f Assarsson

4

\ . . L

.\\\.\\\\\\\\ss,::.

-v

.

Graphics hardware — why?
e Often said to be "100x” faster than CPU.

— Reason: Simple to parallelize triangle rendering :
e over individual triangles, pixels, (even over x,y,z,w, and r,g,b,a)

e Hardware fixed functions: clipping, rasterizer, texture filtering, fragment-merge, ...

e Current hardware:
— Triangle rasterization with programmable shading.

-~ Massive parallel general-purpose computations:
e CUDA/OpenCL/Compute Shaders (~10.000 ALUs)

— Al computations:
e ~500 tensor cores, each performing a 4x4-matrix mul+add.

- GPU Ray tracing:
e NVIDIA RTX (via OptiX, Vulcan, Microsoft DXR api)

e Although, can write your own GPU ray-tracer (e.g., CUDA or shader based)
— or even WebGPU

Perspective-correct
interpolation of texture
coordinates

(and actually all screen-space-interpolated per-
vertex data)

T VP = . Y oud o

-GROCERY

YELI

'Steel

Monkeys

1
n
)
<
-
o

Game product

Perspective-correct texturing

e How is texture coordinates interpolated over a triangle?
e Linearly?

S33333

S QY

Pedede
sJeN

Linear interpolation Perspective-correct interpolation

>

e Perspective-correct interpolation gives foreshortening effect!

e Hardware does this for you, but you need to understand this
anyway!

Vertices are projected onto
screen by non-linear

Recall the fO"OWing transform. Hence, tex coords

cannot be linearly interpolated
in screen space (just like a 3D-
position cannot be).

e Perspective projection introduces a non-linear
transform by the homogenization step:
— Projection: p=Myv
— After projection p,, is not 1!
- Homogenization: (p,/p,,., p,/p,,, P./P\s» 1)

— Gives (x, y, z, 1), where x, y are the screen-space coordinates and z is depth

a3

4

_ : : S35 SSIiN
Perspective-correct interpolation ‘38“ \‘iz‘
e Linear interpolation in screen space does not work for u,v

e Why:
- We have applied a non-linear transform to each vertex position

(x/w, yiw, zIw, wiw).
e Non-linear due to 1/w — factor from the homogenisation
e Surprisingly, we can screen-space interpolate any vertex attribute a/w (including
1/w) perspective correctly.

— For a proof, see Jim Blinn,”"W Pleasure, W Fun”, IEEE Computer Graphics and
Applications, p78-82, May/June 1998

. (Us/Wo, Vo/ws, 1/W5)
e Solution: © e

— Interpolate (u/w, v/iw, 1/w), from each vertex, (uw);, (viw);, (1/w);
where w is from homogeneous coordinate

(X,¥,Z,W). (Screen-space coord is (x/w, y/w, z/w, 1)) (U/Wy, VW, 1/Wy)

e Then at each pixel, get u,,v; as: /oo/h/
- w;=1 /(1/W), o 1/0/14/
- U= (u/w); *w, % 74
— Vi = (VIw); * w; 4

Shading is automatically interpolated this way too (though, not as annoying as
textures). Perspective correct interpolation nowadays handled automatically by the GPU.

: : : eI ISSE N
Perspective-correct interpolation ‘38“ “‘iz‘

"Intuitive explanation” (but not proof):

e Linear interpolation in screen space does not work for u,v
e Why:

- We have applied a non-linear transform to each vertex position

(x/w, yiw, zIw, wiw).
e Non-linear due to 1/w — factor from the homogenisation

e Solution:

- We must apply the same non-linear transform to u,v as for x,y,z
e E.g. (u/w, v/iw). This can now be correctly screenspace interpolated since
it follows the same non-linear (1/w) transform (and interpolation) as (x/w, y/w,
z/w).
e S0, linearly interpolate (u/w, v/iw, 1/w), which is computed in screenspace at each
vertex.

e Then at each pixel:
— u; = (uiw), / (1/w),
— v = (Viw) [(1w,

Overview of GPU architecture

-History / evolution

- GPU design: Several corgconsisting of many ALUs
(NVIDIA terminology: Streaming Multiprocessors (SMMs) of many Cores

- GPU vs CPU

Take-away: bandwidth (cost of memory accesses)
IS @ major problem

Background:
Graphics hardware architectures

e Evolution of graphics hardware has started
from the end of the pipeline

— Rasterizer was put into hardware first (most
performance to gain from this)

- Then the geometry stage
— Application will not be put into GPU hardware (?)

e Two major ways of getting better
performance:
— Pipelining
- Parallellization
- Combinations of these are often used

Parallellism
e "Simple” idea: compute n results in parallel, then

combine results

e Not always simple
- Try to parallelize a sorting algorithm...

- But vertices are independent of each other, and also pixels, so
simpler for graphics hardware

e Can parallellize both geometry and rasterizer stage:

Application (A)

Geometry Rasterizer
stage

CHALMERS Department of Computer Engineering

The graphics-pipeline’s funcional
blocks and their relation to hardware

(for modern graphis card)

Vertex-, Geometry- and Fragment shaders
exectued on a pool of thousands of ALUs

» Fixed function hardware

Application
PCI-E x16

Vertex Vertex Vertex
shader shader ¢ e* shader

Primitive assembly
Geo Geo Geo
shader shader shader

Clipping

Fragment Generation
Fragment Fragment Fragment
shader shader O 00 shader
Fragment Fragment e o o Fragment
Merge Merge Merge

» Fixed function hardware

| GeForce 7800 rchitecture (2006

<3

l“@ﬁﬁﬁ""

Pm Parttion Partion m

Graphics Processing Unit - GPU

4 1.5 GB RAM Memory

=2 T
Py -
<

- GPU

&‘“\\\\“
)
=

» NVIDIA Geforce GTX 580

14'eyond Programmable Shading NVIDIA 3080 Ti (NZOZO)

AAANARRAARARRRRRRRA AR
PR ON FEEIR RPN PRON

- e -——

BARARARARRARA R AR
1 i
-

TRRTD TINY ENNROONIE - INOTE SRERY EIOH SVINY ERORONN{ SEDYG§ RENNORTRN (RNREREH S

e ———— .- e

e Rl e

. muxuxm nunu:t

.
i

ElEE el Bl lE el e et ot ch ot o o e H o

dalatitely

L] n

| =

»

dhiil “lﬂ L

r-.n-bon
---r--rf-r-rr'

-I- -
KR}

o B B

ﬁ_- h'-

2!

""'l"'!"’!'!"'!'!'I'!'!'!'l'l'l'!'!'!'!'!'!'!!!!!!!'!!!E!!!!!!l!!!!!!.!

a=pSy a=n

h

ll -y umn -q -Iq .ﬂq

,-‘

""";.n Wk

|.1En.runa:

s gSgEpEgtEy

AENEEENEE SNANANNS -
ANEEEEEE SNGNANNN [T

mn
LLLLLLL L L L L L]

mn
ANNEEANE SESNNANS JESS -
NENNENNENE SNNNNSNN g
SEEENEES SNNNANNE —
NENNEEEEE REANANNN i
TR . :’.";
)-
2 otk
ANNENEEN SNSNNNNN g R
ENENEEEN SENNENNS 3
HENENEEE ANANNNNS Ll
ANNNNEEN SNINNNNS T
NENENEEN SNSNNNNE -
ANEANANE SNANANNN SRR Shin-
WENNENEN ERANNAAN 552; HhE
NENEEEEN SEANNNNN ssas It
T
e
TN -
LUk
e
3} e
»o s

"
B -

zh

ENNNENEE EANNANAS
NNNNEENN ERARNNNN
SEEENENESN SEANNNNE
ANENANEN NANNNANN I
NNNNEEEN NNANNNNN 3 “
NENENNEN ENSNNANN "™ O

NENSEEEE SNANNNNN =
ENNSENNS suNsNENs g |

NENEEENN NEANNNNN
EENSNNNN SNNNNNNS -
ANNANENN NANNNNAN e
ANNNEENN SNNSNNNN | ‘
ANNNNNNS ERSNENNN
ANNSAANN SAANNNAE) -3 .
NNNSNNNN SENNNENS . . © "= I:
NENNREEE NANNNNNS ” |= :

rkr IFI-I.I-.....PII r-r..lr

ar it 01 OB OH OO

:i?'lla . mlﬂa“lli1lhllli!l!ﬁ

PCl Express 3.0 Host Interface

SHALMERS s R

16 Cores (“SMM”)
2MB L2 cache

64 output pixels / clock
(i.e., 64 ROPs)

2048 ALUs (“cores”)
~6 Tflops

IIIIIIII
ll
ll

jonuon Aowon

Memory Controller

19

Each Core:

e 128 ALUs

e 96KB L1 cache
e & TexUnits

* 32 Load/Store R R e R

g = | = = =B === l=1=}l|| 2
g EEEE EEEE ll:l "Ren Ll A R l:ﬂl EeEe = e H g

memory

‘I‘ Il
r a

Raster Engine

T i
e
29
-

v rha s g bwond
ARGy . SIS i

SRR samram s ramanars T o
Y D ki
.

18

008 - AL -COoaNI-081 ™ .

o g—

NVIDIA Pascal GP100 2016
(GTX 1080 / T1tan X)

£
1
B

ok - mless - - bmiss c amigm

e Ol) e e~ Cat— —— \—— C—
.. p
- - -

sesenees § SESREEE Y 4 SINENBII Y # SEEleNNE Y

» . .
fe N - . .

: : 2 :

. : 4 s

. . . .

: : : :

(¥ : : :
presesves d 08 s & b < =E
LER L R R EEL PR L R T T T

3584 ALUs
F 11 Tflops
_ 15.3Btrans.
16 GB Ram
4MB L2
~64KB L1
256KB regs/SM
224 tex units

* SANN9Y A9 qEER

o L s | s L S L S L S L am

Department of Computer 7016 ng

CHALMERS

PCI Express 3.0 Host Interface

i T | : |
L TRC

"
s
’

Insiritiom Cache

we

)
S22

415
we

L]
we
GPC

S

60 cores
64 ALU
> 3840 ALUs

z foweyy ppimpueg yBi

GPU
= Core

-
o —
(oF
195}
o
(D]
©
<
=
o
1

90}
)
S
S)
&)
<
(0.0}
Q)
N

S GAMERSEENEXUS

ing

~ ImstructionBuffer ~ InstructionBuffer

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit

& 3 . e

Register File (32,768 x 32-bit) Register File (32,768 x 32-bit)
) [O - | O I~
[[O - o | e O - o
[I I~ (| [I
[[- | e
[I - | O -
[0 - | [O - o
[I O (o | [I) O =
[[[- o | [- o

-]
>

Tex

-
®
=

. ex e

|

Al] = | N8
¢ | = ; 23
Iﬂ' —_ HE iIIi
5l T e |l === TlE

| = LN
it . e

A ‘g—t‘g‘j

|
: GPU |
SM: 64 ALUs |
= ¢ | =55376 ALUs |l
- disabled spill z= ==
— 51202 ALUs —

=
o = =
jil| ‘”\-

— || ==

]-

1 ===
=) =)

= i I V -:344 -‘-

s = |
[Jajjonuo Kioway ” Jajjonuoy Aoway || Jsjj0nu0) Koway || Jsjjonuon Kioway
: H

S = = o = =]

NVIDIA Volta GV100
|

SM
[WarpScheduler (32 thread/clk) |
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
FP64 |INT INT .. FP64 | INT INT ..
FP64 INT INT .- FP64 INT INT .-
FP64 INT INT .. FP64 INT INT ..
FPes .. TENSOR TENSOR et R .. TENSOR TENSOR
FP64 INT INT .. CORE CORE FP64 INT INT .. CORE CORE
FP64 INT INT .. FP64 INT INT ..
FP64 | INT |INT .. FP64 | INT | INT -.
FP64 INT INT .. FP64 INT INT ..
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST SFU ST ST ST ST ST ST ST ST SFU
[WarpScheduler (32threadiclk)
Dispatch Unit (32 threadlclk) Dispatch Unit (32 thread/clk)
C Register File (16,384 x 32-bit)
g e
* .64 32-bit fp/int ALUS & wr e
- " e e
e 512 16-bit ALUs
................ NI .. TENSOR TENSOR
e EEEE .- CORE | CORE e RS .- CORE = CORE
FP64 INT INT .. FP64 INT INT -.
FP64 INT INT .. FP64 INT INT ..
FP64 INT INT .. FP64 INT INT ..
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST SFU ST ST ST ST ST ST ST ST SFU

2018

Tensor core
per clock:

D =

FP16 or FP32

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

*.D/ LD/
5T ST

INT

INT INT
INT INT
INT INT
INT INT
INT INT
INT INT
INT INT

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

SFU

FP16 or FP32

2018

TU102

Ing

NVIDIA Tur

L3
= _:_ _:_ i <1

qd1Ju14uq44J.
ii; sHii; i li: : :

PRI e)

] $ 22 22 ‘22 2 2 2% ‘21 t S
Iz Mg 500 s gatt gl Hg SR S8 il o7
Vg

l.nllll —— i e e o b

128 ALUs
> 4608 ALUs
+ ~550 tensor cores

36 cores
+ 72 RT cores

18.6 billion transistors

GPU
Core

23

NVIDIA Turing TU102 2018

TURING TU102
PCI Express 3.0 Host Interface
GigaThread Engine
ki GPC
£ | -
i 0000 n
NEENLERER iR e
S8 '._ZJ bﬂhh | sz 7PC]
g‘ pe=t=d | == | Bt | Fe=Ttr=d I ==l | == e
(0 I B R E R R
s |(@ 8 (1@ 8)RR R
§ RT CORE RTCORE RT CORE RT CORE RT CORE RT CORE RT CORE
o
£
b

GPU: 36 cores

Core: 128 ALUs -
=> 4608 ALUs 1

+ ~550 tensor cores

+ 72 RT cores :-:c—_%-;

18.6 billion transistors = |

High Speed Hub

/ NVLink - Two x8 Links

2020

NVIDIA Ampere

T/

GPU: 82 cores

.p.:\\.\
Y B
..\u.\‘\:. N\

| i/ umw 7

Core: 128 ALUs

g 1

%S _
Wit

> 10496 ALUs
+ ~328 tensor cores

+ 82 RT cores

W
i

28&.3 billion transistors

25

spatch Unit (32 thread/clk) spatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64

FP64.

‘2

FP64

==l

FP64

FP64.

:IIE I!i
=\
= ||
=]]

=

— =ll=!

FP64.

1|

F |
[
i

FP64 FP64

| ==l

LD/ LD/ LD/ ¢ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST SFU ST BST ESTH R8T ST ST ST ST SFU

*h Unit (32 thread/clk)]| Dispatch Unit (32 thread/clk)

|

HBM2

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

GPU: 82 cores

Core: 128 ALUs
— 10496 ALUs
~128KB L1$

+ ~328 tensor cores

+ 82 RT cores
28&.3 billion transistors

26

LL“ S 1

—
beespers

_‘
==

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST BSTH RSTS RSTH NSTH ST KSTA ST

Graphics Hardware History

Direct View Storage Tube:

 Created by Tektronix (early 70’s)

—First with "frame buffer” (moveto/lineto)
—Did not require constant refresh

—Standard interface to computers

* Allowed for standard software
* Plot3D in Fortran

—Relatively inexpensive

» Opened door to use of computer
graphics for CAD community

— 4096 * 4096 addressable points (4096 *
3120 viewable).

57 Tektronix 4014 27

Graphics Hardware History - functionality

e 80’s:

— linear interpolation of color over a scanline

- Vector graphics
e 91’ Super Nintendo, Neo Geo,

- Rasterization of 1 single 3D rectangle per frame (FZero)
e 95-96’: Playstation 1, 3dfx Voodoo 1

- Rasterization of whole triangles (Voodoo 2, 1998)

e 99 Geforce (256) e o) oW 5
~ Transforms and Lighting (geometry stage) o -
e 02’ 3DLabs WildCat Viper, P10 = <& e
_ Pixel shaders, integers, B
e 02’ ATl Radion 9700, GeforceFX
- Vertex shaders and Pixel shaders with floats G '

e 06’ Geforce 8800

- Geometry shaders, integers and floats, logical operations
Then: — More general multiprocessor systems, higher SIMD-width, more cores
09’ Tesselation Shaders (Direct3D '09, OpenGL '10)

17° Tensor cores

18’ RT cores, Mesh Shaders

Graphics Hardware History - specs

2001 @ In GeForce3d: 600-800 pipeline stages! 57 million transistors
— First Pentium IV: 20 stages, 42 million transistors,

e Evolution of cards:
2004 - X800 - 165M transistors
2005 - X1800 — 320M trans, 625 MHz, 750 Mhz mem, 10Gpixels/s, 1.25G verts/s
2004 - GeForce 6800: 222 M transistors, 400 MHz, MHz core/550 MHz mem
2005 - GeForce 7800: 302M trans, 13Gpix/s, 1.1Gverts/s, bw 54GB/s, MHz core,mem 650MHz(1.3GHz)

2006 - GeForce 8800: 681M trans, 39.2Gpix/s, 10.6Gverts/s, bw:103.7 GB/s, MHz core (for
shaders), 1080 MHz mem (effective 2160 MHz), GDDR3

2008 - Geforce 280 GTX: 1.4G trans, 65nm, MHz core, 1107(*2)MHz mem, 142GB/s, 48Gtex/s
2007 - ATIRadeon HD 5870: 2.15G trans, 153GB/s, 40nm, MHz,GDDRS, 256bit mem bus,
2010 - Geforce GTX480: 3Gtrans, MHz core, Mem (1.848G(*2)GHz), 177.4GB/s, 384bit mem bus,
40Gtexels/s
2011 - GXT580: 3Gtrans, , Mem: 2004/4008 MHz, 192.4GB/s, GDDRS, 384bit mem bus,
49.4 Gtex/s

2012 - GTX680: 3.5Gtrans (7.1 for Tesla), 1006/1058, 192.2GB/s, 6GHz GDDRS5, 256-bit mem bus.

2013 - GTX780: 7.1G, core clock: 837MHz, 336 GB/s, Mem clock: 6GHz GDDRS5, 384-bit mem bus

2014 - GTX980: 7.1G?, core clock: ~1200MHz, 224GB/s, Mem clock: 7GHz GDDRS5, 256-bit mem bus
2015 - GTX Titan X: 8Gtrans, core clock: ~1000MHz, 336GB/s, Mem clock: 7GHz GDDRS5, 384-bit mem bus
2016 - Titan X: 12/15Gtrans, core clock: ~1500MHz, 480GB/s, Mem clock: 10Gbps GDDR5X, 4096-HBM2
2018 - Nvidia Volta: 21.1Gtrans, core clock: ~1500MHz, 900GB/s, Mem: 4096-bit HBM2, (or GDDRG)

2020 - Nvidia Ampere: 54 Gtrans, ~1500MHz, 1500GB/s, Mem: 4096-bit HBM2, (or 900BG/s GDDR6)

Lesson learned: #trans doubles Iger 2 }/ears Core clock increases slowlt/) Mem cIock —increases with
new technology DDR2, DDR3, GDDR5/6, HBM2 and with more memory busses (a 64-bit). Now stacked.

- We want as fast memory as possible! Why?

e Parallelization can cover for slow core clock. Parallelization more energy efficient than high clock
frequency; power consumption proportional to freg?.

e Memory transfers often the bottleneck

Overview:

82 cores a
Core 1 Core 82 128 ALUs

118 L1S ~128 KB L1$ per
core
GPU core has much simpler Bandwidth
* instruction set ~1 TB/s
e cache hierarchy
than a CPU core. Bus: 256-384
High parallelism, but RAM — GDDR6 bits

bandwidth is a major problem.
Wish:

~10.500 ALUs a 1 float.op/clock => 42KB/clock cycle

~1.7GHz core clock => 71 TB/s request
We have ~1TB/s. Hence, would need to do ~70 computations between each RAM-read/write.
Ameliorated by L1$ + L2$ + latency hiding (warp switching) but still a main problem!

C P U _ 202 1 Roughly Intel i9

Core 1 L1 dS Core 7 L1 dS 64 KB .
_ 1S <18 cores a
LT'i5 ' 64 KB g SIMD floats
L2S 1MB L2S 1MB
* Let’ssay 16 cores a 8 floats
Core 2 L1d5 Core'16 L1d5 = We want 512 bytes/clock
L1iS L1iS (e.g. from RAM).
12S1MB L2S 1MB 3GHz CPU => 1.5 TByte/s.
(In addition x2, both for GPU
L3 shared S 20 MB & CPU, since:
MC MC rl=r2+r3;)

We only have 85 GB/s. (20x diff)

Solved by S-hierarchy +
registers + thread switching

DDR4 RAM
<85 GB/s

* Wish: GPU 71TB/s vs CPU 1.5 TB/s = 50x diff.
* You could say bandwidth is 2 orders of magnitude more
important on GPU than CPU, due to parallelism.

Memory bandwidth usage is huge!!

e On top of that bandwith usage is never 100%.

e However, there are many techniques to reduce
bandwith usage:
— Texture caching with prefetching
— Texture compression

— Hierarchical Z-occlusion testing
e E.g., for every 8x8 pixel block of frame buffer, store its zin, Zmax-
— If triangle is behind pixel block, skip rasterize it.
— If triangle is in front, skip accessing 8x8 individual z-values.

8x8 pixels:

ax
min

Taxonomy of hardware design

for how to resynchronize (sort) parallelized work.

Outputs to frame buffers must respect incoming triangle
order.

Take-aways: Sort-first, Sort-middle, Sort-Last Fragment,
Sort-Last Image

Taxonomy of Hardware

e \We can do many computations in parallel:
- Pixel shading, vertex shading, geometry shading

e But result on screen must be as if each triangle were
rendered one by one in their incoming order (according to
OpenGL spec)

e |.e., for every pixel, the rasterized fragments must be merged to the buffers in the
original input triangle order

e E.g., for blending/transparency, (z-culling + stencil test)

e Hence, results need to be sorted somewhere before
reaching the screen...

Taxonomy of hardware
e Need to sort the results of the parallelization

Sort- first means

. . redistributing
Application “raw” primitives—

e Gives four major «—— Sort-First pefore ther
.) Geometry parameters are
architectures: taoe nown. Sort
: < Sort-Middle e et
-3 SOFt-fI rSt Fragment ;i?f;giu;gfe
. generation imitives. Sort-
-3 Sort-mldd e (= rasterization) IparISTIEn“(;ZiIS °

= . | redistributing
— Sort-Last F ragme Nt Fragment Sort-Last Fragment Pixels, samples,
shading ?" pixel
ragments.
— Sort-Last Image Fragment
Merge

e Will describe these briefly. Sort-last fragment
(and sort middle) are most common in
commercial hardware

<«— Sort-Last Image Composition

Sorting/dividing work to parallel execution units.

Sort-First

e Sorts primitives before geometry stage

— Screen in divided into large regions
e Blocks or scanlines

— A separate pipeline is responsible for each
region (or many)
e Not explored much at all, since:

e Poor load balancing if uneven triangle distribution
between regions.

e \ertex shader can change triangle position

PG

-~
b=
~—
£
=
<~
&)
et
<
€ |
b
<
~—
172l
S
=2

DIQPLAY

Explanation of image: G is geometry, FG & FM is part of rasterizer (R)
- Afragment is all the generated information for a pixel on a triangle
- FG is Fragment Generation (finds which pixels are inside triangle)
- FMis Fragment Merge (merges the created fragments with various buffers (Z, color))

Sort-Middle

e Sorts betwen G and R

Pretty natural, since after G, we know the
screen-space positions of the triangles

e Older/cheaper hardware uses this e

— Examples include InfiniteReality (from SGl) s
KYRO architecture (from Imagination)

e Spread work arbitrarily among G’s
e Then depending on screen-space position, sort to different R’s

— Screen can be split into "tiles”. For example:

e Rectangular blocks (8x8 pixels)
e Every n scanlines

e The R is responsible for rendering inside tile

e Bads (same as Sort-First):
e Atriangle can be sent to many FG’s depending on overlap (over tiles)

e May give poor load balancing if triangles are unevenly distributed over
the screen tiles

Sort-Last Fragment

e Sorts betwen FG and FM
e After rasterization eom
e Most graphics cards use this somehow.

e Each pixel block is responsible for sorting its
fragments according to original triangle render order.

e One typical block size: 4x8 pixels

e Example how it could work:
e Take pixel block from queue, based on triangle order
e test hiearchical z-culling
e Execute shaders
e Merge
Good load balancing for all stages before FM.

e Small pixel blocks give good load balancing on screen

e With triangle sizes roughly similar to block sizes, there are not so many
more blocks to sort vs sorting triangles in Sort-First and Sort-Middle.

Sort-Last Image

e Sorts after entire pipeline

e So each FG & FM has a separate frame
buffer for entire screen (Z and color)

e Typically: one whole graphics card per
pipeline.

H
L.L.l

DISPLAY

e After all primitives have been sent to the pipeline,
the z-buffers and color buffers are merged into one
color buffer

e Can be seen as a set of independent pipelines
e Huge memory requirements!

e Used in research, but not much commerically.
e Problematic for transparency.

Functional layout of the graphics pipeline and relation to a graphics card:

Setup / Rstr/ ZCull
o read Iss
7 3 .
(=] | [] (=]
= (o] [] oo
O] | (]| | | | (][] o
] (] | | |][] I
|
EEEE EEEE) [HEEE GIEEE]
X (T | T

Vertex-, Geometry- and
Fragment shaders allocated
from a pool of processors
(cores and ALUs)

Application
PCI-E x16

Vertex Vertex Vertex
shader shader e o o Shader

Primitive assembly
Geo Geo Geo
shader shader shader

Clipping

Fragment Generation
Fragment Fragment Fragment
shader shader shader

[J

Fragment Fragment O Fragment
Merge Merge Merge

G

= 7

FG

&

KM

DISPLAY

The history implies the future

Cell — 2005, Sony Playstation 3

— 8 cores a 4-float SIMD, 256KB L2 cache/core, 3.2 GHz
NVIDIA 8800 GTX — Nov 2006

— 16 cores a 8-float SIMD (GTX 280 - 30 cores a 8, june '08)

— 16 KB L1 cache, 64KB L2 cache
— 1.2-1.625 GHz

NVIDIA Fermi GF100 — 2010, (GF110 2011)
— 16 cores a 2x16-float SIMD (1x16 double SIMD)
— 16/48 KB L1 cache, 768 KB L2 cache

NVIDIA Kepler 2012 - 16 cores a 2x3x16=96 float SIMD
NVIDIA Kepler 2013 - 16 cores a 2x6x16=192 float SIMD
NVIDIA Titan X 2016 - 60 cores a 2x4x8=64 float SIMD

NVIDIA Volta 2018 - 84 cores a 64 float SIMD + tensor cores (16-bit matrix mul+add)
NVIDIA Turing 2018 — 36 cores a 128 float SIMD + ~550 tensor cores (16-bit matrix mul+add) + 72 RT cores

NVIDIA Ampere 2020 — 82 cores a 128 ALUs + ~328 tensor cores + 82 RT cores

If we have time...

How create efficient GPU
programs?

Answer: coallesced memory
accesses

Conceptual
layout:

Beyond Programmable Shading

Bad utilization of the
memory bus, which
typically is the
bottleneck!

B = memory element (32
bits) a4

Read 32
coallesced floats
for max
bandwidth usage

Beyond Programmable Shading

Much better utilization
of the memory bus!

B = memory element (32
bits)

45

Let's look 3

Lots of GB RAM

L2 Cache
Core 1 L1
cache
Core 2 L1
cache

Terminology

CPU: Core ALU (SIMD lane)

NVIDIA: Streaming core
Multiprocessor

AMD Compute unit stream processors

cache

Core XX

Core X

N*32 ALUs or "lanes”
or threads.

Nx32 mul/add per

~1 clock cycle

In principle, all must
do the same
instruction (add/mul),
but on different data.

Each core:
* executes one

program
(=shader).

Each cycle:
 N*32 flops
These days, can

be a few different
Instr.

Beyond Programmable Shading

Low level APIs for GPU programming

 CUDA
— C++ compiler
— Works best for NVIDIA GPUs

— CUDA SDK

* Numerous examples and documentation (most for single GPU)
* Has most functionality

* OpenCL
— Ccompiler

— Platform independent
* AMD
* NVIDIA

— Less control/functionality than CUDA
 Compute Shaders (DirectX, OpenGL).

CUDA

* A kernel (=CUDA program) is executed by 100:s- 1M S

— A”warp” = 32 threads, one thread per ALU

— Warps (one to ~32) are grouped into one block

— Block: executed on one core
* One to 48 warps execute on a core

Max one program
per block.

One program
counter per warp.

49

Aligned and sequential

Read whole cache blocks e TR T——
(128 bytes) o

Compute capability: 1.0 and 1.1 1.2 and 1.3 2.0

e (5 | 0O b 3 | mem accesses. P —————— i cactie

1x 64Bat128 | 1x 64Bat128 | 1x128B at 128
1x 64Bat192 | 1x 64B at 192

Threads:

Aligned and non-sequential

Addresses: 96 128 160 192 224 256 288

XTI

Compute capability: 1.0and 1.1 1.2and 1.3 2.0

B a n d W| d t h to G P U RA M i S t h e Memory transactions: Uncached Cached

8x 32Bat128 | 1x 64Bat128 | 1x128B at 128

most precious resource, So 8x 32Bat160 | 1x 64B at 192

* One transaction:

Threads:

8x 32Bat224

8x 32B at 192
two transactions is often bad.

Misaligned and sequential

® TWO transactions: hreades 0//////////////////////////////{{
Compute capability: 1.0and 1.1 1.2and 1.3 2.0

8x 32Bat128 |1x128Bat128 | 1 x128B at 128
8x 32Bat160 | 1x 64Bat 192 | 1x 128B at 256
8x 32Bat192 | 1x 32B at 256
8x 32Bat224

Fe rmi . Figure G-1. Examples of Global Memory Accesses by a Warp,
. 4-Byte Word per Thread, and Associated Memory
Transactions Based on Compute Capability

50

Efficient Programming

e If your program can be constructed
this way, you are a winner!
* More often possible than anticipated s=0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

A B C D E|F|G|H
* Stream compaction l ﬁﬁ LT 1]
* Prefix sums SRR B ERE
. s'=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* Sorting
input 1 309 |4 |2 |5 |7 1 8 |4 |5 |9 |3

output o |1 |4 |13 |15

e

1 5 19 63 79 100

Fermi: 16 multi-processors a 2x16 SIMD width

CHALMERS

Department of Computer Engineering

Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen
window

Polygon in world

Display screen window
showing polygon's
projection

/] Vertex Shader
#version 130

In vec3 vertex;

in vec3 color;

out vec3 outColor;

uniform mat4 modelViewProjectionMatrix;

void main()

{
gl_Position = model ViewProjectionMatrix *vec4(vertex,1);
outColor = color;

}

N
» Q) N
L] g
/ - T
// Fragment Shader:

#version 130
i vec3 outColor;

out vec4 fragColor;

void main()

{
fragColor = vec4(outColor,1);

Shaders and coallesced memory accesses

GPU
* Each core (e.g. 192-SIMD) executes the
same instruction per clock cycle for either a:

e VVertex shader:
— E.g. 192 vertices b b. b, voe

 Geometry shader

— E.g. 192 triangles ~
F .] \\
* Fragment shader:]
_ E.g. 192 pixels i/
in blocks of at least 2x2 pixels —/
=1

(to compute texture filter derivatives) .
Here is an example of blocks

4x8 = 32 pixels:
— However, many architectures can //IA\\
execute different instructions, of the \

same shader, for different warps
(warp = group of 32 ALUs)

NVIDIA:
yellow = lane 0
purple = lane 31

Shaders and coallesced memory accesses

GPU

* For mipmap-filtered texture lookups in a
fragment shader, this can provide coallesced

Memaory accesses.

DN

~ |
\

I
\
\

Thread utilization

* Each core executes one program (=shader)
* Each of the 192 ALUs execute one thread” (a shader for a

vertex or fragment)
* Since the core executes the same 1nstruction for at least 32
threads (as far as the programmer 1s concerned)...

e If(...) ...the core must
—Then,a=b +¢; execute both paths
_ if any of the 32
threads need the if
and else-path.

But not if all need the
same path.

e Else

—a=c+d;

Summary

Linearly interpolate (u;/w;, vi/w;, 1/w;) in screenspace
from each triangle vertex 1.
Then at each pixel:

ulp (/W) / (1/w)s,

Need to know: = (W) (1w

where 1p = screen-space interpolated value from
the triangle vertices.

e Perspective correct

interpolation (e.g. for textures) Sort-
: first
e [axonomy: -
— Sort first
— sort middle Sort-last
_ sort last fragment e g
: Sort-last
— sort last image image

e Bandwidth

-~ Why it is a problem and how to "solve” it
e L1/L2 caches
e Texture caching with prefetching, (warp switching)
e Texture compression, Z-compression, Z-occlusion testing (HyperZ)

e Be able to sketch the functional blocks and relation to hardware for a
58 modern graphics card (next slide—)

CHALMERS Department of Computer Engineering

The graphics-pipeline’s funcional
blocks and their relation to hardware

Vertex-, Geometry- and Fragment shaders
exectued on a pool of thousands of ALUs

» Fixed function hardware

Application
PCI-E x16

Vertex Vertex Vertex
shader shader *° shader

Primitive assembly
Geo Geo Geo
shader shader shader

Clipping

Fragment Generation
Fragment Fragment Fragment
shader shader e shader

\V Sort

Fragment Fragment O Fragment
Merge Merge Merge

» Fixed function hardware

