
/GU

Testing, Debugging, Program Verification
Debugging Programs

Srinivas Pinisetty1

15 November 2018

1Slides based on material from Wolfgang Aherndt,..

/GU

Student Representatives

/GU

Debugging

So far: Testing
I Look for inputs that cause unexpected behaviour.
I Coverage criteria: Creating good test suits.
I Input space partitioning: Choose different/boundary inputs
I Cover as many potential problems as possible.

I Program fails, now what?

Today: Debugging
I How to systematically find source of failure.

I Test-case to reproduce problem.
I Finding a small failing input (if possible).

I Observing execution: Debuggers and Logging.
I Program dependencies: data- and control.

/GU

Debugging

So far: Testing
I Look for inputs that cause unexpected behaviour.
I Coverage criteria: Creating good test suits.
I Input space partitioning: Choose different/boundary inputs
I Cover as many potential problems as possible.
I Program fails, now what?

Today: Debugging
I How to systematically find source of failure.

I Test-case to reproduce problem.
I Finding a small failing input (if possible).

I Observing execution: Debuggers and Logging.
I Program dependencies: data- and control.

/GU

Debugging

So far: Testing
I Look for inputs that cause unexpected behaviour.
I Coverage criteria: Creating good test suits.
I Input space partitioning: Choose different/boundary inputs
I Cover as many potential problems as possible.
I Program fails, now what?

Today: Debugging
I How to systematically find source of failure.

I Test-case to reproduce problem.
I Finding a small failing input (if possible).

I Observing execution: Debuggers and Logging.
I Program dependencies: data- and control.

/GU

Motivation

Debugging needs to be systematic
I Bug reports may involve large inputs
I Programs may have thousands of memory locations
I Programs may pass through millions of states before failure

occurs

/GU

Debugging Steps

Debugging Steps
1. Reproduce the error, understand
2. Isolate and Minimize (shrink)– Simplification
3. Eyeball the code, where could it be?– Reason backwards
4. Devise and run an experiment to test your hypothesis
5. Repeat 3,4 until you understand what is wrong
6. Fix the Bug and Verify the Fix
7. Create a Regression Test

Common Themes
I Separate relevant from irrelevant
I Being systematic: avoid repetition, ensure progress, use tools

/GU

Debugging Techniques

I Minimize (shrink)– Input simplification/problem minimization
I Observe outcome/test hypothesis– State inspection using

debuggers and logging
I Tracking causes and effects — From failure to defect. Which

start states cause failure?

/GU

Automatic Problem Minimisation

Observing outcome, state inspection

Tracking, reasoning backwards

/GU

Problem Simplification: Big Failing Input
This input made mozilla crash in 2002, what was the problem?

I Simplify failing test case into a minimal test case that still
produces the failure

I How would you do this by hand?

/GU

Problem Simplification

We need a small failed test case
Simplify failing test case into a minimal test case that still
produces the failure

Divide-and-Conquer
1. Cut away one half of the test input
2. Check, whether one of the halves still exhibits failure
3. Continue until minimal failing input is obtained

(Same principle as binary search!)

Problems
I Tedious: rerun tests manually
I Boring: cut-and-paste, rerun
I What, if none of the halves exhibits a failure?

/GU

Problem Simplification

We need a small failed test case
Simplify failing test case into a minimal test case that still
produces the failure

Divide-and-Conquer
1. Cut away one half of the test input
2. Check, whether one of the halves still exhibits failure
3. Continue until minimal failing input is obtained

(Same principle as binary search!)

Problems
I Tedious: rerun tests manually
I Boring: cut-and-paste, rerun
I What, if none of the halves exhibits a failure?

/GU

Automatic Input Simplification

I Automate cut-and-paste and re-running tests
I Partition test input into n chunks c1 · · · cn

I Remove one chunk at a time, re-run test on remaining pattern
c1 · · · ci−1 ci+1 · · · cn

I Increase granularity (number of chunks) when no failure
occurs

Example
public static int checkSum(int[] a)

I is supposed to compute the checksum of an integer array
I gives wrong result, whenever a contains two identical

consecutive numbers, but we don’t know that yet
I we have a failed test case, e.g., from protocol transmission:

{1,3,5,3,9,17,44,3,6,1,1,0,44,1,44,0}

/GU

Input Simplification (n = number of chunks)

1 3 5 3 9 17 44 3 6 1 1 0 44 1 44 0 8

n=2
1 3 5 3 9 17 44 3 4

6 1 1 0 44 1 44 0 8

6 1 1 0 8

6 1 4

1 0 4

n=4 increase granularity
6 1 1 8

n=3 adjust granularity to input size
6 1 4

1 1 8

/GU

Input Simplification (n = number of chunks)

1 3 5 3 9 17 44 3 6 1 1 0 44 1 44 0 8

n=2
1 3 5 3 9 17 44 3 4

6 1 1 0 44 1 44 0 8

6 1 1 0 8

6 1 4

1 0 4

n=4 increase granularity
6 1 1 8

n=3 adjust granularity to input size
6 1 4

1 1 8

/GU

Input Simplification (n = number of chunks)

1 3 5 3 9 17 44 3 6 1 1 0 44 1 44 0 8

n=2
1 3 5 3 9 17 44 3 4

6 1 1 0 44 1 44 0 8

6 1 1 0 8

6 1 4

1 0 4

n=4 increase granularity
6 1 1 8

n=3 adjust granularity to input size
6 1 4

1 1 8

/GU

Input Simplification (n = number of chunks)

1 3 5 3 9 17 44 3 6 1 1 0 44 1 44 0 8

n=2
1 3 5 3 9 17 44 3 4

6 1 1 0 44 1 44 0 8

6 1 1 0 8

6 1 4

1 0 4

n=4 increase granularity
6 1 1 8

n=3 adjust granularity to input size
6 1 4

1 1 8

/GU

Input Simplification (n = number of chunks)

1 3 5 3 9 17 44 3 6 1 1 0 44 1 44 0 8

n=2
1 3 5 3 9 17 44 3 4

6 1 1 0 44 1 44 0 8

6 1 1 0 8

6 1 4

1 0 4

n=4 increase granularity
6 1 1 8

n=3 adjust granularity to input size
6 1 4

1 1 8

/GU

Input Simplification (n = number of chunks)

1 3 5 3 9 17 44 3 6 1 1 0 44 1 44 0 8

n=2
1 3 5 3 9 17 44 3 4

6 1 1 0 44 1 44 0 8

6 1 1 0 8

6 1 4

1 0 4

n=4 increase granularity
6 1 1 8

n=3 adjust granularity to input size
6 1 4

1 1 8

/GU

Input Simplification (n = number of chunks)

1 3 5 3 9 17 44 3 6 1 1 0 44 1 44 0 8

n=2
1 3 5 3 9 17 44 3 4

6 1 1 0 44 1 44 0 8

6 1 1 0 8

6 1 4

1 0 4

n=4 increase granularity
6 1 1 8

n=3 adjust granularity to input size
6 1 4

1 1 8

/GU

The ddMin algorithm
I Let c be a failing input configuration (sequence of individual

inputs).
I test(c) runs a test on c with possible outcome PASS or FAIL.
I n is the number of chunks to split c into (initially n = 2). We

will remove one chunk at the time, and test the remaining
input.

ddMin(c, n) =
1. If |c| = 1 return c

Otherwise, systematically remove one chunk ci at the time.
Test the remaining input c\ci :

2. If there exist some ci such that test(c\ci) = FAIL2

return ddMin(c\ci , max(n-1, 2))
3. Else, if n < |c| return ddMin(c, min(2n, |c|))
4. Else, (can’t split into smaller chunks) return c

2In our example, we start by removing the last chunk. But the order does
not actually matter for the algorithm, it’s an implementational choice.

/GU

The ddMin algorithm
I Let c be a failing input configuration (sequence of individual

inputs).
I test(c) runs a test on c with possible outcome PASS or FAIL.
I n is the number of chunks to split c into (initially n = 2). We

will remove one chunk at the time, and test the remaining
input.

ddMin(c, n) =
1. If |c| = 1 return c

Otherwise, systematically remove one chunk ci at the time.
Test the remaining input c\ci :

2. If there exist some ci such that test(c\ci) = FAIL2

return ddMin(c\ci , max(n-1, 2))

3. Else, if n < |c| return ddMin(c, min(2n, |c|))
4. Else, (can’t split into smaller chunks) return c

2In our example, we start by removing the last chunk. But the order does
not actually matter for the algorithm, it’s an implementational choice.

/GU

The ddMin algorithm
I Let c be a failing input configuration (sequence of individual

inputs).
I test(c) runs a test on c with possible outcome PASS or FAIL.
I n is the number of chunks to split c into (initially n = 2). We

will remove one chunk at the time, and test the remaining
input.

ddMin(c, n) =
1. If |c| = 1 return c

Otherwise, systematically remove one chunk ci at the time.
Test the remaining input c\ci :

2. If there exist some ci such that test(c\ci) = FAIL2

return ddMin(c\ci , max(n-1, 2))
3. Else, if n < |c| return ddMin(c, min(2n, |c|))

4. Else, (can’t split into smaller chunks) return c

2In our example, we start by removing the last chunk. But the order does
not actually matter for the algorithm, it’s an implementational choice.

/GU

The ddMin algorithm
I Let c be a failing input configuration (sequence of individual

inputs).
I test(c) runs a test on c with possible outcome PASS or FAIL.
I n is the number of chunks to split c into (initially n = 2). We

will remove one chunk at the time, and test the remaining
input.

ddMin(c, n) =
1. If |c| = 1 return c

Otherwise, systematically remove one chunk ci at the time.
Test the remaining input c\ci :

2. If there exist some ci such that test(c\ci) = FAIL2

return ddMin(c\ci , max(n-1, 2))
3. Else, if n < |c| return ddMin(c, min(2n, |c|))
4. Else, (can’t split into smaller chunks) return c

2In our example, we start by removing the last chunk. But the order does
not actually matter for the algorithm, it’s an implementational choice.

/GU

Mini Quiz: ddMin

ddMin(c, n) =
1. If |c| = 1 return c

Otherwise, systematically remove one
chunk ci at the time.
Test the remaining input c\ci :

2. If there exist some ci such that
test(c\ci) = FAIL
return
ddMin(c\ci , max(n-1, 2))

3. Else, if n < |c|
return ddMin(c, min(2n, |c|))

4. Else, (can’t split into smaller
chunks) return c

I Let test(c) return FAIL whenever
c contains two or more
occurrences of the letter ’X’.

I Apply the ddMin algorithm to
minimise the failing input array
[X, Z, Z, X]

I Write down each step of the
algorithm, and the values of n
(number of chunks).
Initially, n is 2.

/GU

Mini Quiz: Solution
Initial failing input: [X, Z, Z, X]
Initial n = 2, split into two chunks:

I [X, Z]⇒ PASS (remove 2nd chunk)
I [Z, X]⇒ PASS (remove 1st chunk)

Update n = 4 (see step 3), split into four chunks:
I [X, Z, Z]⇒ PASS (remove 4th chunk)
I [X, Z, X]⇒ FAIL (remove 3rd chunk)

Update n = 3 (see step 2), split into three chunks:
I [X, Z]⇒ PASS (remove 3rd chunk)
I [X, X]⇒ FAIL (remove 2nd chunk)

Update n = 2 (see step 2), split into two chunks:
I [X]⇒ PASS (remove 2nd chunk)
I [X]⇒ PASS (remove 1st chunk)

No further splits possible, minimal failing input is [X, X]

/GU

Mini Quiz: Solution
Initial failing input: [X, Z, Z, X]
Initial n = 2, split into two chunks:

I [X, Z]⇒ PASS (remove 2nd chunk)
I [Z, X]⇒ PASS (remove 1st chunk)

Update n = 4 (see step 3), split into four chunks:
I [X, Z, Z]⇒ PASS (remove 4th chunk)
I [X, Z, X]⇒ FAIL (remove 3rd chunk)

Update n = 3 (see step 2), split into three chunks:
I [X, Z]⇒ PASS (remove 3rd chunk)
I [X, X]⇒ FAIL (remove 2nd chunk)

Update n = 2 (see step 2), split into two chunks:
I [X]⇒ PASS (remove 2nd chunk)
I [X]⇒ PASS (remove 1st chunk)

No further splits possible, minimal failing input is [X, X]

/GU

Mini Quiz: Solution
Initial failing input: [X, Z, Z, X]
Initial n = 2, split into two chunks:

I [X, Z]⇒ PASS (remove 2nd chunk)
I [Z, X]⇒ PASS (remove 1st chunk)

Update n = 4 (see step 3), split into four chunks:
I [X, Z, Z]⇒ PASS (remove 4th chunk)
I [X, Z, X]⇒ FAIL (remove 3rd chunk)

Update n = 3 (see step 2), split into three chunks:
I [X, Z]⇒ PASS (remove 3rd chunk)
I [X, X]⇒ FAIL (remove 2nd chunk)

Update n = 2 (see step 2), split into two chunks:
I [X]⇒ PASS (remove 2nd chunk)
I [X]⇒ PASS (remove 1st chunk)

No further splits possible, minimal failing input is [X, X]

/GU

Mini Quiz: Solution
Initial failing input: [X, Z, Z, X]
Initial n = 2, split into two chunks:

I [X, Z]⇒ PASS (remove 2nd chunk)
I [Z, X]⇒ PASS (remove 1st chunk)

Update n = 4 (see step 3), split into four chunks:
I [X, Z, Z]⇒ PASS (remove 4th chunk)
I [X, Z, X]⇒ FAIL (remove 3rd chunk)

Update n = 3 (see step 2), split into three chunks:
I [X, Z]⇒ PASS (remove 3rd chunk)
I [X, X]⇒ FAIL (remove 2nd chunk)

Update n = 2 (see step 2), split into two chunks:
I [X]⇒ PASS (remove 2nd chunk)
I [X]⇒ PASS (remove 1st chunk)

No further splits possible, minimal failing input is [X, X]

/GU

Mini Quiz: Solution
Initial failing input: [X, Z, Z, X]
Initial n = 2, split into two chunks:

I [X, Z]⇒ PASS (remove 2nd chunk)
I [Z, X]⇒ PASS (remove 1st chunk)

Update n = 4 (see step 3), split into four chunks:
I [X, Z, Z]⇒ PASS (remove 4th chunk)
I [X, Z, X]⇒ FAIL (remove 3rd chunk)

Update n = 3 (see step 2), split into three chunks:
I [X, Z]⇒ PASS (remove 3rd chunk)
I [X, X]⇒ FAIL (remove 2nd chunk)

Update n = 2 (see step 2), split into two chunks:
I [X]⇒ PASS (remove 2nd chunk)
I [X]⇒ PASS (remove 1st chunk)

No further splits possible, minimal failing input is [X, X]

/GU

Minimal Failure Configuration

Consequences of Minimisation
I Input small enough for observing, tracking, locating (next

topics)
I Minimal input often provides important hint for source of

defect.

Implementation
I For details on implementation of minimisation algorithm, see

Zeller ch. 5 (in particular 5.4-5.5).
I Play with the Java implementation: DD.java and

Dubbel.java
(+ exercise session!).

/GU

Automatic Problem Minimisation

Observing outcome, state inspection

Tracking, reasoning backwards

/GU

Observing outcome, state inspection

Observation of intermediate state not part of functionality!!

How can we observe the computations in a program run?
I Simple logging: print statements
I Advanced logging: configureable what is printed based on

level (OFF < FINE . . . < INFO < WARNING < SEVERE)
I Debugging tools: such as the eclipse debugger

/GU

Observing outcome, state inspection

Observation of intermediate state not part of functionality!!

How can we observe the computations in a program run?
I Simple logging: print statements
I Advanced logging: configureable what is printed based on

level (OFF < FINE . . . < INFO < WARNING < SEVERE)
I Debugging tools: such as the eclipse debugger

/GU

The Quick & Dirty Approach: Print Logging

Println Debugging
Manually add print statements at code locations to be observed
System.out.println("size␣=␣"+ size);

4 Simple and easy
4 No tools or infrastructure needed, works on any platform

8 Code cluttering
8 Output cluttering
8 Performance penalty, possibly changed behaviour (real time

apps)
8 Buffered output lost on crash
8 Source code access required, recompilation necessary

/GU

The Quick & Dirty Approach: Print Logging

Println Debugging
Manually add print statements at code locations to be observed
System.out.println("size␣=␣"+ size);

4 Simple and easy
4 No tools or infrastructure needed, works on any platform

8 Code cluttering
8 Output cluttering
8 Performance penalty, possibly changed behaviour (real time

apps)
8 Buffered output lost on crash
8 Source code access required, recompilation necessary

/GU

The Quick & Dirty Approach: Print Logging

Println Debugging
Manually add print statements at code locations to be observed
System.out.println("size␣=␣"+ size);

4 Simple and easy
4 No tools or infrastructure needed, works on any platform

8 Code cluttering
8 Output cluttering
8 Performance penalty, possibly changed behaviour (real time

apps)
8 Buffered output lost on crash
8 Source code access required, recompilation necessary

/GU

Basic Logging in Java

See:
https://docs.oracle.com/javase/7/docs/api/java/util/logging/Logger.html

I Each class can have its own logger object
I Each logger has level:

OFF < FINE . . . < INFO < WARNING < SEVERE
I Setting the level controls which messages gets written to log.

Quick Demo: Dubbel.java

https://docs.oracle.com/javase/7/docs/api/java/util/logging/Logger.html

/GU

Evaluation of Logging Frameworks

4 Output cluttering can be mastered
4 Small performance overhead
4 Exceptions are loggable
4 Log complete up to crash
4 Instrumented source code reconfigurable w/o recompilation

I See class java.util.logging.LogManager.
I Logging configurations from file.

8 Code cluttering — don’t try to log everything!

Code cluttering avoidable with Debuggers
I post-mortem vs. interactive debugging
I Note: Not always possible to use debugger.

I E.g. bugs in complex, large systems with timing issues.

/GU

Evaluation of Logging Frameworks

4 Output cluttering can be mastered
4 Small performance overhead
4 Exceptions are loggable
4 Log complete up to crash
4 Instrumented source code reconfigurable w/o recompilation

I See class java.util.logging.LogManager.
I Logging configurations from file.

8 Code cluttering — don’t try to log everything!

Code cluttering avoidable with Debuggers
I post-mortem vs. interactive debugging
I Note: Not always possible to use debugger.

I E.g. bugs in complex, large systems with timing issues.

/GU

Evaluation of Logging Frameworks

4 Output cluttering can be mastered
4 Small performance overhead
4 Exceptions are loggable
4 Log complete up to crash
4 Instrumented source code reconfigurable w/o recompilation

I See class java.util.logging.LogManager.
I Logging configurations from file.

8 Code cluttering — don’t try to log everything!

Code cluttering avoidable with Debuggers
I post-mortem vs. interactive debugging
I Note: Not always possible to use debugger.

I E.g. bugs in complex, large systems with timing issues.

/GU

Using Debuggers

Assume we have found a small failing test case and identified the
faulty component.

Basic Functionality of a Debugger
Execution Control Stop execution at specific locations:

breakpoints
Interpretation Step-wise execution of code

State Inspection Observe values of variables and stack
State Change Change state of stopped program

I We use the built-in GUI-based debugger of the Eclipse
framework
I You will get a chance to get practical experience with the

Eclipse debugger in the exercise session next week.
I Feel free to experiment with other debuggers!

/GU

Automatic Problem Minimisation

Observing outcome, state inspection

Tracking, reasoning backwards

/GU

Tracking Causes and Effects

Determine defect that is origin of failure

Fundamental problem
Programs executed forward, but need to reason backward from
failure

/GU

Reasoning Backwards

How do we know which statements influences other statements?

/GU

Running Example: Binary Search

public s t a t i c int search(int array[], int
target) {

int low = 0;
int high = array.length;
int mid;
while (low <= high) {
mid = (low + high)/2;
i f (target < array[mid]) {
high = mid - 1;
} e l se i f (target > array[mid]) {
low = mid + 1;
} e l se {
return mid;
}
}
return -1;
}

Exercise and Demo: Find the bug!

/GU

Example

public s t a t i c int search(int array[], int
target) {

int low = 0;
int high = array.length ;

int mid;
while (low <= high) {

mid = (low + high)/2;
i f (target < array[mid]) {

high = mid - 1;
} e l se i f (target > array[mid]) {

low = mid + 1;
} e l se {

return mid;
}

}
return -1;

}

/GU

Effects of Statements

Fundamental ways how statements may affect each other
Write Change the program state

Assign a new value to a variable read by another
statement

Control Change the program counter
Determine which statement is executed next

/GU

Statement Dependencies

Definition (Data Dependency)
Statement B is data dependent on statement A iff

1. A writes to a variable v that is read by B and
2. There is at least one execution path between A and B

in which v is not assigned another value.

“The outcome of A can directly influence a variable read in B”

Definition (Control Dependency)
Statement B is control dependent on statement A iff

I B’s execution is potentially controlled by A

“The outcome of A can influence whether B is executed”

/GU

Statement Dependencies

Definition (Data Dependency)
Statement B is data dependent on statement A iff

1. A writes to a variable v that is read by B and
2. There is at least one execution path between A and B

in which v is not assigned another value.

“The outcome of A can directly influence a variable read in B”

Definition (Control Dependency)
Statement B is control dependent on statement A iff

I B’s execution is potentially controlled by A

“The outcome of A can influence whether B is executed”

/GU

Example

int low = 0;
int high = array.length;
int mid;
while (low <= high) {

mid = (low + high)/2;
if (target < array[mid]) {

high = mid - 1;
} e l se i f (target > array[mid]) {

low = mid + 1;
} e l se {

return mid;
}

}
return -1;

/GU

Example

int low = 0;
int high = array.length;
int mid;
while (low <= high) {

mid = (low + high)/2;
if (target < array[mid]) {

high = mid - 1;
} e l se i f (target > array[mid]) {

low = mid + 1;
} e l se {

return mid;
}

}
return -1;

statement is data-dependent on this statement

/GU

Example

int low = 0;
int high = array.length;
int mid;
while (low <= high) {

mid = (low + high)/2;
if (target < array[mid]) {

high = mid - 1;
} e l se i f (target > array[mid]) {

low = mid + 1;
} e l se {

return mid;
}

}
return -1;

statement is control-dependent on the while statement

/GU

Computing Backward Dependencies

Definition (Backward Dependency)
Statement B is backward dependent on statement A iff

I There is a sequence of statements A = A1, A2, . . . , An = B such
that:

1. for all i , Ai+1 is either control dependent or data dependent on
Ai

2. there is at least one i with Ai+1 being data dependent on Ai

“The outcome of A can influence the program state in B”

/GU

Direct Backwards Dependent

Statement B is (Directly) backwards dependent on A if either
or both:
I B is control-dependent on A
I B is data-dependent on A

/GU

Example

int low = 0;
int high = array.length;
int mid;
while (low <= high) {

mid = (low + high)/2;
if (target < array[mid]) {

high = mid - 1;
}
e l se i f (target > array[mid]) {

low = mid + 1;
}
e l se {
return mid;
}

}
return -1;

/GU

Tracking Down Infections
Systematic localization of defects
Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of

defect:
one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected
ones

4. If one of the Li is infected, i.e., M 6= ∅:

4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in
M)

4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L does not depend on any other location (must be the
infection site!)

/GU

Tracking Down Infections
Systematic localization of defects
Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}

2. Compute statements S that potentially contain origin of
defect:
one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected
ones

4. If one of the Li is infected, i.e., M 6= ∅:

4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in
M)

4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L does not depend on any other location (must be the
infection site!)

/GU

Tracking Down Infections
Systematic localization of defects
Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of

defect:
one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected
ones

4. If one of the Li is infected, i.e., M 6= ∅:

4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in
M)

4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L does not depend on any other location (must be the
infection site!)

/GU

Tracking Down Infections
Systematic localization of defects
Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of

defect:
one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected
ones

4. If one of the Li is infected, i.e., M 6= ∅:

4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in
M)

4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L does not depend on any other location (must be the
infection site!)

/GU

Tracking Down Infections
Systematic localization of defects
Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of

defect:
one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected
ones

4. If one of the Li is infected, i.e., M 6= ∅:

4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in
M)

4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L does not depend on any other location (must be the
infection site!)

/GU

Tracking Down Infections
Systematic localization of defects
Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of

defect:
one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected
ones

4. If one of the Li is infected, i.e., M 6= ∅:
4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in
M)

4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L does not depend on any other location (must be the
infection site!)

/GU

Tracking Down Infections
Systematic localization of defects
Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of

defect:
one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected
ones

4. If one of the Li is infected, i.e., M 6= ∅:
4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in
M)

4.2 Let new current location L be any location from I

4.3 Goto 2.
5. L does not depend on any other location (must be the

infection site!)

/GU

Tracking Down Infections
Systematic localization of defects
Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of

defect:
one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected
ones

4. If one of the Li is infected, i.e., M 6= ∅:
4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in
M)

4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L does not depend on any other location (must be the
infection site!)

/GU

Tracking Down Infections
Systematic localization of defects
Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of

defect:
one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected
ones

4. If one of the Li is infected, i.e., M 6= ∅:
4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in
M)

4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L does not depend on any other location (must be the
infection site!)

/GU

After Fixing the Defect: Testing!

I Failures that exhibited a defect become new test cases after
the fix
I used for regression testing

I During/after fixing the bug use existing unit test cases to
I test a suspected method in isolation
I make sure that your bug fix did not introduce new bugs
I exclude wrong hypotheses about the defect

/GU

Summary

In this lecture, we have learned:
I How one can find a minimal failing test-case, and why this is

helpful for debugging.
I Logging and debuggers.
I How to go about finding a bug systematically.
I What it means for a program statement to be

I control dependent and data dependent.
I How to use these concepts to help locating bugs.

/GU

What Next?

Unsolved problems
1. When does a program have no more bugs?

How to prove correctness without executing ∞ many paths?

Remaining topics in this course that give some answers
1. Formal Specification
2. Verifying Program Correctness

/GU

What Next?

Unsolved problems
1. When does a program have no more bugs?

How to prove correctness without executing ∞ many paths?

Remaining topics in this course that give some answers
1. Formal Specification
2. Verifying Program Correctness

	Automatic Problem Minimisation
	Observing outcome, state inspection
	Tracking, reasoning backwards

