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Graphics hardware — why?
e Often said to be "100x” faster than CPU.

— Reason: Simple to parallelize triangle rendering :
e over individual triangles, pixels, (even over x,y,z,w, and r,g,b,a)

e Hardware fixed functions: clipping, rasterizer, texture filtering, fragment-merge, ...

e Current hardware:
— Triangle rasterization with programmable shading.

-~ Massive parallel general-purpose computations:
e CUDA/OpenCL/Compute Shaders (~10.000 ALUs)

— Al computations:
e ~500 tensor cores, each performing a 4x4-matrix mul+add.

- GPU Ray tracing:
e NVIDIA RTX (via OptiX, Vulcan, Microsoft DXR api)

e Although, can write your own GPU ray-tracer (e.g., CUDA or shader based)
— or even WebGPU



Perspective-correct
interpolation of texture
coordinates

(and actually all screen-space-interpolated per-
vertex data)
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Perspective-correct texturing

e How is texture coordinates interpolated over a triangle?
e Linearly?
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Linear interpolation Perspective-correct interpolation

>

e Perspective-correct interpolation gives foreshortening effect!

e Hardware does this for you, but you need to understand this
anyway!



Vertices are projected onto
screen by non-linear

Recall the fO"OWing transform. Hence, tex coords

cannot be linearly interpolated
in screen space (just like a 3D-
position cannot be).

e Perspective projection introduces a non-linear
transform by the homogenization step:
— Projection: p=Myv
— After projection p,, is not 1!
- Homogenization: (p,/p,,., p,/p,,, P./P\s» 1)

— Gives (x, y, z, 1), where x, y are the screen-space coordinates and z is depth
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Perspective-correct interpolation ‘38“ \‘iz‘
e Linear interpolation in screen space does not work for u,v

e Why:
- We have applied a non-linear transform to each vertex position

(x/w, yiw, zIw, wiw).
e Non-linear due to 1/w — factor from the homogenisation
e Surprisingly, we can screen-space interpolate any vertex attribute a/w (including
1/w) perspective correctly.

— For a proof, see Jim Blinn,”"W Pleasure, W Fun”, IEEE Computer Graphics and
Applications, p78-82, May/June 1998

. (Us/Wo, Vo/ws, 1/W5)
e Solution: © e

— Interpolate (u/w, v/iw, 1/w), from each vertex, (uw);, (viw);, (1/w);
where w is from homogeneous coordinate

(X,¥,Z,W). (Screen-space coord is (x/w, y/w, z/w, 1)) (U/Wy, VW, 1/Wy)

e Then at each pixel, get u,,v; as: /oo/h/
- w;=1 /(1/W), o 1/0/14/
- U= (u/w); *w, % 74
— Vi = (VIw); * w; 4

Shading is automatically interpolated this way too (though, not as annoying as
textures). Perspective correct interpolation nowadays handled automatically by the GPU.
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"Intuitive explanation” (but not proof):

e Linear interpolation in screen space does not work for u,v
e Why:

- We have applied a non-linear transform to each vertex position

(x/w, yiw, zIw, wiw).
e Non-linear due to 1/w — factor from the homogenisation

e Solution:

- We must apply the same non-linear transform to u,v as for x,y,z
e E.g. (u/w, v/iw). This can now be correctly screenspace interpolated since
it follows the same non-linear (1/w) transform (and interpolation) as (x/w, y/w,
z/w).
e S0, linearly interpolate (u/w, v/iw, 1/w), which is computed in screenspace at each
vertex.

e Then at each pixel:
— u; = (uiw), / (1/w),
— v = (Viw) [ (1w,



Overview of GPU architecture

-History / evolution

- GPU design: Several corgconsisting of many ALUs
(NVIDIA terminology: Streaming Multiprocessors (SMMs) of many Cores

- GPU vs CPU

Take-away: bandwidth (cost of memory accesses)
IS @ major problem



Background:
Graphics hardware architectures

e Evolution of graphics hardware has started
from the end of the pipeline

— Rasterizer was put into hardware first (most
performance to gain from this)

- Then the geometry stage
— Application will not be put into GPU hardware (?)

e Two major ways of getting better
performance:
— Pipelining
- Parallellization
- Combinations of these are often used



Parallellism
e "Simple” idea: compute n results in parallel, then

combine results

e Not always simple
- Try to parallelize a sorting algorithm...

- But vertices are independent of each other, and also pixels, so
simpler for graphics hardware

e Can parallellize both geometry and rasterizer stage:

Application (A)

Geometry Rasterizer
stage




CHALMERS Department of Computer Engineering

The graphics-pipeline’s funcional
blocks and their relation to hardware

(for modern graphis card)

Vertex-, Geometry- and Fragment shaders
exectued on a pool of thousands of ALUs

» Fixed function hardware

Application
PCI-E x16

Vertex Vertex Vertex
shader shader ¢ e* shader

Primitive assembly
Geo Geo Geo
shader shader shader

Clipping

Fragment Generation
Fragment Fragment Fragment
shader shader O 00 shader
Fragment Fragment e o o Fragment
Merge Merge Merge

» Fixed function hardware




| GeForce 7800 rchitecture (2006
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Graphics Processing Unit - GPU

4 1.5 GB RAM Memory
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» NVIDIA Geforce GTX 580

14'eyond Programmable Shading NVIDIA 3080 Ti (NZOZO)
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PCl Express 3.0 Host Interface

SHALMERS s R

16 Cores (“SMM”)
2MB L2 cache

64 output pixels / clock
(i.e., 64 ROPs)

2048 ALUs (“cores”)
~6 Tflops
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Memory Controller

19

Each Core:

e 128 ALUs

e 96KB L1 cache
e & TexUnits

* 32 Load/Store R R e R
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PCI Express 3.0 Host Interface

i T | : |
L TRC

"
s
’

Insiritiom Cache

we

)
S22

415
we

L]
we
GPC

S

60 cores
64 ALU
> 3840 ALUs

z foweyy ppimpueg yBi

GPU
= Core

-
o —
(oF
195}
o
(D]
©
<
=
o
1

90}
)
S
S)
&)
<
(0.0}
Q)
N



S GAMERSEENEXUS

ing

~ ImstructionBuffer ~ InstructionBuffer

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit

& 3 . e

Register File (32,768 x 32-bit) Register File (32,768 x 32-bit)
) [ O - | O I~
[ [ O - o | e O - o
[ I I~ (| [ I
[ [ - | e
[ I - | O -
[ 0 - | [ O - o
[ I O (o | [ I ) O =
[ [ [ - o | [ - o

-]
>

Tex

-
®
=

. ex e




|

Al ] = | N8
¢ | = ; 23
Iﬂ' —_ HE iIIi
5l T e |l === TlE

| = LN
it . e

A ‘g—t‘g‘j

|
: GPU |
SM: 64 ALUs |
= ¢ | =55376 ALUs |l
- disabled spill z= ==
— 51202 ALUs —

=
o = =
jil| ‘”\-

— || ==

]-

1 ===
=) =)

= i I V -:344  -‘-

s = |
[ Jajjonuo Kioway ” Jajjonuoy Aoway || Jsjj0nu0) Koway || Jsjjonuon Kioway
: H

S = = o = =]




NVIDIA Volta GV100
|

SM
[ WarpScheduler (32 thread/clk) |
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
FP64  |INT INT .. FP64 | INT INT ..
FP64  INT INT .- FP64  INT INT .-
FP64  INT INT .. FP64  INT INT ..
FPes .. TENSOR TENSOR et R .. TENSOR TENSOR
FP64 INT INT .. CORE CORE FP64 INT INT .. CORE CORE
FP64 INT INT .. FP64 INT INT ..
FP64 | INT |INT .. FP64 | INT | INT -.
FP64 INT INT .. FP64 INT INT ..
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST SFU ST ST ST ST ST ST ST ST SFU
[ WarpScheduler (32threadiclk)
Dispatch Unit (32 threadlclk) Dispatch Unit (32 thread/clk)
C Register File (16,384 x 32-bit)
g e
* .64 32-bit fp/int ALUS & wr e
- " e e
e 512 16-bit ALUs
................ NI .. TENSOR TENSOR
e EEEE .- CORE | CORE e RS .- CORE = CORE
FP64 INT INT .. FP64 INT INT -.
FP64 INT INT .. FP64 INT INT ..
FP64 INT INT .. FP64 INT INT ..
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST SFU ST ST ST ST ST ST ST ST SFU

2018

Tensor core
per clock:

D =

FP16 or FP32

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

*.D/ LD/
5T ST

INT

INT INT
INT INT
INT INT
INT INT
INT INT
INT INT
INT INT

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

SFU

FP16 or FP32
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128 ALUs
> 4608 ALUs
+ ~550 tensor cores

36 cores
+ 72 RT cores

18.6 billion transistors

GPU
Core

23



NVIDIA Turing TU102 2018

TURING TU102
PCI Express 3.0 Host Interface
GigaThread Engine
ki GPC
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GPU: 36 cores

Core: 128 ALUs -
=> 4608 ALUs 1

+ ~550 tensor cores

+ 72 RT cores :-:c—_%-;

18.6 billion transistors = |

High Speed Hub

/ NVLink - Two x8 Links




2020

NVIDIA Ampere

T/

GPU: 82 cores
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Core: 128 ALUs
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> 10496 ALUs
+ ~328 tensor cores

+ 82 RT cores

W
i

28&.3 billion transistors
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spatch Unit (32 thread/clk) spatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64

FP64.

‘2

FP64

==l

FP64

FP64.

:IIE I!i
=\
= ||
=] ]

=

— =ll=!

FP64.

1|

F |
[
i

FP64 FP64

| ==l

LD/ LD/ LD/ ¢ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST SFU ST BST ESTH R8T ST ST ST ST SFU

*h Unit (32 thread/clk) ]| Dispatch Unit (32 thread/clk)

|

HBM2

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

GPU: 82 cores

Core: 128 ALUs
— 10496 ALUs
~128KB L1$

+ ~328 tensor cores

+ 82 RT cores
28&.3 billion transistors
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LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST BSTH RSTS RSTH NSTH ST KSTA ST




Graphics Hardware History

Direct View Storage Tube:

 Created by Tektronix (early 70’s)

—First with "frame buffer” (moveto/lineto)
—Did not require constant refresh

—Standard interface to computers

* Allowed for standard software
* Plot3D in Fortran

—Relatively inexpensive

» Opened door to use of computer
graphics for CAD community

— 4096 * 4096 addressable points (4096 *
3120 viewable).

57 Tektronix 4014 27



Graphics Hardware History - functionality

e 80’s:

— linear interpolation of color over a scanline

- Vector graphics
e 91’ Super Nintendo, Neo Geo,

- Rasterization of 1 single 3D rectangle per frame (FZero)
e 95-96’: Playstation 1, 3dfx Voodoo 1

- Rasterization of whole triangles (Voodoo 2, 1998)

e 99 Geforce (256) e o) oW 5
~ Transforms and Lighting (geometry stage) o -
e 02’ 3DLabs WildCat Viper, P10 = <& e
_ Pixel shaders, integers, B
e 02’ ATl Radion 9700, GeforceFX
- Vertex shaders and Pixel shaders with floats G '

e 06’ Geforce 8800

- Geometry shaders, integers and floats, logical operations
Then: — More general multiprocessor systems, higher SIMD-width, more cores
09’ Tesselation Shaders (Direct3D '09, OpenGL '10)

17° Tensor cores

18’ RT cores, Mesh Shaders



Graphics Hardware History - specs

2001 @ In GeForce3d: 600-800 pipeline stages! 57 million transistors
— First Pentium IV: 20 stages, 42 million transistors,

e Evolution of cards:
2004 - X800 - 165M transistors
2005 - X1800 — 320M trans, 625 MHz, 750 Mhz mem, 10Gpixels/s, 1.25G verts/s
2004 - GeForce 6800: 222 M transistors, 400 MHz, MHz core/550 MHz mem
2005 - GeForce 7800: 302M trans, 13Gpix/s, 1.1Gverts/s, bw 54GB/s, MHz core,mem 650MHz(1.3GHz)

2006 - GeForce 8800: 681M trans, 39.2Gpix/s, 10.6Gverts/s, bw:103.7 GB/s, MHz core ( for
shaders), 1080 MHz mem (effective 2160 MHz), GDDR3

2008 - Geforce 280 GTX: 1.4G trans, 65nm, MHz core, 1107(*2)MHz mem, 142GB/s, 48Gtex/s
2007 - ATIRadeon HD 5870: 2.15G trans, 153GB/s, 40nm, MHz,GDDRS, 256bit mem bus,
2010 - Geforce GTX480: 3Gtrans, MHz core, Mem (1.848G(*2)GHz), 177.4GB/s, 384bit mem bus,
40Gtexels/s
2011 - GXT580: 3Gtrans, , Mem: 2004/4008 MHz, 192.4GB/s, GDDRS, 384bit mem bus,
49.4 Gtex/s

2012 - GTX680: 3.5Gtrans (7.1 for Tesla), 1006/1058, 192.2GB/s, 6GHz GDDRS5, 256-bit mem bus.

2013 - GTX780: 7.1G, core clock: 837MHz, 336 GB/s, Mem clock: 6GHz GDDRS5, 384-bit mem bus

2014 - GTX980: 7.1G?, core clock: ~1200MHz, 224GB/s, Mem clock: 7GHz GDDRS5, 256-bit mem bus
2015 - GTX Titan X: 8Gtrans, core clock: ~1000MHz, 336GB/s, Mem clock: 7GHz GDDRS5, 384-bit mem bus
2016 - Titan X: 12/15Gtrans, core clock: ~1500MHz, 480GB/s, Mem clock: 10Gbps GDDR5X, 4096-HBM2
2018 - Nvidia Volta: 21.1Gtrans, core clock: ~1500MHz, 900GB/s, Mem: 4096-bit HBM2, (or GDDRG)

2020 - Nvidia Ampere: 54 Gtrans, ~1500MHz, 1500GB/s, Mem: 4096-bit HBM2, (or 900BG/s GDDR6)

Lesson learned: #trans doubles Iger 2 }/ears Core clock increases slowlt/) Mem cIock —increases with
new technology DDR2, DDR3, GDDR5/6, HBM2 and with more memory busses (a 64-bit). Now stacked.

- We want as fast memory as possible! Why?

e Parallelization can cover for slow core clock. Parallelization more energy efficient than high clock
frequency; power consumption proportional to freg?.

e Memory transfers often the bottleneck



Overview:

82 cores a
Core 1 Core 82 128 ALUs

118 L1S ~128 KB L1$ per
core
GPU core has much simpler Bandwidth
* instruction set ~1 TB/s
e cache hierarchy
than a CPU core. Bus: 256-384
High parallelism, but RAM — GDDR6 bits

bandwidth is a major problem.
Wish:

~10.500 ALUs a 1 float.op/clock => 42KB/clock cycle

~1.7GHz core clock => 71 TB/s request
We have ~1TB/s. Hence, would need to do ~70 computations between each RAM-read/write.
Ameliorated by L1$ + L2$ + latency hiding (warp switching) but still a main problem!




C P U _ 202 1 Roughly Intel i9

Core 1 L1 dS Core 7 L1 dS 64 KB .
_ 1S <18 cores a
LT'i5 ' 64 KB g SIMD floats
L2S 1MB L2S 1MB
* Let’ssay 16 cores a 8 floats
Core 2 L1d5 Core'16 L1d5 = We want 512 bytes/clock
L1iS L1iS (e.g. from RAM).
12S1MB L2S 1MB  3GHz CPU => 1.5 TByte/s.
(In addition x2, both for GPU
L3 shared S 20 MB & CPU, since:
MC MC rl=r2+r3;)

We only have 85 GB/s. (20x diff)

Solved by S-hierarchy +
registers + thread switching

DDR4 RAM
<85 GB/s

* Wish: GPU 71TB/s vs CPU 1.5 TB/s = 50x diff.
* You could say bandwidth is 2 orders of magnitude more
important on GPU than CPU, due to parallelism.



Memory bandwidth usage is huge!!

e On top of that bandwith usage is never 100%.

e However, there are many techniques to reduce
bandwith usage:
— Texture caching with prefetching
— Texture compression

— Hierarchical Z-occlusion testing
e E.g., for every 8x8 pixel block of frame buffer, store its zin, Zmax-
— If triangle is behind pixel block, skip rasterize it.
— If triangle is in front, skip accessing 8x8 individual z-values.

8x8 pixels:

ax
min



Taxonomy of hardware design

for how to resynchronize (sort) parallelized work.

Outputs to frame buffers must respect incoming triangle
order.

Take-aways: Sort-first, Sort-middle, Sort-Last Fragment,
Sort-Last Image



Taxonomy of Hardware

e \We can do many computations in parallel:
- Pixel shading, vertex shading, geometry shading

e But result on screen must be as if each triangle were
rendered one by one in their incoming order (according to
OpenGL spec)

e |.e., for every pixel, the rasterized fragments must be merged to the buffers in the
original input triangle order

e E.g., for blending/transparency, (z-culling + stencil test)

e Hence, results need to be sorted somewhere before
reaching the screen...



Taxonomy of hardware
e Need to sort the results of the parallelization

Sort- first means

. . redistributing
Application “raw” primitives—

e Gives four major «—— Sort-First pefore ther
. ) Geometry parameters are
architectures: taoe nown. Sort
: < Sort-Middle e et
-3 SOFt-fI rSt Fragment ;i?f;giu;gfe
. generation imitives. Sort-
-3 Sort-mldd e (= rasterization) IparISTIEn“(;ZiIS °

= . | redistributing
— Sort-Last F ragme Nt Fragment Sort-Last Fragment Pixels, samples,
shading ?" pixel
ragments.
— Sort-Last Image Fragment
Merge

e Will describe these briefly. Sort-last fragment
(and sort middle) are most common in
commercial hardware

<«— Sort-Last Image Composition




Sorting/dividing work to parallel execution units.

Sort-First

e Sorts primitives before geometry stage

— Screen in divided into large regions
e Blocks or scanlines

— A separate pipeline is responsible for each
region (or many)
e Not explored much at all, since:

e Poor load balancing if uneven triangle distribution
between regions.

e \ertex shader can change triangle position

PG
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DIQPLAY

Explanation of image: G is geometry, FG & FM is part of rasterizer (R)
- Afragment is all the generated information for a pixel on a triangle
- FG is Fragment Generation (finds which pixels are inside triangle)
- FMis Fragment Merge (merges the created fragments with various buffers (Z, color))



Sort-Middle

e Sorts betwen G and R

Pretty natural, since after G, we know the
screen-space positions of the triangles

e Older/cheaper hardware uses this e

— Examples include InfiniteReality (from SGl) s
KYRO architecture (from Imagination)

e Spread work arbitrarily among G’s
e Then depending on screen-space position, sort to different R’s

— Screen can be split into "tiles”. For example:

e Rectangular blocks (8x8 pixels)
e Every n scanlines

e The R is responsible for rendering inside tile

e Bads (same as Sort-First):
e Atriangle can be sent to many FG’s depending on overlap (over tiles)

e May give poor load balancing if triangles are unevenly distributed over
the screen tiles




Sort-Last Fragment

e Sorts betwen FG and FM
e After rasterization eom
e Most graphics cards use this somehow.

e Each pixel block is responsible for sorting its
fragments according to original triangle render order.

e One typical block size: 4x8 pixels

e Example how it could work:
e Take pixel block from queue, based on triangle order
e test hiearchical z-culling
e Execute shaders
e Merge
Good load balancing for all stages before FM.

e Small pixel blocks give good load balancing on screen

e With triangle sizes roughly similar to block sizes, there are not so many
more blocks to sort vs sorting triangles in Sort-First and Sort-Middle.



Sort-Last Image

e Sorts after entire pipeline

e So each FG & FM has a separate frame
buffer for entire screen (Z and color)

e Typically: one whole graphics card per
pipeline.

H
L.L.l

DISPLAY

e After all primitives have been sent to the pipeline,
the z-buffers and color buffers are merged into one
color buffer

e Can be seen as a set of independent pipelines
e Huge memory requirements!

e Used in research, but not much commerically.
e Problematic for transparency.



Functional layout of the graphics pipeline and relation to a graphics card:

Setup / Rstr/ ZCull
o read Iss
7 3 .
(=] | [ ] (=]
= (o] [ ] oo
O] | (]| | | | (][] o
] (] | | | ][] I
|
EEEE EEEE) [HEEE GIEEE]
X (T | T

Vertex-, Geometry- and
Fragment shaders allocated
from a pool of processors
(cores and ALUs)

Application
PCI-E x16

Vertex Vertex Vertex
shader shader e o o Shader

Primitive assembly
Geo Geo Geo
shader shader shader

Clipping

Fragment Generation
Fragment Fragment Fragment
shader shader shader

[ J

Fragment Fragment O Fragment
Merge Merge Merge

G

= 7

FG

&

KM

DISPLAY




The history implies the future

Cell — 2005, Sony Playstation 3

— 8 cores a 4-float SIMD, 256KB L2 cache/core, 3.2 GHz
NVIDIA 8800 GTX — Nov 2006

— 16 cores a 8-float SIMD (GTX 280 - 30 cores a 8, june '08)

— 16 KB L1 cache, 64KB L2 cache
— 1.2-1.625 GHz

NVIDIA Fermi GF100 — 2010, (GF110 2011)
— 16 cores a 2x16-float SIMD (1x16 double SIMD)
— 16/48 KB L1 cache, 768 KB L2 cache

NVIDIA Kepler 2012 - 16 cores a 2x3x16=96 float SIMD
NVIDIA Kepler 2013 - 16 cores a 2x6x16=192 float SIMD
NVIDIA Titan X 2016 - 60 cores a 2x4x8=64 float SIMD

NVIDIA Volta 2018 - 84 cores a 64 float SIMD + tensor cores (16-bit matrix mul+add)
NVIDIA Turing 2018 — 36 cores a 128 float SIMD + ~550 tensor cores (16-bit matrix mul+add) + 72 RT cores

NVIDIA Ampere 2020 — 82 cores a 128 ALUs + ~328 tensor cores + 82 RT cores



If we have time...



How create efficient GPU
programs?

Answer: coallesced memory
accesses



Conceptual
layout:

Beyond Programmable Shading

Bad utilization of the
memory bus, which
typically is the
bottleneck!

B = memory element (32
bits) a4



Read 32
coallesced floats
for max
bandwidth usage

Beyond Programmable Shading

Much better utilization
of the memory bus!

B = memory element (32
bits)
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Let's look 3

Lots of GB RAM

L2 Cache
Core 1 L1
cache
Core 2 L1
cache

Terminology

CPU: Core ALU (SIMD lane)

NVIDIA: Streaming core
Multiprocessor

AMD Compute unit stream processors

cache

Core XX

Core X

N*32 ALUs or "lanes”
or threads.

Nx32 mul/add per

~1 clock cycle

In principle, all must
do the same
instruction (add/mul),
but on different data.



Each core:
* executes one

program
(=shader).

Each cycle:
 N*32 flops
These days, can

be a few different
Instr.

Beyond Programmable Shading



Low level APIs for GPU programming

 CUDA
— C++ compiler
— Works best for NVIDIA GPUs

— CUDA SDK

* Numerous examples and documentation (most for single GPU)
* Has most functionality

* OpenCL
— Ccompiler

— Platform independent
* AMD
* NVIDIA

— Less control/functionality than CUDA
 Compute Shaders (DirectX, OpenGL).



CUDA

* A kernel (=CUDA program) is executed by 100:s- 1M S

— A”warp” = 32 threads, one thread per ALU

— Warps (one to ~32) are grouped into one block

— Block: executed on one core
* One to 48 warps execute on a core

Max one program
per block.

One program
counter per warp.
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Aligned and sequential

Read whole cache blocks e TR T——
(128 bytes) o

Compute capability: 1.0 and 1.1 1.2 and 1.3 2.0

e (5 | 0O b 3 | mem accesses. P —————— i cactie

1x 64Bat128 | 1x 64Bat128 | 1x128B at 128
1x 64Bat192 | 1x 64B at 192

Threads:

Aligned and non-sequential

Addresses: 96 128 160 192 224 256 288

XTI

Compute capability: 1.0and 1.1 1.2and 1.3 2.0

B a n d W| d t h to G P U RA M i S t h e Memory transactions: Uncached Cached

8x 32Bat128 | 1x 64Bat128 | 1x128B at 128

most precious resource, So 8x 32Bat160 | 1x 64B at 192

* One transaction:

Threads:

8x 32Bat224

8x 32B at 192
two transactions is often bad.

Misaligned and sequential

® TWO transactions: hreades 0//////////////////////////////{{
Compute capability: 1.0and 1.1 1.2and 1.3 2.0

8x 32Bat128 |1x128Bat128 | 1 x128B at 128
8x 32Bat160 | 1x 64Bat 192 | 1x 128B at 256
8x 32Bat192 | 1x 32B at 256
8x 32Bat224

Fe rmi . Figure G-1. Examples of Global Memory Accesses by a Warp,
. 4-Byte Word per Thread, and Associated Memory
Transactions Based on Compute Capability
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Efficient Programming

e If your program can be constructed
this way, you are a winner!
* More often possible than anticipated s=0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

A B C D E|F|G|H
* Stream compaction l ﬁﬁ LT 1]
* Prefix sums SRR B ERE
. s'=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* Sorting
input 1 309 |4 |2 |5 |7 1 8 |4 |5 |9 |3

output o |1 |4 |13 |15

e

1 5 19 63 79 100

Fermi: 16 multi-processors a 2x16 SIMD width
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Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen
window

Polygon in world

Display screen window
showing polygon's
projection

/] Vertex Shader
#version 130

In vec3 vertex;

in vec3 color;

out vec3 outColor;

uniform mat4 modelViewProjectionMatrix;

void main()

{
gl_Position = model ViewProjectionMatrix *vec4(vertex,1);
outColor = color;

}

N
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// Fragment Shader:

#version 130
i vec3 outColor;

out vec4 fragColor;

void main()

{
fragColor = vec4(outColor,1);




Shaders and coallesced memory accesses

GPU
* Each core (e.g. 192-SIMD) executes the
same instruction per clock cycle for either a:

e VVertex shader:
— E.g. 192 vertices b b. b, voe

 Geometry shader

— E.g. 192 triangles ~
F . ] \\
* Fragment shader: ]
_ E.g. 192 pixels i/
in blocks of at least 2x2 pixels —/
=1

(to compute texture filter derivatives) .
Here is an example of blocks

4x8 = 32 pixels:
— However, many architectures can //IA\\
execute different instructions, of the \

same shader, for different warps
(warp = group of 32 ALUs)




NVIDIA:
yellow = lane 0
purple = lane 31




Shaders and coallesced memory accesses

GPU

* For mipmap-filtered texture lookups in a
fragment shader, this can provide coallesced

Memaory accesses.
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Thread utilization

* Each core executes one program (=shader)
* Each of the 192 ALUs execute one thread” (a shader for a

vertex or fragment)
* Since the core executes the same 1nstruction for at least 32
threads (as far as the programmer 1s concerned)...

e If(...) ...the core must
—Then,a=b +¢; execute both paths
_ if any of the 32
threads need the if
and else-path.

But not if all need the
same path.

e Else

—a=c+d;



Summary



Linearly interpolate (u;/w;, vi/w;, 1/w;) in screenspace
from each triangle vertex 1.
Then at each pixel:

ulp (/W) / (1/w)s,

Need to know: = (W) (1w

where 1p = screen-space interpolated value from
the triangle vertices.

e Perspective correct

interpolation (e.g. for textures) Sort-
: first
e [axonomy: -
— Sort first
— sort middle Sort-last
_ sort last fragment e g
: Sort-last
— sort last image image

e Bandwidth

-~ Why it is a problem and how to "solve” it
e L1/L2 caches
e Texture caching with prefetching, (warp switching)
e Texture compression, Z-compression, Z-occlusion testing (HyperZ)

e Be able to sketch the functional blocks and relation to hardware for a
58 modern graphics card (next slide—)




CHALMERS Department of Computer Engineering

The graphics-pipeline’s funcional
blocks and their relation to hardware

Vertex-, Geometry- and Fragment shaders
exectued on a pool of thousands of ALUs

» Fixed function hardware

Application
PCI-E x16

Vertex Vertex Vertex
shader shader *° shader

Primitive assembly
Geo Geo Geo
shader shader shader

Clipping

Fragment Generation
Fragment Fragment Fragment
shader shader e shader

\V Sort

Fragment Fragment O Fragment
Merge Merge Merge

» Fixed function hardware




