
Vectors and Transforms

In
3D Graphics

Skämtbild om matte på KTH-animationskurs

Course Structure
• 14 lectures

– Book is the verbal format / more meticulous explanations
– Lecture slides are only short summary

• Perhaps not enough to fully understand

– Exam (salstentamen):
• I will only assume that you have studied the topics covered by the slides.
• Reading instructions are pointers to more verbal descriptions in the book
• May come a few “harder” questions, intended to force you to think beyond

what’s in the slides (and that could of course accidentally be covered by the
book).

• Tutorials – the practical experience
– 1-6 “holds your hand”. Very fast. Intentionally lots of copy/paste.

Do them in 2-3 weeks. No need to wait for their deadlines.
– Project – Here, you apply the knowledge from tutorial 1-6, so you

must have understood them.
• You will need the 3-4 weeks for the project.

The Bonus Material

• Bonus material on home page
– http://www.cse.chalmers.se/edu/course/TDA362/sched

ule.html
– Purpose: only to be of help in case lectures and course

book is not enough for you to understand. Sometimes, it
helps having same topics explained in a second way.

– Skip the bonus material if you are not very interested.
– No exam questions on bonus material!

http://www.cse.chalmers.se/edu/course/TDA361/schedule.html

Quick Repetition of Vector Algebra

Excellent interactive online linear
algebra repetition:

• http://immersivemath.com/ila/index.html

http://immersivemath.com/ila/index.html

Quick Repetition of Vector Algebra for 3D graphics

A 3D vector, a, contains 3 elements: (ax, ay, az), which are coordinates (or
lengths) along the 3 coordinage axes.

The length of a vector is:
Normalizing a vector, n, means to scale the vector such that it becomes a unit
vector, !𝒏 , i.e., its length = 1.

E.g.,: !𝒏 = 𝒏
𝒏
= 𝒏

"!"#"#"#"$"
= "!

$
, "#
$
, "$
$

, where 𝑐 = 𝑛%& + 𝑛'& + 𝑛(&

The dot product is typically used to find the angle, 𝑎, between two vectors.
If a and b are of unit length (normalized), then cos 𝑎 = 𝒂 * 𝒃
where
The definition of the dot product is:
(so for non-normalized a and b, we must
divide with their lengths)

𝑎
a

b

y
x

z

()222 zyx ++=x
l

ba

ba

vv
vv •

=acos
)(zzyyxx bababa ++=•ba

Quick Repetition of Vector Algebra for 3D graphics
Cross product
Definition: Geometric meaning:

The cross product is typically used to find a vector, a, that is
perpendicular to two others (b and c): 𝒂 = 𝒃 × 𝒄

Example to find a triangle normal: n = e0 × e1, where e0=(v1-v0) and e1=(v2-v0)
In code: n = cross(e0, e1);
In maths:

𝒏 = (𝑒0𝑦𝑒1𝑧 − 𝑒0𝑧𝑒1𝑦), (𝑒0𝑧𝑒1𝑥 − 𝑒0𝑥𝑒1𝑧), (𝑒0𝑥𝑒1𝑦 − 𝑒0𝑦𝑒1𝑥)
Note that the length of n then is two times the size of the triangle area. (So the
cross product can be used to find the area between two vectors). We typically
want normals to be of unit length (=1), and therefore we normalize n:
In code: n = normalize(n);

v0
v1

v2

e0

e1
n

Structure of today’s lecture
• Matrices

– Matrix mult.
– Transformation Pipeline
– Practical usage of matrices
– Rotations
– Translations
– Homogeneous coordinates
– Shear / scale / normal matrix
– Euler matrices
– Quaternions
– Projections

• Bresenham’s line drawing algorithm

Tomas Akenine-Mőller © 2002

Why transforms?
l We want to be able to animate objects

and the camera
– Translations
– Rotations
– Shears
– …

l We want to be able to use projection
transforms

Tomas Akenine-Mőller © 2002

How implement transforms?
l Matrices!
l Can you really do everything with a

matrix?
l Not everything, but a lot!
l We use 3x3 and 4x4 matrices

÷
÷
÷

ø

ö

ç
ç
ç

è

æ
=

÷
÷
÷

ø

ö

ç
ç
ç

è

æ
=

222120

121110

020100

mmm
mmm
mmm

p
p
p

z

y

x

Mp

Matrix multiplication

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

++
++
++

=
÷
÷
÷

ø

ö

ç
ç
ç

è

æ

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

zyx

zyx

zyx

z

y

x

pmpmpm
pmpmpm
pmpmpm

p
p
p

mmm
mmm
mmm

222120

121110

020100

222120

121110

020100

Matrix-vector multiplication:

Matrix multiplication

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

++
++
++

=
÷
÷
÷

ø

ö

ç
ç
ç

è

æ

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

zyx

zyx

zyx

z

y

x

pmpmpm
pmpmpm
pmpmpm

p
p
p

mmm
mmm
mmm

222120

121110

020100

222120

121110

020100

Matrix-vector multiplication:

Matrix multiplication

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

++
++
++

=
÷
÷
÷

ø

ö

ç
ç
ç

è

æ

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

zyx

zyx

zyx

z

y

x

pmpmpm
pmpmpm
pmpmpm

p
p
p

mmm
mmm
mmm

222120

121110

020100

222120

121110

020100

Matrix-vector multiplication:

Matrix multiplication
Matrix-matrix multiplication:

𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

𝑏!! 𝑏!" 𝑏!#
𝑏"! 𝑏"" 𝑏"#
𝑏#! 𝑏#" 𝑏##

=
𝑐!! 𝑐!" 𝑐!#
𝑐"! 𝑐"" 𝑐"#
𝑐#! 𝑐#" 𝑐##

𝑐$% = 𝑎𝑟𝑜𝑤𝑖 • 𝑏𝑐𝑜𝑙𝑗where

Matrix multiplication
Matrix-matrix multiplication:

𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

𝑏!! 𝑏!" 𝑏!#
𝑏"! 𝑏"" 𝑏"#
𝑏#! 𝑏#" 𝑏##

=
𝑐!! 𝑐!" 𝑐!#
𝑐"! 𝑐"" 𝑐"#
𝑐#! 𝑐#" 𝑐##

𝑐$% = 𝑎𝑟𝑜𝑤𝑖 • 𝑏𝑐𝑜𝑙𝑗where

Matrix multiplication
Matrix-matrix multiplication:

𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

𝑏!! 𝑏!" 𝑏!#
𝑏"! 𝑏"" 𝑏"#
𝑏#! 𝑏#" 𝑏##

=
𝑐!! 𝑐!" 𝑐!#
𝑐"! 𝑐"" 𝑐"#
𝑐#! 𝑐#" 𝑐##

𝑐$% = 𝑎𝑟𝑜𝑤𝑖 • 𝑏𝑐𝑜𝑙𝑗where

Matrix multiplication
Matrix-matrix multiplication:

𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

𝑏!! 𝑏!" 𝑏!#
𝑏"! 𝑏"" 𝑏"#
𝑏#! 𝑏#" 𝑏##

=
𝑐!! 𝑐!" 𝑐!#
𝑐"! 𝑐"" 𝑐"#
𝑐#! 𝑐#" 𝑐##

𝑐$% = 𝑎𝑟𝑜𝑤𝑖 • 𝑏𝑐𝑜𝑙𝑗where

Matrix multiplication
Matrix-matrix multiplication:

𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

𝑏!! 𝑏!" 𝑏!#
𝑏"! 𝑏"" 𝑏"#
𝑏#! 𝑏#" 𝑏##

=
𝑐!! 𝑐!" 𝑐!#
𝑐"! 𝑐"" 𝑐"#
𝑐#! 𝑐#" 𝑐##

𝑐$% = 𝑎𝑟𝑜𝑤𝑖 • 𝑏𝑐𝑜𝑙𝑗where

Matrix multiplication
Matrix-matrix multiplication:

𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

𝑏!! 𝑏!" 𝑏!#
𝑏"! 𝑏"" 𝑏"#
𝑏#! 𝑏#" 𝑏##

=
𝑐!! 𝑐!" 𝑐!#
𝑐"! 𝑐"" 𝑐"#
𝑐#! 𝑐#" 𝑐##

𝑐$% = 𝑎𝑟𝑜𝑤𝑖 • 𝑏𝑐𝑜𝑙𝑗where

Matrix multiplication
Matrix-matrix multiplication:

𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

𝑏!! 𝑏!" 𝑏!#
𝑏"! 𝑏"" 𝑏"#
𝑏#! 𝑏#" 𝑏##

=
𝑐!! 𝑐!" 𝑐!#
𝑐"! 𝑐"" 𝑐"#
𝑐#! 𝑐#" 𝑐##

𝑐$% = 𝑎𝑟𝑜𝑤𝑖 • 𝑏𝑐𝑜𝑙𝑗where

Matrix multiplication
Matrix-matrix multiplication:

𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

𝑏!! 𝑏!" 𝑏!#
𝑏"! 𝑏"" 𝑏"#
𝑏#! 𝑏#" 𝑏##

=
𝑐!! 𝑐!" 𝑐!#
𝑐"! 𝑐"" 𝑐"#
𝑐#! 𝑐#" 𝑐##

𝑐$% = 𝑎𝑟𝑜𝑤𝑖 • 𝑏𝑐𝑜𝑙𝑗where

Matrix multiplication
Matrix-matrix multiplication:

𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

𝑏!! 𝑏!" 𝑏!#
𝑏"! 𝑏"" 𝑏"#
𝑏#! 𝑏#" 𝑏##

=
𝑐!! 𝑐!" 𝑐!#
𝑐"! 𝑐"" 𝑐"#
𝑐#! 𝑐#" 𝑐##

𝑐$% = 𝑎𝑟𝑜𝑤𝑖 • 𝑏𝑐𝑜𝑙𝑗where

Model space
World space

View space

Model to World
Matrix

World to
View
Matrix

ModelViewMtx = ”Model to View
Matrix”

ModelViewMtx * v =
(MVçW * MWçM) * v

x

y

z

World space

View space

cameraModel space World space View space

Model to World
Matrix

World to View
Matrix

ModelViewMtx = ”Model to View Matrix”

ModelViewMtx * v = (MVçW * MWçM) * v

Full projection:

Vclip_space = projectionMatrix * ModelViewMatrix * vmodel_space
Or simply: vclip_space = MMVP * v

x

y

z

Projection
Matrix

Ulf Assarsson© 2007

v
e
r
t
e
x

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transform

Modelview

Modelview

Projection

l
l
l

object
space

View/Eye/
Camera
space

Unit-cube
space /
Normalized

device coords

Window
coords.
Screen
space

Transformation
Pipeline

OpenGL | Geometry stage | done on GPU

Done by the vertex shader:

gl_Position = modelViewProjectionMatrix*vec4(vertex,1);

Homogeneous
coord. space

Clip space: clipping is nowadays typically done in
homogeneous space. However, it used to be done in
unit-cube space. Both terminologies are still used.

The OpenGL Pipeline

From http://deltronslair.com/glpipe.html

How do I use transforms
practically?
l Say you have a circle with origin at (0,0,0) and with

radius 1, i.e., a unit circle

l mat4 m = translate({8,0,0}); // create translation matrix
l RenderCircle(m); // Draw circle using m as

// model-to-world matrix

l mat4 s = scale({2,2,2}); // create scaling matrix
l mat4 t = translate({3,2,0}); // create translation matrix
l RenderCircle(t*s); // use matrix (t*s)

What happens?
See next slide...

Cont’d from previous slide
A simple 2D example
l A circle in model space

x

y

mat4 m = translate({8,0,0});
RenderCircle(m);

mat4 s = scale({2,2,2});
mat4 t = translate({3,2,0});
RenderCircle(t*s); // Effect= first scaling, then translation

Cont’d from previous slide
A simple 2D example
l A circle in model space

x

y
mat4 s = scale({2,2,2});
mat4 t = translate({3,2,0});
RenderCircle(s*t); // Effect= first translation, then scaling.

// Each vertex in the sphere will first
// be translated (3,2,0) and then have its
// coordinate doubled in x,y,z

// This is less intuitive so humans
// prefer to do scaling first and then
// translation.

Example of a simple GfxObject class
class GfxObject {
public:

load(“filename”); // Creates m_shaderProgram + m_vertexArrayObject
render(mat4 projectionMatrix, mat4 viewMatrix)
{

…
mat4 modelViewProjectionMatrix = projectionMatrix * viewMatrix *

m_modelMatrix;
int loc = glGetUniformLocation(shaderProgram, "modelViewProjectionMatrix");
glUniformMatrix4fv(loc, 1, false, &modelViewProjectionMatrix[0].x);

glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glUseProgram(m_shaderProgram);
glBindVertexArray(m_vertexArrayObject);
glDrawArrays(GL_TRIANGLES, 0, numVertices);

};
private:

mat4 m_modelMatrix;
uint numVertices;
Gluint m_shaderProgram;
GLuint m_vertexArrayObject;

};

#version 420 VERTEX SHADER
layout(location = 0) in vec3 position;
layout(location = 1) in vec3 color;

out vec4 outColor;
uniform mat4 modelViewProjectionMatrix;

void main()
{

gl_Position = modelViewProjectionMatrix *
vec4(position, 1.0);

outColor = vec4(color, 1.0);
}

Rotation (2D)
Consider rotation about the origin by q degrees

–radius stays the same, angle increases by q

cos q –sin q
sin q cos q

x = r cos f
y = r sin f

x' = r cos (f + q)
y' = r sin (f + q)

ú
û

ù
ê
ë

é
ú
û

ù
ê
ë

é
=ú

û

ù
ê
ë

é
y
x

y
x

??
??

'
'

Answer:

Tomas Akenine-Mőller © 2002

Derivation of rotation matrix in 2D

p = reiϕ = r(cosϕ + isinϕ) [rotation is mult by e
iα

]
n = eiαp = reiαeiϕ =
= r[(cosα + isinα)(cosϕ + isinϕ)]=
= r(cosα cosϕ − sinα sinϕ)+
ir(cosα sinϕ + sinα cosϕ)

p = (px, py)
T = (rcosϕ, rsinϕ)T

n = (nx,ny)
T = (r(cosα cosϕ − sinα sinϕ),

r(cosα sinϕ + sinα cosϕ))T

?pRn z=

p

n

a
In vector form:

Derivation 2D rotation, cont’d

÷÷
ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ -
=÷÷

ø

ö
çç
è

æ

=
+

-==

==

y

x

y

x

zz

T

T
yx

TT
yx

p
p

z

n
n

r

rnn

rrpp

!! "!! #$
R

RpRn

n

p

aa
aa

fafa

fafa

ff

cossin
sincos

? is what
))sincoscos(sin

),sinsincos(cos(),(

)sin,cos(),(
In vector form:

l Same as in 2D for Z-rotations, but with a
3x3 matrix

l For X

l For Y
÷
÷
÷

ø

ö

ç
ç
ç

è

æ

-
=

÷
÷
÷

ø

ö

ç
ç
ç

è

æ
-=

÷
÷
÷

ø

ö

ç
ç
ç

è

æ -
=Þ÷÷

ø

ö
çç
è

æ -
=

aa

aa
a

aa
aaa

aa
aa

a
aa
aa

a

cos0sin
010

sin0cos
)(

cossin0
sincos0
001

)(

100
0cossin
0sincos

)(
cossin
sincos

)(

y

x

zz

R

R

RR

Rotations in 3D

x

y

z

y

z

x

z

x

y

α

Tomas Akenine-Mőller © 2002

Translations must be simple?

l Rotation is matrix mult, translation is add
l Would be nice if we could only use matrix

multiplications…
l Turn to homogeneous coordinates
l Add a new component to each vector

Rpntpp =+=
÷
÷
÷

ø

ö

ç
ç
ç

è

æ

???
???
???

Rotation n Translatio

Tomas Akenine-Mőller © 2002

Homogeneous notation
l A point:
l Translation becomes:

l A vector (direction):
l Translation of vector:
l Also allows for projections (later)

1

1
)(

1000
100
010
001

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

+
+
+

=

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

zz

yy

xx

z

y

x

z

y

x

tp
tp
tp

p
p
p

t
t
t

!! "!! #$

tT

()Tzyx ppp 1=p

()Tzyx ddd 0=d
dTd =

l Just add a row at the bottom, and a
column at the right:

l Similarly for X and Y
l Determinant = volume change when the transform is

applied to a unit cube
l det(R) = 1 for all rot. matrices (=tripple scal. prod for 3x3 mtx)

l Trace(R) = 1+2cos(alpha) (for 3x3 rot-matrices)

Rotations in 4x4 form

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ -

=

1000
0100
00cossin
00sincos

)(
aa
aa

azR

Change of Frames
• How to get the Mmodel-to-world matrix:

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

1000

M world-to-model
zzzz

yyyy

xxxx

ocba
ocba
ocba

(0,5,0,1)

E.g.: pworld = Mm®w pmodel = Mm®w (0,5,0,1)T = 5 b + o

b

x

y

z

c

a

o

world space

model space

(Both coordinate systems are right-handed)

P=

0
5
0
1

!

"

#
#
#
#

$

%

&
&
&
&

The basis vectors a,b,c
are expressed in the
world coordinate system

Tomas Akenine-Mőller © 2002

l In , the rotation is done first

More basic transforms
l Scaling

l Shear

l Rigid-body: rotation and/or (then) translation

TRX =
l Concatenation of matrices

TRRT ¹
TRX =

l Inverses and rotation about arbitrary axis:
l Rigid body: X-1 = XT (for 3x3 matrices)

l Not commutative, i.e.,

Tomas Akenine-Mőller © 2002

Normal transforms
Not so normal…

l M works for rotations and translations, though

() MMN of instead :Use 1 T-=

l Cannot use same matrix to transform normals

The Euler Transform
l Assume the camera or object

looks down the negative z-
axis, with up in the y-direction,
x to the right

l h=head
l p=pitch
l r=roll
l Optional

l You may read about Gimbal lock in book, p: 67
l See also

l http://mathworld.wolfram.com/EulerAngles.html

http://mathworld.wolfram.com/EulerAngles.html

Head:
l Rotate around y-axis
l Recompute x- and z-axes

l By rotating them as vectors

Pitch:
l Rotate around x’-axis
l Recompute y- and z’-axes

Roll:
l Rotate around z’’-axis
How do we rotate vectors (axes)
and points around an arbitrary axis?

Using Euler transforms
x'

y

z'

x'

y'

z''

x''
y''

z''

Quaternions

l Extension of imaginary numbers
l Compact+fast representation of rotations
l Focus on unit quaternions:

– Norm (or length):

wzyx

wzyxwv

qkqjqiq
qqqqq

+++=

==),,,(),(ˆ qq

1)ˆ(2222 =+++= wzyx qqqqn q

l A unit quaternion can be written as:
1|||| where)cos,(sinˆ == qq uuq ff

Unit quaternions are perfect for
rotations!
l Compact (4 components)
l Can show that 1ˆˆˆ -qpq

l Interpolation from one quaternion to another is
much simpler, and gives optimal results

l …represents a rotation of
2f radians around uq of p

)cos,(sinˆ ff quq =

l That is: a unit quaternion represents a
rotation as a rotation axis and an angle

l rotate(ux,uy,uz,angle);
l See p:76 how to convert q to matrix.

Tomas Akenine-Mőller © 2002

Projections
l Orthogonal (parallel) and Perspective

Tomas Akenine-Mőller © 2002

Orthogonal projection
l Simple, just skip one coordinate

– Say, we’re looking along the z-axis
– Then drop z, and render

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

Þ

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

1
0

1

1000
0000
0010
0001

y

x

z

y

x

orthoortho

p
p

p
p
p

MM

z z

Tomas Akenine-Mőller © 2002

Orthogonal projection
l Not invertible! (determinant is zero)

– i.e., depth information is lost

l For Z-buffering
– It is not sufficient to project to a plane
– Rather, we need to ”project” to a box

eye

image plane near

far

Unit cube: [-1,-1,-1] to [1,1,1]

l Unit cube is also used for perspective proj.
l Simplifies clipping

Tomas Akenine-Mőller © 2002

Orthogonal projection
l The ”unitcube projection” is invertible
l Simple to derive

– Just a translation and scale

left right

bottom

top

near

far

Tomas Akenine-Mőller © 2002

What about those homogenenous
coordinates?
()Twzyx pppp=p

l pw=0 for vectors, and pw=1 for points
l What if pw is not 1 or 0?
l Solution is to divide all components by pw

()Twzwywx pppppp 1///=p
l Gives a point again!

l Can be used for projections, as we will
see

Tomas Akenine-Mőller © 2002

Perspective projection

zx

x

p
d

p
q -

=
z

x
x p

pdq -=Þ
z

y
y p

p
dq -= :yFor

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

-

=

0/100
0100
0010
0001

d

pP

Tomas Akenine-Mőller © 2002

Perspective projection

l The ”arrow” is the
homogenization process

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

-

=

0/100
0100
0010
0001

d

pP qpP =p

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

-

=

10/100
0100
0010
0001

z

y

x

p p
p
p

d

pP Þ

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

-

=

dp
p
p
p

z

z

y

x

/ ÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

-
-
-

=

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

-
-
-

=

1

/
/

1
/
/
/

d
pdp
pdp

pdp
pdp
pdp

zy

zx

zz

zy

zx

q

z

x
x p

pdq -=
z

y
y p

p
dq -= dqz -=

Tomas Akenine-Mőller © 2002

Perspective projection
l Again, the determinant is 0 (not invertible)
l To make the rest of the pipeline the same

as for orhogonal projection:
– project into unit-cube

l Not much different from Pp

l Do not collapse z-coord to a plane

Tomas Akenine-Mőller © 2002

Understanding the projection matrix

l sx, sy, sz –Scaling
l a, b – Due to homogenization, this controls asymmetry of the

frustum
l c – Keep z-info
l -1/d – Perspective division based on pz

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

-

=

10/100
00

00
00

z

y

x

z

y

x

p p
p
p

d
cs

bs
as

pP Þ

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

-
+
+
+

=

dp
cps
bpps
apps

z

zz

zyy

zxx

/ ÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

+-
+-
+-

=

1
/)(
)/(
)/(

zzz

zyy

zxx

pcpsd
bppsd
appsd

q

OpenGL projection matrix

POpenGL =

mat4 projectionMtx = perspective(fov, width / height, near, far);

l = left
r = right
t = top
b = bottom
n = near
f = far

(l, t, f)

Ulf Assarsson © 2011

Ray/Plane Intersections

•Ray: r(t)=o+td
•Plane: n•x + d = 0; (d=-n•p0)
•Set x=r(t):

n•(o+td) + d = 0
n•o+t(n•d) + d = 0
t = (–d –n•o) / (n•d)

n

o
d

p0

Vec3f rayPlaneIntersect(vec3f o,dir, n, d)
{

float t=(-d-n.dot(o)) / (n.dot(dir));
return o + dir*t;

}

Ulf Assarsson © 2006

Line/Line intersection in 2D
l r1(s) = o1+sd1
l r2(t) = o2+td2

l r1(s) = r2(t) (1)
l o1+sd1= o2+td2(2)

noting that d•d┴=0, [d=(a,b) ® d┴=(b,-a)]

sd1•d2
┴ = (o2-o1) • d2

┴

td2•d1
┴ = (o1-o2) • d1

┴

s =
(o2 -o1) • d2

^

(d1 • d2
^)

t =
(o1 -o2) • d1

^

(d2 • d1
^)

From book, p: 987 BONUS

Ulf Assarsson © 2006

Line/Line intersection in 3D
l r1(s) = o1+sd1
l r2(t) = o2+td2

l r1(s) = r2(t) (1)
l o1+sd1= o2+td2 (2)

noting that d x d=0

sd1 x d2 = (o2-o1) x d2 (i.e., cross mult. both sides with d2 to drop t)
td2 x d1 = (o1-o2) x d1 (i.e., cross mult. both sides with d1 to drop s)
=>

s (d1 x d2) • (d1 x d2) = ((o2-o1) x d2) • (d1 x d2)
t (d2 x d1) • (d2 x d1) = ((o1-o2) x d1) • (d2 x d1)

2
21

21212

)(
),,det(

dd
dddoo

´

´-
=s 2

21

21112

)(
),,det(

dd
dddoo

´

´-
=t

= 0 means parallel lines2
21)(dd ´

s, t correspond to
closest points

From book, p: 988 BONUS

Ulf Assarsson © 2006

Area and Perimeter
For polygon p0, p1...pn
Perimeter = omkrets = sum of length of each

edge in 2D and 3D:

() () ()åå
-

=
+++

-

=
+ -+-+-=-=

1

0

2
1

2
1

2
1

1

0
1

n

i
iiiiii

n

i
ii zzyyxxppO

å
-

=
++ -=

1

1
112

1 n

i
iiii yxyxA

Area in 2D:

p0

p1

p2

v1

v2

We can understand the formula from using Greens theorem: integrating over
border to get area
Choose arbitrary point to integrate from, e.g. Origin (0,0,0)

Works for non-convex polygons as well

()212
1 vvAtriangle ´=

BONUS

Ulf Assarsson © 2006

Volume in 3D
The same trick for computing area in 2D can be
used to easily compute the volume in 3D for
triangulated objects

()),,det(
!3
1

!3
1 cbacba =´•=ntetrahedroV

Again, choose arbitrary point-of-integration, e.g. Origin (0,0,0)

With respect to point-of-integration

• For all backfacing triangles, add volume

• For all frontfacing triangles, subtract volume

Works for non-convex objects as well

()å
=

´•=
n

i
objectV

1!3
1 cba

The sign of the determinant will
automatically handle positive and
negative contribution

where
a = p1 – origin
b = p2 – origin
c = p3 – origin

BONUS

Scan Conversion of Line
Segments

•Start with line segment in window
coordinates with integer values for
endpoints

•Assume implementation has a
write_pixel function

y = kx + m

x
yk
D
D

=

DDA Algorithm
• Digital Differential Analyzer

–DDA was a mechanical device for numerical
solution of differential equations

–Line y=kx+ m satisfies differential equation
dy/dx = k = Dy/Dx = y2-y1/x2-x1

• Along scan line Dx = 1
y=y1;
For(x=x1; x<=x2,ix++) {
write_pixel(x, round(y), line_color)
y+=k;

}

Problem

•DDA = for each x plot pixel at closest y
–Problems for steep lines

Using Symmetry

•Use for 1 ³ k ³ 0
•For k > 1, swap role of x and y

–For each y, plot closest x

• The problem with DDA is that it uses floats
which was slow in the old days

• Bresenhams algorithm only uses integers

Bresenham’s line drawing
algorithm

• The line is drawn between two points (x0, y0)
and (x1, y1)

• Slope (y = kx + m)

• Each time we step 1 in x-direction, we should increment y with k.
Otherwise the error in y increases with k.

• If the error surpasses 0.5, the line has become closer to the next y-
value, so we add 1 to y, simultaneously decreasing the error by 1

Ulf Assarsson © 2006

)(
)(

01

01

xx
yyk

-
-

=

See also
http://en.wikipedia.org/wiki/Bresenham's_line_algorithm

function line(x0, x1, y0, y1)
int deltax := abs(x1 - x0)
int deltay := abs(y1 - y0)
real error := 0
real deltaerr := deltay / deltax
int y := y0
for x from x0 to x1

plot(x,y)
error := error + deltaerr
if error ≥ 0.5

y := y + 1
error := error - 1.0

Bresenham’s line drawing
algorithm

• Now, convert algorithm to only using integer computations
• Trick: multiply the fractional number, deltaerr, by deltax

– enables us to express deltaerr as an integer.
– The comparison if error>=0.5 is multiplied on both sides by 2*deltax

Ulf Assarsson © 2006

Old float version:

function line(x0, x1, y0, y1)
int deltax := abs(x1 - x0)
int deltay := abs(y1 - y0)
real error := 0
real deltaerr := deltay / deltax
int y := y0
for x from x0 to x1

plot(x,y)
error := error + deltaerr
if error ≥ 0.5

y := y + 1
error := error - 1.0

New integer version:

function line(x0, x1, y0, y1)
int deltax := abs(x1 - x0)
int deltay := abs(y1 - y0)
real error := 0
real deltaerr := deltay
int y := y0
for x from x0 to x1

plot(x,y)
error := error + deltaerr
if 2*error ≥ deltax

y := y + 1
error := error - deltax

Multiply by deltax

Multiply by 2 deltax

Multiply by deltax

The first case is allowing us to draw
lines that still slope downwards, but
head in the opposite direction. I.e.,
swapping the initial points if x0 >
x1.

To draw lines that go up, we check if y0
>= y1; if so, we step y by -1 instead
of 1.

To be able to draw lines with a slope
less than one, we take advantage
of the fact that a steep line can be
reflected across the line y=x to
obtain a line with a small slope. The
effect is to switch the x and y
variables.

function line(x0, x1, y0, y1)
boolean steep := abs(y1 - y0) > abs(x1 - x0)
if steep then

swap(x0, y0)
swap(x1, y1)

if x0 > x1 then
swap(x0, x1)
swap(y0, y1)

int deltax := x1 - x0
int deltay := abs(y1 - y0)
int error := 0
int ystep
int y := y0
if y0 < y1 then ystep := 1 else ystep := -1
for x from x0 to x1

if steep then plot(y,x) else plot(x,y)
error := error + deltay
if 2×error ≥ deltax

y := y + ystep
error := error - deltax

Complete Bresenham’s line
drawing algorithm

Ulf Assarsson © 2006

Swap loop axis

Swap start and end
points

You need to know
– How to create a simple Scaling matrix, rotation matrix,

translation matrix and orthogonal projection matrix
– Change of frames (creating model-to-view matrix)
– Understand how quaternions are used
– Understanding of Euler transforms
– DDA line drawing algorithm
– Understand what is good with Bresenhams line

drawing algorithm, i.e., uses only integers.

Most of the following slides are
from

Ed Angel
Professor of Computer Science,

Electrical and Computer Engineering,
and Media Arts

University of New Mexico

All the following slides are simply extra non-
compulsory material that explains the content of the
lecture in a different way.

Scalars
• Need three basic elements in geometry

–Scalars, Vectors, Points
• Scalars can be defined as members of sets which

can be combined by two operations (addition and
multiplication) obeying some fundamental axioms
(associativity, commutivity, inverses)

• Examples include the real and complex number
systems under the ordinary rules with which we are
familiar

• Scalars alone have no geometric properties

Vector Operations
• Physical definition: a vector is a quantity with two attributes

– Direction
– Magnitude

• Examples include
– Force
– Velocity
– Directed line segments

• Most important example for graphics
• Can map to other types. Every vector can be multiplied by a scalar.

• There is a zero vector
–Zero magnitude, undefined orientation

• The sum of any two vectors is a vector

v -v av
v

u

w

Vectors Lack Position

• These vectors are identical
–Same length and magnitude

• Vectors insufficient for geometry
–Need points

Points
•Location in space
•Operations allowed between points and
vectors

–Point-point subtraction yields a vector
–Equivalent to point-vector addition

P=v+Q

v=P-Q

Affine Spaces
•Point + a vector space
•Operations

–Vector-vector addition
–Scalar-vector multiplication
–Point-vector addition
–Scalar-scalar operations

• For any point define
–1 • P = P
–0 • P = 0 (zero vector)

Lines
•Consider all points of the form

–P(a)=P0 + a d
–Set of all points that pass through P0 in the

direction of the vector d

Parametric Form
•This form is known as the parametric form
of the line

–More robust and general than other forms
–Extends to curves and surfaces

•Two-dimensional forms
–Explicit: y = kx + m
–Implicit: ax + by +c =0
–Parametric:

x(a) = ax0 + (1-a)x1
y(a) = ay0 + (1-a)y1

Rays and Line Segments
• If a >= 0, then P(a) is the ray leaving P0 in
the direction d
If we use two points to define v, then
P(a) = Q + a (R-Q)=Q+av
=aR + (1-a)Q
For 0<=a<=1 we get all the
points on the line segment
joining R and Q

Planes
•A plane can be defined by a point and two
vectors or by three points

P(a,b)=R+au+bv P(a,b)=R+a(Q-R)+b(P-Q)

u

v

R

P

R
Q

Triangles

convex sum of P and Q

convex sum of S(a) and R

for 0<=a,b<=1, we get all points in triangle

u

v

P

Normals
• Every plane has a vector n normal (perpendicular,

orthogonal) to it
• From point/vector form

– P(a,b)=R+au+bv
we know we can use the cross product to find
– n = u ´ v

• Plane equation:
– n ×x – d = 0,
– where d = -n ×p and p is any point in the plane

Normal for Triangle

p0

p
1

p2

n
plane n ·(p - p0) = 0

n = (p2 - p0) ×(p1 - p0)

normalize n ¬ n/ |n|

p

Note that right-hand rule determines outward face

Convexity
•An object is convex iff for any two points in
the object all points on the line segment
between these points are also in the object

P

Q Q

P

convex not convex

Affine Sums
•Consider the “sum”
P=a1P1+a2P2+…..+anPn

Can show by induction that this sum makes
sense iff
a1+a2+…..an=1
in which case we have the affine sum of the
points P1,P2,…..Pn

• If, in addition, ai>=0, we have the convex
hull of P1,P2,…..Pn

Convex Hull
Consider the linear combination
P=a1P1+a2P2+…..+anPn
• If a1+a2+…..an=1

– (in which case we have the affine sum of the points P1,P2,…..Pn)

and if ai>=0, we have the convex hull of P1,P2,…..Pn

• Smallest convex object
containing P1,P2,…..Pn

Frames

•A coordinate system is insufficient to
represent points

• If we work in an affine space we can add a
single point, the origin, to the basis vectors
to form a frame

P0

v1
v2

v3

Representing one basis in terms
of another

Each of the basis vectors, u1,u2, u3, are vectors that
can be represented in terms of the first basis

u1 = g11v1+g12v2+g13v3
u2 = g21v1+g22v2+g23v3
u3 = g31v1+g32v2+g33v3

v

Matrix Form
The coefficients define a 3 x 3 matrix

and the bases can be related by

a=MTb

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ggg
ggg
ggg

3231

232221

131211

33

M =

Translation
•Move (translate, displace) a point to a new
location

•Displacement determined by a vector d
–Three degrees of freedom
–P’=P+d

P

P’

d

How many ways?
Although we can move a point to a new location in

infinite ways, when we move many points there is
usually only one way

object translation: every point displaced
by same vector

Translation Using
Representations

Using the homogeneous coordinate
representation in some frame

p=[x y z 1]T

p’=[x’ y’ z’ 1]T

d=[dx dy dz 0]T

Hence p’ = p + d or
x’=x+dx
y’=y+dy
z’=z+dz

note that this expression is in
four dimensions and expresses
point = vector + point

Translation Matrix
We can also express translation using a
4 x 4 matrix T in homogeneous coordinates
p’=Tp where

T = T(dx, dy, dz) =

This form is better for implementation because all affine
transformations can be expressed this way and multiple
transformations can be concatenated together

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

1000
d100
d010
d001

z

y

x

Homogeneous Coordinates
The homogeneous coordinates form for a three dimensional

point [x y z] is given as
p =[x’ y’ z’ w] T =[wx wy wz w] T

We return to a three dimensional point (for w¹0) by
x¬x’/w
y¬y’/w
z¬z’/w
If w=0, the representation is that of a vector
Note that homogeneous coordinates replaces points in three

dimensions by lines through the origin in four dimensions
For w=1, the representation of a point is [x y z 1]

Homogeneous Coordinates
and Computer Graphics

•Homogeneous coordinates are key to all
computer graphics systems

–All standard transformations (rotation,
translation, scaling) can be implemented with
matrix multiplications using 4 x 4 matrices

–Hardware pipeline works with 4 dimensional
representations

–For orthographic viewing, we can maintain w=0
for vectors and w=1 for points

–For perspective we need a perspective division

Rotation about the z axis
• Rotation about z axis in three dimensions leaves all

points with the same z
–Equivalent to rotation in two dimensions in

planes of constant z

–or in homogeneous coordinates
p’=Rz(q)p

x’=x cos q –y sin q
y’ = x sin q + y cos q
z’ =z

Rotation Matrix

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é
qq
q-q

1000
0100
00 cossin
00sin cos

R = Rz(q) =

Rotation about x and y axes
• Same argument as for rotation about z axis

–For rotation about x axis, x is unchanged
–For rotation about y axis, y is unchanged

R = Rx(q) =

R = Ry(q) =

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

qq
qq

1000
0 cos sin0
0 sin- cos0
0001

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

qq

qq

1000
0 cos0 sin-
0010
0 sin0 cos

Scaling

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

1000
000
000
000

z

y

x

s
s

s

S = S(sx, sy, sz) =

x’=sxx
y’=syx
z’=szx

p’=Sp

Expand or contract along each axis (fixed point of origin)

Reflection

corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1

Inverses
• Although we could compute inverse matrices by

general formulas, we can use simple geometric
observations

–Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz)

–Rotation: R -1(q) = R(-q)
• Holds for any rotation matrix
• Note that since cos(-q) = cos(q) and sin(-
q)=-sin(q)

R -1(q) = R T(q)
–Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz)

Concatenation

• We can form arbitrary affine transformation
matrices by multiplying together rotation,
translation, and scaling matrices

• Because the same transformation is applied to
many vertices, the cost of forming a matrix
M=ABCD is not significant compared to the cost
of computing Mp for many vertices p

• The difficult part is how to form a desired
transformation from the specifications in the
application

Order of Transformations

•Note that matrix on the right is the first
applied

•Mathematically, the following are equivalent
p’ = ABCp = A(B(Cp))

•Note many references use column matrices
to represent points. In terms of column
matrices

p’T = pTCTBTAT

General Rotation About the
Origin

q

x

z

y
v

A rotation by q about an arbitrary axis
can be decomposed into the concatenation
of rotations about the x, y, and z axes

R(q) = Rz(qz) Ry(qy) Rx(qx)

qx qy qz are called the Euler angles

Note that rotations do not commute
We can use rotations in another order but
with different angles

Rotation About a Fixed Point
other than the Origin

Move fixed point to origin
Rotate
Move fixed point back
M = T(pf) R(q) T(-pf)

Instancing

• In modeling, we often start with a simple
object centered at the origin, oriented with
the axis, and at a standard size

•We apply an instance transformation to its
vertices to

Scale
Orient
Locate

Shear

• Helpful to add one more basic transformation
• Equivalent to pulling faces in opposite directions

Shear Matrix

Consider simple shear along x axis

x’ = x + y cot q
y’ = y
z’ = z

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é q

1000
0100
0010
00cot 1

H(q) =

Computer Viewing

Ed Angel
Professor of Computer Science,

Electrical and Computer Engineering,
and Media Arts

University of New Mexico

Objectives

• Introduce the mathematics of projection

Computer Viewing
•There are three aspects of the viewing
process, all of which are implemented in the
pipeline,

–Positioning the camera
• Setting the model-view matrix

–Selecting a lens
• Setting the projection matrix

–Clipping
• Setting the view volume
• (default is unit cube, R3, [-1,1])

Default Projection
Default projection is orthogonal

clipped out

z=0

2

Moving the Camera Frame
• If we want to visualize object with both positive and

negative z values we can either
–Move the camera in the positive z direction

• Translate the camera frame
–Move the objects in the negative z direction

• Translate the world frame
•Both of these views are equivalent and are
determined by the model-view matrix

Moving the Camera
•We can move the camera to any desired
position by a sequence of rotations and
translations

•Example: side view
–Rotate the camera
–Move it away from origin
–Model-view matrix C = TR

OpenGL Orthogonal Viewing

near and far measured from camera

OpenGL Perspective

Using Field of View
• Parameters fovy, aspect, near, far often
provides a better interface

aspect = w/h

front plane

Projections explained differently

• Read the following slides about orthogonal
and perspective projections by your selves

• They present the same thing, but explained
differently

Projections and Normalization

•The default projection in the eye (camera) frame
is orthogonal

•For points within the default view volume

•Most graphics systems use view normalization
–All other views are converted to the default view by

transformations that determine the projection matrix
–Allows use of the same pipeline for all views

xp = x
yp = y
zp = 0

Homogeneous Coordinate
Representation

xp = x
yp = y
zp = 0
wp = 1

pp = Mp

M =

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

1000
0000
0010
0001

In practice, we can let M = I and set
the z term to zero later

default orthographic projection

Simple Perspective

•Center of projection at the origin
•Projection plane z = d, d < 0

Perspective Equations
Consider top and side views

xp =

dz
x
/

dz
x
/

yp =
dz
y
/

zp = d

Homogeneous Coordinate Form

M =

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

0/100
0100
0010
0001

d

consider q = Mp where

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

1
z
y
x

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

dz
z
y
x

/

q = Þ p =

Perspective Division
•However w ¹ 1, so we must divide by w to
return from homogeneous coordinates

•This perspective division yields

the desired perspective equations
•We will consider the corresponding clipping
volume with the OpenGL functions

xp =
dz
x
/

yp =
dz
y
/

zp = d

Normalization

•Rather than derive a different projection
matrix for each type of projection, we can
convert all projections to orthogonal
projections with the default view volume

•This strategy allows us to use standard
transformations in the pipeline and makes for
efficient clipping

Pipeline View

modelview
transformation

projection
transformation

perspective
division

clipping projection

nonsingular
4D ® 3D

against default cube 3D ® 2D

Notes
•We stay in four-dimensional homogeneous
coordinates through both the modelview and
projection transformations

–Both these transformations are nonsingular
–Default to identity matrices (orthogonal view)

•Normalization lets us clip against simple cube
regardless of type of projection

•Delay final projection until end
–Important for hidden-surface removal to retain

depth information as long as possible

Orthogonal Normalization

normalization Þ find transformation to convert
specified clipping volume to default

Orthogonal Matrix
• Two steps

–Move center to origin
T(-(left+right)/2, -(bottom+top)/2,(near+far)/2))

–Scale to have sides of length 2
S(2/(left-right),2/(top-bottom),2/(near-far))

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

-
+

-

-
+

-
-

-
-

-
-

1000

200

020

002

nearfar
nearfar

farnear

bottomtop
bottomtop

bottomtop

leftright
leftright

leftright

P = ST =

Final Projection
• Set z =0
• Equivalent to the homogeneous coordinate

transformation

• Hence, general orthogonal projection in 4D is

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

1000
0000
0010
0001

Morth =

P = MorthST

General Shear

top view side view

DOP = Direction of Projection

Shear Matrix
xy shear (z values unchanged)

Projection matrix

General case:

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é
-
-

1000
0100
0φcot10
0θcot01

H(q,f) =

P = Morth H(q,f)

P = Morth STH(q,f)

Effect on Clipping
•The projection matrix P = STH transforms
the original clipping volume to the default
clipping volume

top view

DOP DOP

near plane

far plane

object

clipping
volume

z = -1

z = 1

x = -1
x = 1

distorted object
(projects correctly)

Simple Perspective
Consider a simple perspective with the COP (=center

of projection) at the origin, the near clipping plane at
z = -1, and a 90 degree field of view determined by
the planes
x = ±z, y = ±z

Perspective Matrices

Simple projection matrix in homogeneous
coordinates

Note that this matrix is independent of the far
clipping plane

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

- 0100
0100
0010
0001

M =

Generalization

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

- 0100
βα00
0010
0001

N =

after perspective division, the point (x, y, z, 1) goes to

x’’ = x/z
y’’ = y/z
Z’’ = -(a+b/z)

which projects orthogonally to the desired point
regardless of a and b

Picking a and b
If we pick

a =

b =

nearfar
farnear

-
+

farnear
farnear2

-
*

the near plane is mapped to z = -1
the far plane is mapped to z =1
and the sides are mapped to x = ± 1, y = ± 1

Hence the new clipping volume is the default clipping volume

Normalization Transformation

original
clipping

volume
original object new clipping

volume

distorted object
projects correctly

Normalization and
Hidden-Surface Removal

• Although our selection of the form of the
perspective matrices may appear somewhat
arbitrary, it was chosen so that if z1 > z2 in the
original clipping volume then the for the
transformed points z1’ > z2’

• Thus hidden surface removal works if we first apply
the normalization transformation

• However, the formula z’’ = -(a+b/z) implies that the
distances are distorted by the normalization which
can cause numerical problems especially if the near
distance is small

OpenGL Perspective
•Unsymmetric viewing frustum possible:

OpenGL Perspective Matrix

•The normalization by a perspective projection
requires an initial shear to form a right
viewing pyramid, followed by a scaling to get
the normalized perspective volume. Finally,
the perspective matrix results in needing only
a final orthogonal transformation

P = NSH

our previously defined
perspective matrix

shear and scale

Why do we do it this way?

•Normalization allows for a single pipeline
for both perspective and orthogonal viewing

•We stay in four dimensional homogeneous
coordinates as long as possible to retain
three-dimensional information needed for
hidden-surface removal and shading

•We simplify clipping

