 t = translate({3,2,0}); // create translation matrix
l RenderCircle(t*s); // use matrix (t*s)

What happens?
See next slide...



Cont’d from previous slide
A simple 2D example
l A circle in model space

x

y

mat4 m = translate({8,0,0});
RenderCircle(m);

mat4 s = scale({2,2,2});
mat4 t = translate({3,2,0});
RenderCircle(t*s); // Effect= first scaling, then translation



Cont’d from previous slide
A simple 2D example
l A circle in model space

x

y
mat4 s = scale({2,2,2});
mat4 t = translate({3,2,0});
RenderCircle(s*t); // Effect= first translation, then scaling.

// Each vertex in the sphere will first 
// be translated (3,2,0) and then have its
// coordinate doubled in x,y,z

// This is less intuitive so humans 
// prefer to do scaling first and then
// translation.



Example of a simple GfxObject class
class GfxObject {
public:

load(“filename”); // Creates m_shaderProgram + m_vertexArrayObject
render(mat4 projectionMatrix, mat4 viewMatrix) 
{

…
mat4 modelViewProjectionMatrix = projectionMatrix * viewMatrix *

m_modelMatrix;
int loc = glGetUniformLocation(shaderProgram, "modelViewProjectionMatrix");
glUniformMatrix4fv(loc, 1, false, &modelViewProjectionMatrix[0].x);

glEnableVertexAttribArray(0); 
glEnableVertexAttribArray(1); 
glUseProgram(m_shaderProgram);
glBindVertexArray(m_vertexArrayObject);
glDrawArrays( GL_TRIANGLES, 0, numVertices);

}; 
private:

mat4   m_modelMatrix;
uint numVertices;
Gluint m_shaderProgram;
GLuint m_vertexArrayObject;

};

#version 420   VERTEX SHADER
layout(location = 0) in vec3 position;
layout(location = 1) in vec3 color;

out vec4 outColor;
uniform mat4 modelViewProjectionMatrix;

void main()
{

gl_Position = modelViewProjectionMatrix *   
vec4(position, 1.0);

outColor = vec4(color, 1.0);
}



Rotation (2D)
Consider rotation about the origin by q degrees

–radius stays the same, angle increases by q

cos q –sin q
sin q cos q

x = r cos f
y = r sin f

x' = r cos (f + q)
y' = r sin (f + q)
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Derivation of rotation matrix in 2D

p = reiϕ = r(cosϕ + isinϕ )  [rotation is mult by e
iα

] 
n = eiαp = reiαeiϕ =
= r[(cosα + isinα)(cosϕ + isinϕ )]=
= r(cosα cosϕ − sinα sinϕ )+
ir(cosα sinϕ + sinα cosϕ )

p = (px, py )
T = (rcosϕ, rsinϕ )T

n = (nx,ny )
T = (r(cosα cosϕ − sinα sinϕ ),

r(cosα sinϕ + sinα cosϕ ))T

?pRn z=

p

n

a
In vector form:



Derivation 2D rotation, cont’d
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l Same as in 2D for Z-rotations, but with a 
3x3 matrix

l For X

l For Y
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Translations must be simple?

l Rotation is matrix mult, translation is add
l Would be nice if we could only use matrix 

multiplications…
l Turn to homogeneous coordinates
l Add a new component to each vector

Rpntpp =+=
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Homogeneous notation
l A point:
l Translation becomes:

l A vector (direction):
l Translation of vector:
l Also allows for projections (later)
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l Just add a row at the bottom, and a 
column at the right:

l Similarly for X and Y
l Determinant = volume change when the transform is 

applied to a unit cube
l det( R ) = 1 for all rot. matrices (=tripple scal. prod for 3x3 mtx)

l Trace( R ) = 1+2cos(alpha)  (for 3x3 rot-matrices)

Rotations in 4x4 form
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Change of Frames
• How to get the Mmodel-to-world matrix:
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l In                   , the rotation is done first

More basic transforms
l Scaling

l Shear

l Rigid-body: rotation and/or (then) translation

TRX =
l Concatenation of matrices

TRRT ¹
TRX =

l Inverses and rotation about arbitrary axis:
l Rigid body: X-1 = XT (for 3x3 matrices)

l Not commutative, i.e.,
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Normal transforms
Not so normal…

l M works for rotations and translations, though

( ) MMN  of instead     :Use 1 T-=

l Cannot use same matrix to transform normals



The Euler Transform
l Assume the camera or object 

looks down the negative z-
axis, with up in the y-direction, 
x to the right

l h=head
l p=pitch
l r=roll
l Optional

l You may read about Gimbal lock in book, p: 67
l See also

l http://mathworld.wolfram.com/EulerAngles.html

http://mathworld.wolfram.com/EulerAngles.html


Head:
l Rotate around y-axis
l Recompute x- and z-axes

l By rotating them as vectors

Pitch:
l Rotate around x’-axis
l Recompute y- and z’-axes

Roll:
l Rotate around z’’-axis
How do we rotate vectors (axes) 
and points around an arbitrary axis?

Using Euler transforms
x'

y

z'

x'

y'

z''

x''
y''

z''



Quaternions

l Extension of imaginary numbers
l Compact+fast representation of rotations
l Focus on unit quaternions:

– Norm (or length):

wzyx

wzyxwv

qkqjqiq
qqqqq

+++=

== ),,,(),(ˆ qq

1)ˆ( 2222 =+++= wzyx qqqqn q

l A unit quaternion can be written as:
1||||     where)cos,(sinˆ == qq uuq ff



Unit quaternions are perfect for 
rotations!
l Compact (4 components)
l Can show that 1ˆˆˆ -qpq

l Interpolation from one quaternion to another is 
much simpler, and gives optimal results

l …represents a rotation of
2f radians around uq of p

)cos,(sinˆ ff quq =

l That is: a unit quaternion represents a 
rotation as a rotation axis and an angle

l rotate(ux,uy,uz,angle);
l See p:76 how to convert q to matrix.
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Projections
l Orthogonal (parallel) and Perspective
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Orthogonal projection
l Simple, just skip one coordinate

– Say, we’re looking along the z-axis
– Then drop z, and render
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Orthogonal projection
l Not invertible!  (determinant is zero)

– i.e., depth information is lost

l For Z-buffering
– It is not sufficient to project to a plane
– Rather, we need to ”project” to a box

eye

image plane near

far

Unit cube: [-1,-1,-1] to [1,1,1]

l Unit cube is also used for perspective proj.
l Simplifies clipping 
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Orthogonal projection
l The ”unitcube projection” is invertible
l Simple to derive

– Just a translation and scale

left right

bottom

top

near

far
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What about those homogenenous 
coordinates?
( )Twzyx pppp=p

l pw=0 for vectors, and pw=1 for points
l What if pw is not 1 or 0?
l Solution is to divide all components by pw

( )Twzwywx pppppp 1///=p
l Gives a point again!

l Can be used for projections, as we will 
see
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Perspective projection
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Perspective projection

l The ”arrow” is the 
homogenization process
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Perspective projection
l Again, the determinant is 0 (not invertible)
l To make the rest of the pipeline the same 

as for orhogonal projection:
– project into unit-cube

l Not much different from Pp

l Do not collapse z-coord to a plane
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Understanding the projection matrix

l sx, sy, sz –Scaling
l a, b – Due to homogenization, this controls asymmetry of the 

frustum
l c – Keep z-info
l -1/d – Perspective division based on pz
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OpenGL projection matrix

POpenGL =

mat4 projectionMtx = perspective(fov, width / height, near, far);

l = left
r = right
t = top
b = bottom
n = near
f = far

(l, t, f)



Ulf Assarsson © 2011

Ray/Plane Intersections

•Ray: r(t)=o+td
•Plane: n•x + d = 0; (d=-n•p0)
•Set x=r(t):

n•(o+td) + d = 0
n•o+t(n•d) + d = 0
t = (–d –n•o) / (n•d)

n

o
d

p0

Vec3f rayPlaneIntersect(vec3f o,dir, n, d)
{

float t=(-d-n.dot(o)) / (n.dot(dir));
return o + dir*t;

}



Ulf Assarsson © 2006

Line/Line intersection in 2D
l r1(s) = o1+sd1
l r2(t)  = o2+td2

l r1(s) = r2(t) (1)
l o1+sd1= o2+td2(2)

noting that d•d┴=0, [d=(a,b) ® d┴=(b,-a)]

sd1•d2
┴ = (o2-o1) • d2

┴

td2•d1
┴ = (o1-o2) • d1

┴

 

s =
(o2 -o1) • d2

^

(d1 • d2
^ )

 

t =
(o1 -o2) • d1

^

(d2 • d1
^)

From book, p: 987 BONUS
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Line/Line intersection in 3D
l r1(s) = o1+sd1
l r2(t)  = o2+td2

l r1(s) = r2(t) (1)
l o1+sd1= o2+td2 (2)

noting that d x d=0

sd1 x d2 = (o2-o1) x d2 (i.e., cross mult. both sides with d2 to drop t)
td2 x d1 = (o1-o2) x d1   (i.e., cross mult. both sides with d1 to drop s)
=>

s (d1 x d2) • (d1 x d2) = ((o2-o1) x d2 ) • (d1 x d2)
t  (d2 x d1) • (d2 x d1) = ((o1-o2) x d1 ) • (d2 x d1)

2
21

21212

)(
),,det(

dd
dddoo

´

´-
=s 2

21

21112

)(
),,det(

dd
dddoo

´

´-
=t

= 0 means parallel lines2
21 )( dd ´

s, t correspond to 
closest points

From book, p: 988 BONUS
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Area and Perimeter
For polygon p0, p1...pn
Perimeter = omkrets = sum of length of each 

edge in 2D and 3D:

( ) ( ) ( )åå
-

=
+++

-

=
+ -+-+-=-=

1

0

2
1

2
1

2
1

1

0
1

n

i
iiiiii

n

i
ii zzyyxxppO

å
-

=
++ -=

1

1
112

1 n

i
iiii yxyxA

Area in 2D:

p0

p1

p2

v1

v2

We can understand the formula from using Greens theorem: integrating over 
border to get area
Choose arbitrary point to integrate from, e.g. Origin (0,0,0)

Works for non-convex polygons as well

( )212
1 vvAtriangle ´=

BONUS
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Volume in 3D
The same trick for computing area in 2D can be 
used to easily compute the volume in 3D for 
triangulated objects

( ) ),,det(
!3
1

!3
1 cbacba =´•=ntetrahedroV

Again, choose arbitrary point-of-integration, e.g. Origin (0,0,0)

With respect to point-of-integration

• For all backfacing triangles, add volume

• For all frontfacing triangles, subtract volume

Works for non-convex objects as well

( )å
=

´•=
n

i
objectV

1!3
1 cba

The sign of the determinant will 
automatically handle positive and 
negative contribution

where
a = p1 – origin
b = p2 – origin
c = p3 – origin

BONUS



Scan Conversion of Line 
Segments

•Start with line segment in window 
coordinates with integer values for 
endpoints

•Assume implementation has a 
write_pixel function

y = kx + m

x
yk
D
D

=



DDA Algorithm
• Digital Differential Analyzer

–DDA was a mechanical device for numerical 
solution of differential equations

–Line y=kx+ m satisfies differential equation
dy/dx = k = Dy/Dx = y2-y1/x2-x1

• Along scan line Dx = 1
y=y1;
For(x=x1; x<=x2,ix++) {
write_pixel(x, round(y), line_color)
y+=k;

}



Problem

•DDA = for each x plot pixel at closest y
–Problems for steep lines



Using Symmetry

•Use for 1 ³ k ³ 0
•For k > 1, swap role of x and y

–For each y, plot closest x



• The problem with DDA is that it uses floats 
which was slow in the old days

• Bresenhams algorithm only uses integers



Bresenham’s line drawing 
algorithm

• The line is drawn between two points (x0, y0) 
and (x1, y1)

• Slope (y = kx + m)

• Each time we step 1 in x-direction, we should increment y with k. 
Otherwise the error in y increases with k.

• If the error surpasses 0.5, the line has become closer to the next y-
value, so we add 1 to y, simultaneously decreasing the error by 1

Ulf Assarsson © 2006
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01

01

xx
yyk
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See also 
http://en.wikipedia.org/wiki/Bresenham's_line_algorithm

function line(x0, x1, y0, y1) 
int deltax := abs(x1 - x0) 
int deltay := abs(y1 - y0) 
real error := 0 
real deltaerr := deltay / deltax 
int y := y0 
for x from x0 to x1 

plot(x,y) 
error := error + deltaerr 
if error ≥ 0.5 

y := y + 1 
error := error - 1.0



Bresenham’s line drawing 
algorithm

• Now, convert algorithm to only using integer computations
• Trick: multiply the fractional number, deltaerr, by deltax

– enables us to express deltaerr as an integer. 
– The comparison if error>=0.5 is multiplied on both sides by 2*deltax

Ulf Assarsson © 2006

Old float version:

function line(x0, x1, y0, y1) 
int deltax := abs(x1 - x0) 
int deltay := abs(y1 - y0) 
real error := 0 
real deltaerr := deltay / deltax 
int y := y0 
for x from x0 to x1 

plot(x,y) 
error := error + deltaerr 
if error ≥ 0.5 

y := y + 1 
error := error - 1.0

New integer version:

function line(x0, x1, y0, y1) 
int deltax := abs(x1 - x0) 
int deltay := abs(y1 - y0) 
real error := 0 
real deltaerr := deltay
int y := y0 
for x from x0 to x1 

plot(x,y) 
error := error + deltaerr 
if 2*error ≥ deltax 

y := y + 1 
error := error - deltax

Multiply by deltax

Multiply by 2 deltax

Multiply by deltax



The first case is allowing us to draw 
lines that still slope downwards, but 
head in the opposite direction. I.e., 
swapping the initial points if x0 > 
x1.

To draw lines that go up, we check if y0 
>= y1; if so, we step y by -1 instead 
of 1.

To be able to draw lines with a slope 
less than one, we take advantage 
of the fact that a steep line can be 
reflected across the line y=x to 
obtain a line with a small slope. The 
effect is to switch the x and y 
variables.

function line(x0, x1, y0, y1) 
boolean steep := abs(y1 - y0) > abs(x1 - x0) 
if steep then 

swap(x0, y0) 
swap(x1, y1) 

if x0 > x1 then 
swap(x0, x1) 
swap(y0, y1) 

int deltax := x1 - x0 
int deltay := abs(y1 - y0) 
int error := 0 
int ystep
int y := y0 
if y0 < y1 then ystep := 1 else ystep := -1 
for x from x0 to x1 

if steep then plot(y,x) else plot(x,y) 
error := error + deltay
if 2×error ≥ deltax

y := y + ystep
error := error - deltax

Complete Bresenham’s line 
drawing algorithm
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Swap loop axis

Swap start and end 
points



You need to know
– How to create a simple Scaling matrix, rotation matrix, 

translation matrix and orthogonal projection matrix
– Change of frames (creating model-to-view matrix)
– Understand how quaternions are used
– Understanding of Euler transforms
– DDA line drawing algorithm
– Understand what is good with Bresenhams line 

drawing algorithm, i.e., uses only integers.



Most of the following slides are 
from

Ed Angel
Professor of Computer Science, 

Electrical and Computer Engineering, 
and Media Arts

University of New Mexico

All the following slides are simply extra non-
compulsory material that explains the content of the 
lecture in a different way. 



Scalars
• Need three basic elements in geometry

–Scalars, Vectors, Points
• Scalars can be defined as members of sets which 

can be combined by two operations (addition and 
multiplication) obeying some fundamental axioms 
(associativity, commutivity, inverses)

• Examples include the real and complex number 
systems under the ordinary rules with which we are 
familiar

• Scalars alone have no geometric properties



Vector Operations
• Physical definition: a vector is a quantity with two attributes

– Direction
– Magnitude

• Examples include
– Force
– Velocity
– Directed line segments

• Most important example for graphics
• Can map to other types. Every vector can be multiplied by a scalar.

• There is a zero vector
–Zero magnitude, undefined orientation

• The sum of any two vectors is a vector

v -v av
v

u

w



Vectors Lack Position

• These vectors are identical
–Same length and magnitude

• Vectors insufficient for geometry
–Need points



Points
•Location in space
•Operations allowed between points and 
vectors

–Point-point subtraction yields a vector
–Equivalent to point-vector addition 

P=v+Q

v=P-Q



Affine Spaces
•Point + a vector space
•Operations

–Vector-vector addition
–Scalar-vector multiplication
–Point-vector addition
–Scalar-scalar operations

• For any point define
–1 • P = P
–0 • P = 0 (zero vector)



Lines
•Consider all points of the form

–P(a)=P0 + a d
–Set of all points that pass through P0 in the 

direction of the vector d



Parametric Form
•This form is known as the parametric form 
of the line

–More robust and general than other forms
–Extends to curves and surfaces

•Two-dimensional forms
–Explicit: y = kx + m
–Implicit: ax + by +c =0
–Parametric: 

x(a) = ax0 + (1-a)x1
y(a) = ay0 + (1-a)y1



Rays and Line Segments
• If a >= 0, then P(a) is the ray leaving P0 in 
the direction d
If we use two points to define v, then
P( a) = Q + a (R-Q)=Q+av
=aR + (1-a)Q
For 0<=a<=1 we get all the
points on the line segment
joining R and Q



Planes
•A plane can be defined by a point and two 
vectors or by three points

P(a,b)=R+au+bv P(a,b)=R+a(Q-R)+b(P-Q)

u

v

R

P

R
Q



Triangles

convex sum of P and Q

convex sum of S(a) and R

for 0<=a,b<=1, we get all points in triangle



u

v

P

Normals
• Every plane has a vector n normal (perpendicular, 

orthogonal) to it
• From point/vector form

– P(a,b)=R+au+bv
we know we can use the cross product to find
– n = u  ´ v

• Plane equation:
– n ×x – d = 0, 
– where d = -n ×p and p is any point in the plane



Normal for Triangle

p0

p
1

p2

n
plane n ·(p - p0 ) = 0

n = (p2 - p0 ) ×(p1 - p0 ) 

normalize n   ¬ n/ |n|

p

Note that right-hand rule determines outward face



Convexity
•An object is convex iff for any two points in 
the object all points on the line segment 
between these points are also in the object

P

Q Q

P

convex not convex



Affine Sums
•Consider the “sum”
P=a1P1+a2P2+…..+anPn

Can show by induction that this sum makes 
sense iff
a1+a2+…..an=1
in which case we have the affine sum of the 
points P1,P2,…..Pn

• If, in addition, ai>=0, we have the convex 
hull of P1,P2,…..Pn



Convex Hull
Consider the linear combination
P=a1P1+a2P2+…..+anPn
• If a1+a2+…..an=1

– (in which case we have the affine sum of the points P1,P2,…..Pn)

and if ai>=0, we have the convex hull of P1,P2,…..Pn

• Smallest convex object 
containing P1,P2,…..Pn



Frames

•A coordinate system is insufficient to 
represent points

• If we work in an affine space we can add a 
single point, the origin, to the basis vectors 
to form a frame

P0

v1
v2

v3



Representing one basis in terms 
of another

Each of the basis vectors, u1,u2, u3, are vectors that 
can be represented in terms of the first basis

u1 = g11v1+g12v2+g13v3
u2 = g21v1+g22v2+g23v3
u3 = g31v1+g32v2+g33v3

v



Matrix Form 
The coefficients define a 3 x 3 matrix

and the bases can be related by

a=MTb
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Translation
•Move (translate, displace) a point to a new 
location

•Displacement determined by a vector d
–Three degrees of freedom
–P’=P+d

P

P’

d



How  many ways?
Although we can move a point to a new location in 

infinite ways, when we move many points there is 
usually only one way

object translation: every point displaced
by same vector



Translation Using 
Representations

Using the homogeneous coordinate 
representation in some frame

p=[ x y z 1]T

p’=[x’ y’ z’ 1]T

d=[dx dy dz 0]T

Hence p’ = p + d or
x’=x+dx
y’=y+dy
z’=z+dz

note that this expression is in 
four dimensions and expresses
point = vector + point



Translation Matrix
We can also express translation using a 
4 x 4 matrix T in homogeneous coordinates
p’=Tp where

T = T(dx, dy, dz) =

This form is better for implementation because all affine 
transformations can be expressed this way and multiple 
transformations can be concatenated together
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ù

ê
ê
ê
ê
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é

1000
d100
d010
d001

z

y

x



Homogeneous Coordinates
The homogeneous coordinates form for a three dimensional 

point [x y z] is given as
p =[x’ y’ z’ w] T =[wx wy wz w] T

We return to a three dimensional point (for w¹0) by
x¬x’/w
y¬y’/w
z¬z’/w
If w=0, the representation is that of a vector
Note that homogeneous coordinates replaces points in three 

dimensions by lines through the origin in four dimensions
For w=1, the representation of a point is [x y z 1]



Homogeneous Coordinates 
and Computer Graphics

•Homogeneous coordinates are key to all 
computer graphics systems

–All standard transformations (rotation, 
translation, scaling) can be implemented with 
matrix multiplications using 4 x 4 matrices

–Hardware pipeline works with 4 dimensional 
representations

–For orthographic viewing, we can maintain w=0 
for vectors and w=1 for points

–For perspective we need a perspective division



Rotation about the z axis
• Rotation about z axis in three dimensions leaves all 

points with the same z
–Equivalent to rotation in two dimensions in 

planes of constant z

–or in homogeneous coordinates
p’=Rz(q)p

x’=x cos q –y sin q
y’ = x sin q + y cos q
z’ =z



Rotation Matrix
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Rotation about x and y axes
• Same argument as for rotation about z axis

–For rotation about x axis, x is unchanged
–For rotation about y axis, y is unchanged

R = Rx(q) =

R = Ry(q) =
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Scaling

ú
ú
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000

z

y

x

s
s

s

S = S(sx, sy, sz) =

x’=sxx
y’=syx
z’=szx

p’=Sp

Expand or contract along each axis (fixed point of origin)



Reflection

corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1



Inverses
• Although we could compute inverse matrices by 

general formulas, we can use simple geometric 
observations

–Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz) 

–Rotation: R -1(q) = R(-q)
• Holds for any rotation matrix
• Note that since cos(-q) = cos(q) and sin(-
q)=-sin(q)

R -1(q) = R T(q)
–Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz)



Concatenation

• We can form arbitrary affine transformation 
matrices by multiplying together rotation, 
translation, and scaling matrices

• Because the same transformation is applied to 
many vertices, the cost of forming a matrix 
M=ABCD is not significant compared to the cost 
of computing Mp for many vertices p

• The difficult part is how to form a desired 
transformation from the specifications in the 
application



Order of Transformations

•Note that matrix on the right is the first 
applied

•Mathematically, the following are equivalent
p’ = ABCp = A(B(Cp))

•Note many references use column matrices 
to represent points. In terms of column 
matrices

p’T = pTCTBTAT



General Rotation About the 
Origin

q

x

z

y
v

A rotation by q about an arbitrary axis
can be decomposed into the concatenation
of rotations about the x, y, and z axes

R(q) = Rz(qz) Ry(qy) Rx(qx) 

qx qy qz are called the Euler angles

Note that rotations do not commute
We can use rotations in another order but
with different angles



Rotation About a Fixed Point 
other than the Origin

Move fixed point to origin
Rotate
Move fixed point back
M = T(pf) R(q) T(-pf)



Instancing

• In modeling, we often start with a simple 
object centered at the origin, oriented with 
the axis, and at a standard size

•We apply an instance transformation to its 
vertices to 

Scale 
Orient
Locate 



Shear

• Helpful to add one more basic transformation
• Equivalent to pulling faces in opposite directions



Shear Matrix

Consider simple shear along x axis

x’ = x + y cot q
y’ = y
z’ = z
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Computer Viewing

Ed Angel
Professor of Computer Science, 

Electrical and Computer Engineering, 
and Media Arts

University of New Mexico



Objectives

• Introduce the mathematics of projection



Computer Viewing
•There are three aspects of the viewing 
process, all of which are implemented in the 
pipeline,

–Positioning the camera
• Setting the model-view matrix

–Selecting a lens
• Setting the projection matrix

–Clipping
• Setting the view volume 
• (default is unit cube, R3, [-1,1])



Default Projection
Default projection is orthogonal

clipped out

z=0

2



Moving the Camera Frame
• If we want to visualize object with both positive and 

negative z values we can either
–Move the camera in the positive z direction

• Translate the camera frame
–Move the objects in the negative z direction

• Translate the world frame
•Both of these views are equivalent and are 
determined by the model-view matrix



Moving the Camera
•We can move the camera to any desired 
position by a sequence of rotations and 
translations

•Example: side view
–Rotate the camera
–Move it away from origin
–Model-view matrix C = TR



OpenGL Orthogonal Viewing

near and far measured from camera



OpenGL Perspective



Using Field of View
• Parameters fovy, aspect, near, far often 
provides a better interface

aspect = w/h

front plane



Projections explained differently

• Read the following slides about orthogonal 
and perspective projections by your selves

• They present the same thing, but explained 
differently



Projections and Normalization

•The default projection in the eye (camera) frame 
is orthogonal 

•For points within the default view volume

•Most graphics systems use view normalization
–All other views are converted to the default view by 

transformations that determine the projection matrix
–Allows use of the same pipeline for all views

xp = x
yp = y
zp = 0



Homogeneous Coordinate 
Representation

xp = x
yp = y
zp = 0
wp = 1

pp = Mp

M = 
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In practice, we can let M = I and set
the z term to zero later

default orthographic projection



Simple Perspective

•Center of projection at the origin
•Projection plane z = d, d < 0



Perspective Equations
Consider top and side views

xp =

dz
x
/

dz
x
/

yp =
dz
y
/

zp = d



Homogeneous Coordinate Form

M = 
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Perspective Division
•However w ¹ 1, so we must divide by w to 
return from homogeneous coordinates

•This perspective division yields

the desired perspective equations 
•We will consider the corresponding clipping 
volume with the OpenGL functions

xp =
dz
x
/

yp =
dz
y
/

zp = d



Normalization

•Rather than derive a different projection 
matrix for each type of projection, we can 
convert all projections to orthogonal 
projections with the default view volume

•This strategy allows us to use standard 
transformations in the pipeline and makes for 
efficient clipping



Pipeline View

modelview
transformation

projection
transformation

perspective
division

clipping projection

nonsingular
4D ® 3D

against default cube 3D ® 2D



Notes
•We stay in four-dimensional homogeneous 
coordinates through both the modelview and 
projection transformations

–Both these transformations are nonsingular
–Default to identity matrices (orthogonal view)

•Normalization lets us clip against simple cube 
regardless of type of projection

•Delay final projection until end
–Important for hidden-surface removal to retain 

depth information as long as possible 



Orthogonal Normalization

normalization Þ find transformation to convert
specified clipping volume to default



Orthogonal Matrix
• Two steps

–Move center to origin
T(-(left+right)/2, -(bottom+top)/2,(near+far)/2))

–Scale to have sides of length 2
S(2/(left-right),2/(top-bottom),2/(near-far))
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Final Projection
• Set z =0 
• Equivalent to the homogeneous coordinate 

transformation

• Hence, general orthogonal projection in 4D is
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General Shear

top view side view

DOP = Direction of Projection



Shear Matrix
xy shear (z values unchanged)

Projection matrix

General case: 
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P = Morth H(q,f) 

P = Morth STH(q,f) 



Effect on Clipping
•The projection matrix P = STH transforms 
the original clipping volume to the default 
clipping volume

top view

DOP DOP

near plane

far plane

object

clipping
volume

z = -1

z =  1

x = -1
x = 1

distorted object
(projects correctly)



Simple Perspective
Consider a simple perspective with the COP (=center 

of projection) at the origin, the near clipping plane at 
z = -1, and a 90 degree field of view determined by 
the planes 
x = ±z, y = ±z



Perspective Matrices

Simple projection matrix in homogeneous 
coordinates

Note that this matrix is independent of the far 
clipping plane
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Generalization
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after perspective division, the point (x, y, z, 1) goes to

x’’ = x/z
y’’ = y/z
Z’’ = -(a+b/z)

which projects orthogonally to the desired point 
regardless of a and b



Picking a and b
If we pick

a = 

b = 

nearfar
farnear

-
+

farnear
farnear2

-
*

the near plane is mapped to z = -1
the far plane is mapped to z =1
and the sides are mapped to x = ± 1, y = ± 1

Hence the new clipping volume is the default clipping volume



Normalization Transformation

original 
clipping

volume
original object new clipping

volume

distorted object
projects correctly



Normalization and 
Hidden-Surface Removal

• Although our selection of the form of the 
perspective matrices may appear somewhat 
arbitrary, it was chosen so that if z1 > z2 in the 
original clipping volume then the for the 
transformed points z1’ > z2’

• Thus hidden surface removal works if we first apply 
the normalization transformation

• However, the formula z’’ = -(a+b/z) implies that the 
distances are distorted by the normalization which 
can cause numerical problems especially if the near 
distance is small



OpenGL Perspective
•Unsymmetric viewing frustum possible:



OpenGL Perspective Matrix

•The normalization by a perspective projection 
requires an initial shear to form a right 
viewing pyramid, followed by a scaling to get 
the normalized perspective volume. Finally, 
the perspective matrix results in needing only 
a final orthogonal transformation

P = NSH

our previously defined
perspective matrix

shear and scale



Why do we do it this way?

•Normalization allows for a single pipeline 
for both perspective and orthogonal viewing

•We stay in four dimensional homogeneous 
coordinates as long as possible to retain 
three-dimensional information needed for 
hidden-surface removal and shading

•We simplify clipping


