
Ray Tracing II

Tomas Akenine-Möller
Modified by Ulf Assarsson
Department of Computer Engineering
Chalmers University of Technology

1

Image: Nvidia RTX ray tracer

Lab 7
l YOU MUST START NOW

– Or you may fail!
– Purpose of Lab 7:

l Now, you have to implement more on your own (for real),
without close guidance.

– For real-time rendering and learning to do special
effects.

– Or: Path Tracer Lab for realistic beautiful rendering!

2

Overview
l Shadow Cache:

– typiccan give speedup for shadow rays if cached triangle is large (i.e., high
probability of next shadow ray hitting same triangle).

l Spatial data structures and ray traversal
– Bounding volume hierarchies (BVHs)
– BSP trees
– Grids
– Cache aware coding: Shoot primary rays according to a Hilbert

Curve.
l Materials

– Fresnell Effect
– Beer’s Law

l Additional ray tracing techniques
– Constructive Solid Geometry
– Fractals

3

The Shadow Cache

l It does not matter which object between the red ellipse and the light is
detected

– The point is in shadow if we find one object between
l Assume shadow ray A hits the triangle

– store triangle in shadow cache
l For next ray B, start with testing the triangle in the shadow cache
l If high coherence, then we’ll get many hits in cache
l E.g., use a cache per level of reflection-/refraction-ray recursion
l Shadow cache not popular in parallel ray tracing. (May use shadow map

instead.)

image plane
light source

ray A

shadow ray A

ray B shadow ray B

4

Spatial data structures and
Ray Tracing
l Use spatial data structures to get faster rendering

– Because ray tracing is often slow
– Avoids intersection tests between the ray and each object in

the scene.
l Rather, you test a small subset
l Typically, O(log n) instead of O(n) for each ray

l We will look at
– Bounding volume hierarchies (BVHs)
– BSP trees
– Grids

5

Bounding Volume Hierarchy (BVH)
l We’ll use axis-aligned bounding boxes

(AABBs) here
l The goal: find closest (positive) intersection

between ray and all objects in the scene
l Simple: traverse the tree from the root
l If the ray intersects the AABB of the

root, then continute to traverse the
children

l If ray misses a child, stop traversal
in that subtree

6

Example: ray against BVH

l Without BVH, we would test each triangle of
every object against the ray

l With BVH:
– Only test the triangles of the leaves against the ray
– Plus some AABBs, but these are cheap

hit

hit

hit

miss

miss

7

Optimizations
l Always make a reference implementation

– And save it for benchmarking!

l Benchmarking is key here:
– Not all ”optimizations” yield better performance
– However, this definitely depends on what kind

of scene you try to render

l Preprocessing is good
– Use when possible

8

BVH traversal optimizations
1. Use current closest intersection as an upper bound on how far

the ray may ”travel”
l Example, if a ray hits a polygon at distance t, then we don’t need to

traverse a BV which is located farther than t.
2. Can also sort the BVs with respect to hit distance along

ray, and only open up if necessary.
3. Shadow cache can be used for shadow rays

9

t• Shadow cache is not efficient for small
triangles and are not popular for parallel code
(CPU/GPU) since parallelism breaks the
assumption that the next hit is close to the
previous hit. But shadow maps may be used
instead.

• They are also not popular for path tracing (see
next week) due to rays being incoherent.

• However, they can be good for soft shadows.

If an intersection t is
found for the green
box, there is no
closer t in the purple
box

AABB hierarchy optimization
l An AABB is the intersection

of three slabs (2 in 2D)
l Observation: all boxes’ slabs

share the same plane normals
l Exploit this for faster AABB/ray

intersection!
l AABB/ray needs to compute one division

per x,y, and z
– Precompute these once per ray, and use for

entire AABB hierarchy

BOX

10

BVH traversal… skip-pointer trees

l Standard (depth-first) traversal is
slow:
– Involves recursion
– And memory may be allocated once

per node

B
ria

n
Sm

its
, ”

Ef
fic

ie
nc

y
Is

su
es

 in
 R

ay
 T

ra
ci

ng
”,

 Jo
ur

na
l o

f G
ra

ph
ic

s
To

ol
s,

vo
l.

3,
 n

o.
 2

. p
p.

 1
—

14
, 1

99
8.

A

B

D E F

C

l Left-child, right-sibling, parent pointers
avoids recursion
§ Instead follow pointers

A

B

D E F

C

l Store these in a clever way, with skip
pointers
• Store nodes in depth-first order
• A skip pointer points to the place where

traversal shall continue given a miss

A
B
D
E
F
C

11 Good for single-threaded (non-parallel) code.

l If no miss, continue in depth first order
l If nodes are allocated linear in memory,

then we can expect many cache hits

l However, a node’s children cannot be
accessed in any order (child n can only be
reached via child 0..n-1).

– Is a problem when first sorting the children on distance.
– Also, for modern parallel CPUs/GPUs, you often want all

of a node’s children to be located adjacently in memory,
so they can be efficiently fetched for testing in parallel.

l Then, better the parent just stores one pointer to an array of all
children. This also decreases the number of pointers needed to store,
which significantly lowers memory usage, which increases cache
coherency.

A
B
D
E
F
C

12

B
ria

n
Sm

its
, ”

Ef
fic

ie
nc

y
Is

su
es

 in
 R

ay
 T

ra
ci

ng
”,

 Jo
ur

na
l o

f G
ra

ph
ic

s
To

ol
s,

vo
l.

3,
 n

o.
 2

. p
p.

 1
—

14
, 1

99
8.

BVH traversal… skip-pointer trees

A

B

D E F

C

Axis-Aligned BSP trees
l An advantage is that

that we automatically
traverse the space in a
rough sorted order
along the ray

l Pretty simple code as we will see

A

B

C

D E

13

If we have a fixed order for the splitting dimension (e.g.
x,y,z,x,y,z… or z,x,y,z,x,y… etc) this is called a kD-tree.

Axis-aligned BSP tree against ray
RayTreeIntersect(Ray, Node, min, max)
{

if(node==NULL) return no_intersection;
if(node is leaf)
{

test all primitives in leaf, discard if not between min and max;
return closest intersection point if any;

}
dist = signed distance along Ray to cutting plane of Node;
near = child of Node that contains ray origin;
far = child of Node that does not contain ray origin;
if(dist>0 and dist<max) // interval intersects plane of Node
{

hit=RayTreeIntersect(Ray,near,min,dist); // test near side
if(hit) return hit;
return RayTreeIntersect(Ray,far,dist,max); // test far side

}
else if(dist>max or dist<0) // whole interval is on near side

return RayTreeIntersect(Ray,near,min,max);
else // whole interval is on far side

return RayTreeIntersect(Ray,far,min,max);
}

K
el

vi
n

Su
ng

 a
nd

 P
et

er
 S

hi
rle

y,
 ”

R
ay

 T
ra

ci
ng

 w
ith

 th
e

B
SP

 T
re

e”
,

G
ra

ph
ic

s G
em

s I
II

, p
p.

 2
71

—
27

4,
 1

99
2.

14

Bonus

AA-BSP Tree Traversal
l Test the planes against the ray
l Test recursively from root
l Continue on the ”hither” side first, then farther side

eye

0

1a

A B

1b

C 2

D E

1a 1b

2

0

RayTreeIntersect(Ray, Node, min, max){
if(node==NULL) return no_intersection;
if(node is leaf)

test all primitives in leaf, discard if not between min and max;
return closest intersection point if any;

dist = signed distance along Ray to cutting plane of Node;
near = child of Node that contains ray origin;
far = child of Node that does not contain ray origin;
if(dist>0 and dist<max) // interval intersects plane of Node

hit=RayTreeIntersect(Ray,near,min,dist); // test near side
if(hit) return hit;
return RayTreeIntersect(Ray,far,dist,max); // test far side

else if(dist>max or dist<0) // whole interval is on near side
return RayTreeIntersect(Ray,near,min,max);

else return RayTreeIntersect(Ray,far,min,max); // whole interval is on far side
}

max

dist

15 Ulf Assarsson © 2010

K
el

vi
n

Su
ng

 a
nd

 P
et

er
 S

hi
rle

y,
 ”

R
ay

 T
ra

ci
ng

 w
ith

 th
e

B
SP

 T
re

e”
,

G
ra

ph
ic

s G
em

s I
II

, p
p.

 2
71

—
27

4,
 1

99
2.

Bonus

dist

max

Grids
l A large box is

divided into a
number of equally-
sized cells

lEach grid cell stores pointers to all objects
that are inside it

lDuring traversal, only the cells that the ray
intersect are visited, and objects inside these
cells are tested

16

Grid Traversal Algorithm
l A modified line generating algorithm can be used

– Bresenham or DDA
l But easier to think in geometrical terms

– Red circles mark where ray goes from one grid box to the next

Intersection points
appear with irregular

spacing

But, look first at only
intersection with horizontal
lines, then vertical

These are regular spaced!
Use that in implementation

17

Traversal example
loop

if(tNextX < tNextY)
X= X + stepX;
tNextX += tDeltaX;

else
Y= Y + stepY;
tNextY += tDeltaY;

VisitVoxel(X,Y); tNextY
tNextX

tNextX = t-value at next step in x

tNextY = t-value at next step in y

stepX/Y = ± 1 depending on ray’s slope18

At start, compute
tNextX and tNextY

ray origin

Grid Traversal (2)
l Easy to code up,
l Check out the following paper (for those

who want to implement in their path
tracer):
– Amantindes and Woo, ”A Fast Voxel Traversal

Algorithm for Ray Tracing”, Proc. Eurographics
'87, Amsterdam, The Netherlands, August 1987,
pp 1-10.

l Available on course website

19

Testing the same object more than
once in grids

l If an object intersects more
than one grid box, and a ray
traverses these, then you may
test the same object twice
(waste of performance).

l Solution: assign a unique rayID
to each ray. For each tested
object, store the {hitPt,rayID}
with the object.

l If rayID of ray and object are
the same, then we have
already tested the object.

20
So then just fetch the hitpoint, stored with the object

This is called
mailboxing

rayID

(hitPt, rayID)

Choose a good grid resolution
l Assume n objects in scene, g is grid

resolution
3 ng = lOnly good for cubes!

lBetter to have different number of grid boxes
per side

lLet the number of grid boxes per side be
proportional to the length of the box side

l See Klimaszewkski and Sederberg, in IEEE Computer
Graphics & Applications, Jan-Feb, 1997, pp. 42—51.

21

42 3x6

Hierarchical and Recursive Grids
l We often use hierarchies in CG, so we

can do that now as well
l When a grid box (voxel) contains many

primitives, introduce a smaller grid in that
grid box

Hierarchical grid
Recursive grid

22

Hierarchies to avoid the “Teapot in
a stadium" problem

23

Which spatial data structure is
best?
l Depends on implementation, the type of scene, how complex

shading, etc, etc.
l Kd-trees:

– Fastest to traverse, little memory, slow to build
l AABB-hierachies:

– Fast to build, slower to traverse (not automatically in order along ray.
Fast to update for moving rigid objects.

– CPU ray tracing: SBVHs currently the winner
l Grids

– Fast to build, middle fast to traverse, typically needs to be
hierarchial/recursive

– Hierarchical grids can be fast to update for moving rigid objects.

24

Split BVHs
l SBVH – typically AABB hierarchies but allowing triangles to be

part of several BV:s, to minimize empty volume and overlaps: E.g:
– A bit complicated. Requires careful analysis. See papers, Google on

best ways or see Intel’s Embree
– Popular for CPU ray tracing but not real-time GPU ray tracing.

25

Clip and split
boxes. Add
triangles to boxes if
necessary.

Split boxes.

Cache awareness
l To maximize cache locality, you can

utilize that the next ray likely will access
roughly the same memory locations since
it will traverse roughly the same part of
the tree and geometrical objects.
– To maximize spatial locality, shoot the primary

rays according to a Hilbert curve, instead of
sequentially scanline by scanline….

26

Hilbert Curve

27

2x2 pixels 4x4 pixels

16x16 pixels8x8 pixels

For code, see: https://en.wikipedia.org/wiki/Hilbert_curve

Z-curve

28

Shoot rays r = 0..w*h
Assume ray is the n:th ray, and n’s binary value is:

n = … y3 x3 y2 x2 y1 x1 y0 x0
e.g., n = 1 1 0 1 0 1 1 0 = 214

Then, the ray’s x and y coordinates are:
x_coord = … x3 x2 x1 x0 = 1 1 1 0 = 14
y_coord = … y3 y2 y1 y0 = 1 0 0 1 = 9

For primary ray n:
• the screen-x coord

is every 2nd bit of n,
starting with bit 0.

• the screen-y coord
is every 2nd bit of n,
starting with bit 1.

or “Morton order”

Recipe to shoot primary
rays in a Z-curve order:

Faster Grid Traversal using
Proximity Clouds/Distance Fields

“Proximity Clouds
– An Acceleration
Technique for 3D
Grid Traversal”,

Daniel Cohen and
Zvi Sheffer

Ulf Assarsson © 2010

Demo
using SSE

29

MATERIALS
l Types of material, and how light interacts

– Glass, plastic... (dielectrics)
– Metal (conductive)

30

Smooth Metal
(slät metall)

l Often used material, and well-understood in
computer graphics

l We’ll present a good approximation here
l Metals obey three ”laws”:

– The highlight often has the same color as the diffuse
– Law of reflection (and reflections are typically strong)
– The Fresnel equations:

How much is reflected and how much is absorbed
l Though, Fresnel effect for metals is subtle
l Higher for dieletric materials

31

Smooth metals (2)
l Highlight
l The law of reflection
l If the metal is smooth, we can say that it

reflects perfectly in the reflection direction
l Fresnel equations depend on

• Incident angle of the light
• Index of refraction (e.g., chromium oxide: 2.7)

l Can compute polarized, and unpolarized
values for the light (in CG, we ignore
polarization, often)32

plastic metal
Types of highlights:

l At some places, the reflection is saturated (almost white), but mostly, it is
clearly modulated by the copper color
– Plastic adds the pure reflection color
– Metal adds a modulated reflection color33

Fresnel
l F describes the reflectance at a surface at

various angles (n=index of refraction)

34

=anglec = l • n

c = v • n

c = v • h

h = v+l/||v+l|

Or

Or if you use the
half vector instead
of normal:

An approximation to Fresnel
(by Schlick)

l v is the vector from the point on the
surface to the eye

l n is the surface normal
l R0 is the reflectance when v.n=1
l Works well in practice

l Use F for your reflection rays in shading:
– F*trace(reflection_vector)
– Can be used for rasterization too (e.g. when applying result from

cubemaps)

€

F ≈ R0 + (1− R0)(1− v⋅ n)
5

35

Fresnel, example
l What does it look like
l A black dielectric sphere (glass or plastic)

– in computer graphics, glass can be black
l Which has the Fresnel effect?

Images courtesy of Steve Westin, Cornell University36

Smooth dielectric materials
l A dielectric is a transparent material
l Refracts light
l Filters light (due to impurities in material)
l Examples (index of refraction):

– Glass = 1.5
– Plastic = ~1.5
– Diamond = 2.4
– Water = 1.33
– Air = 1.0

37

Smooth Dielectric
Low reflectance
(water, glass, plastic,
etc. ~5%)
Refracted light
continues inside the
material, being
scattered by
impurities until it is
absorbed or re-exits
the surface

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan38

Glossy reflecton

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan39

Semi-Rough (Glossy)
Most surfaces are not flat at all
scales

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan40

Semi-Rough (Glossy)
Most surfaces are not flat at all
scales

Many surfaces which appear flat at
visible scales have complex
microscale structure

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan41

Semi-Rough (Glossy)
Most surfaces are not flat at all scales

Many surfaces which appear flat at visible
scales have complex microscale structure
At the smallest scale we can often treat the
surface as flat again

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan42

Semi-Rough (Glossy)
A surface patch contains micro-facets
with continuously distributed normals
Light reflects off facets, ‘spreads
out’
In ‘semi-rough’ surfaces distribution
of micro-normals biased to macro-
normal

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan43

Semi-Rough (Glossy)
A surface patch contains micro-facets
with continuously distributed normals
Light reflects off facets, ‘spreads
out’
In ‘semi-rough’ surfaces distribution
of micro-normals biased to macro-
normal

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan44

Semi-Rough (Glossy)

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan45

Semi-Rough (Glossy)

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan46

Semi-Rough (Glossy)

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan47

Semi-Rough (Glossy)

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan48

Semi-Rough (Glossy)

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan49

Semi-Rough (Glossy)

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan50

Rough Dielectric
Normal distribution is extremely
random
Almost uniformly diffuse with some
retroreflection

From Advanced Real-Time Reflectance, by
Dan Baker, Naty Hoffman & Peter-Pike Sloan51

Smooth dielectric materials (2)
Homegeneous impurities
E.g. Water, transparent plastic, glass…
lLight is attenuated with Beer’s law
lLooses intensity with: dI=-C I ds
lI(s)=I(0)e-Cs

lCompute once for each RGB
lAlso, use the Fresnel equations for these
materials

52

Beer’s Law
Constant intensity decrease at
greater distance due to out-
scattering and absorption.

dI = −CIds

I(s) = I(0)e−C*s ds
I(0) I(s)

s

53

Beer’s law

The taller the glass, the darker the brew,
The less the amount of light that comes through

54

RAY TRACING ADDITIONALS
l Geometrical objects

– Ray intersections: transform ray into object space
– Constructive Solid Geometry
– Blobs

l Procedural textures
– Fractals from noise

l Optics
– E.g., depth-of-field

55

Geometry
l Object-oriented programming

– Makes it simple to add new geometrical objects from
simpler ones. E.g., elipsoid from scaled sphere.

l Just add a transform (TRS)
l The standard trick is not to apply the transform

matrix to the object, but instead inverse-
transform the ray

56 Now, simply a rotaded
and scaled ray vs sphere.

Geometry:
Constructive Solid Geometry (CSG)
l Boolean operations on objects

– Union (or)
– Subtraction (A not B)
– Xor
– And

l Simple to implement
l Must find all intersections with a ray and

an object
l Then do this for involved objects, and

apply operators to found interval
57

Geometry:
Constructive Solid Geometry (CSG)
l Examples, operators:

58

A union B (OR)

A and B

A not B
(A AND !B)

Geometry:
Constructive Solid Geometry (CSG)
l Another

example
l Done with 4

cylinders

59

x

y

Constructive Solid Geometry (CSG)
How to implement

l Try: sphere A minus sphere B (i.e., A not B)

A
B

l In summary: find both entry and exit points on both
spheres. Such two points on a sphere is an interval (1D).
Apply the operator on these intervals60

CSG
l Works on any geometrical object, as long

as you can find all intersection point
along a line
– So, be careful with optimizations…

l And objects should be closed
– Example: put caps on cylinder.

61

Geometry:
Blobs
l A method for blending implicit surfaces

(e.g., spheres, x2+y2+z2=1)
l After blend, you get a higher order

surface
l Need a numerical root finder

62

Blob example

63

Geometry
l Quadrics (2:a-gradsytor)

– Cone, cylinder, paraboloids, hyperboloids, ellipsoids, etc.

l Higher order polynomial surfaces
– Example: torus, 4th degree

l Fractal landscapes
– Pretty simple, fast algorithm exist

64

65

Perlin Noises in 1-D

66

N

x

Noise signal with certain
frequency and amplitude:
(E.g., use random-number
generator and spline interpolation)

Next octave: ~double
frequency, ~half amplitude:

Adding gives Fractal Noise:

Perlin Noises in 1-D

67

Ridged: c-||N(x)-c||
c

N

x

Noise signal with certain
frequency and amplitude:
(E.g., use random-number
generator and spline interpolation)

Next octave: ~double
frequency, ~half amplitude:

Adding gives Fractal Noise:

Perlin Noises in 2-D

68

+ + +

+ =

Weighted Sums

K. Perlin

Noise (1 octave):
-Worn metal
-Water wave

Sum[1/f * noise]:
-Rock
-Mountains
-Clouds

Sum[1/f * |noise|]:
-Turbulent flows
-Fire
-Marble
-Clouds

Sin(x +
Sum[1/f *|noise|]):
-Turbulent flows
-Fire
-Marble

69

7070

71

WebGL examples:
• https://www.shadertoy.com/vi

ew/MdfGRX
• Ladybug (fully procedural,

open in Chrome):
https://www.shadertoy.com/vi
ew/4tByz3

Texturing and Modeling – a procedural approach, by Perlin, Musgrave, Ebert…

Procedural texturing:

More fractal examples…

https://www.shadertoy.com/view/MdfGRX
https://www.shadertoy.com/view/4tByz3

Optics
l You can add

– Fog
– Light fall off : 1/d2

– Fresnel equations
– Depth of field
– Motion blur
– …

72

Participating media

Optics
l Depth-of-field

– Add more samples on a virtual camera lens

73

Soft shadows
l Soft shadows are typically more realistic than hard

shadows
l Examples:

74

Soft shadows
l Why do they appear?
l Because light sources have an area or

volume (seldom point lights)
point source

umbra

area source

umbrapenumbra75

Example

76

Glossy (blurry) reflections
l Trace many reflection directions

– Each perturbed slightly from the main reflection direction:

Do the same
with the transmission

vectors77

Speed-up techniques
l For eye rays:

– Render scene with OpenGL
– Let each triangle or object have a unique color
– Then read back color buffer
– For each pixel, the color identifies the object
– You need fast rendering in order to gain from

this
l the primary rays (eye rays) are typically so few compared

to all other secondary rays, so often not worth optimizing.

78

Typical Exam Questions
– what you need to know

l Draw grid (plain/hierarchical/recursive)
– Mailboxing.

l Draw all our other spatial data structures:
– Octree/quadtree, AABSP-tree (kd-tree), polygon-aligned BSP tree, Sphere/AABB/OBB-

tree,

l What’s a
– skip-pointer tree?
– Shadow cache?
– Kd-tree? (=AABSP with fixed split-plane order)

l Descibe ray/BVH intersection test
l The Fresnel-effect: metal vs dielectrics)

– How does glass/water/air behave?
– How does metal behave?

l Describe how to implement ray/object intersection for Constructive Solid
Geometry

79

