R Ay o
-'-.'-_.

CHALMERS

Objektorienterad programmering

Lecture 7. multidimensional arrays and text files

Dr. Alex Gerdes | Dr. Carlo A. Furia
SP1 2017/18

Chalmers University of Technology

In the previous lecture 6

- Monodimensional arrays

. Strings

Text files: Input/Output

Data I/O (Input/Output)

- A program without input/output of data is not very useful: it
can only perform a single predefined computation without
communicating the result!

- There are several different ways of inputing data
iInput via keyboard
read the content of a file
through the network
getting the output of another program as input

- Some Input sources can also be output sources

- Java supports I/O through multiple sources by means of
several library classes. In this class we discuss some of
them.

Input from keyboard

- In Java, System. in represents keyboard input, which is an object of
type InputStream. Instead of using InputStream objects directly, it is
simpler and more flexible to create objects of type Scanner.

Constructor Description

Constructs a new Scanner that produces values
Scanner (InputStream source) |scanned from the specified input stream. Bytes
from the stream are converted into characters.

import java.util.Scanner;

public class ReadFromKeyboard {
public static void main (String|[] args) {
Scanner keyboard = new Scanner (System.in);
System.out.print ("Give the integer numbers: ");

int sum = 0;
while (keyboard.hasNextInt()) {
sum = sum + keyboard.nextInt () ;

}

System.out.println ("The sum of the numbers: " + sum);

Input from text files

CHALMERS

- To read from text files, we combine library classes File and
Scanner

.- The constructor of Scanner may throw a
FileNotFoundException If the file does not exist. This is an

example of exception that has to be managed (checked).

Constructor Description

Creates a new File instance by converting the given

File (String pathname) _ _
pathname string into an abstract pathname.

Constructor Description

Constructs a new Scanner
that produces values
Scanner (File source) throws FileNotFoundException |scanned from the specified
file. Bytes from the file are
converted into characters.

Reading numbers from a text file

CHALMERS

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;

public class ReadFromTextFile {
public static volid main (String|[] args) throws FileNotFoundException {

File in = new File("indata.txt");
Scanner sc = new Scanner (in) ;
int sum = 0;
. May throw
hile .hasNext : .
Wit (B BEENERE ()) F1leNotFoundException
sum = sum + sc.nextInt (),

}

System.out.println ("The sum 1is: " + sum);

Output to text files

CHALMERS

- To write to text file, we use library class PrintWriter

Constructor Description

Creates a new PrintWriter, without
automatic line flushing, with the specified file
name.

PrintWriter (String fileName)
throws FileNotFoundException

Operations Description

Closes the stream and releases any system resources
associated with it.

void close ()

void print (int 1) Prints an integer.

void print (double d) Prints a double-precision floating-point number.

void println (int i) Prints an integer and then terminates the line.

Writing numbers to a text file

CHALMERS

import java.io.PrintWriter;
import java.io.FileNotFoundException;

public class WriteToTextFile {
public static volid main (String|[] args) throws FileNotFoundException {
PrintWriter out = new PrintWriter ("out.txt");
for (int 1 = 0; 1 < 10; 1 =1 + 1) {
out.println (1) ;

May throw

}

FF1leNotFoundException
out.close() ;

Multidimensional arrays

Bidimensional arrays

- A bidimensional array is an array of arrays:
int[][] table = new int[3][4];

table
—~
\\ 0 1 2 3
g 0 0 0 0
O —
0
T ool ol o
1 N
21 0 0 0 0

Bidimensional arrays

Instead of creating a bidimensional array with “new”,
we can create and simultaneously fill it up with a 0 1 2 3
certain content when we declare it:

int|[][] numberTable =
{{12, 34, 71, 9},
{53, 43, 33, 08},
{29, 10, 3, 42}};

- Since a bidimensional array is just an array of
references to independent arrays, the different
components may have different lengths (“jagged

arrays”): 0 1 2 3
0| 12 | 34 | 712 | 9
int[][] jJagged = {{12, 34, 71, 9},
{53, 43, 33}, 1] 53 | 43 | 33
{29, 10}};

Bidimensional arrays

int[][] table = {{12, 34, 71, 9},
{53, 43, 33},
{29, 10}};

table[0].length gives 4
table[1].length gives 3
table[2].length (gives 2

Arrays.sort (table[0]) sortsrow O in table
Arrays.sort (table[1]) sortsrow 1 in table
Arrays.sort (table[2]) sortsrow 2 in table

CHALMERS

12 | 34 | 71
53 | 43 | 33
29 | 10

Example: symmetric matrixes

- Write a program that inputs a square n x n matrix, and outputs whether the matrix is
symmetric.

Matrix A with elements aij is symmetric if:
aij = aji for all indexes |, |

- Analysis:
Input: An integer n (the matrix size) and a matrix A of size n x n
Output: Whether A is symmetric or not

Example: Given

1 2 3
2 3 4
3 4 5

the program outputs SYMMETRIC, whereas given

1 2 3
3 4 5
5 6 7

the program outputs NOT SYMMETRIC

Discussion: The result can be encoded by a boolean ok, which is true if Ais
symmetric and false if A is not symmetric.

Checking symmetry requires to check all pairs of elements alj, aji. Thus, we
Initialize ok to true and loop through all pairs of elements.If we find a pair of
elements such that aj # aji it means that the matrix is not symmetric: thus, we set
ok to false and exit the loop. If we manage to complete the loop without ever
setting ok to false, ok is still true, which means the matrix is indeed symmetric.

. Algorithm:

Read size n
Read matrix A

.0k = true;

P w N

For every pair of indexes i, | in matrix A:
1. if (aiy # aji) ok = false;

5. 1f ok
Print "'SYMMETRIC”.
else
Print "NOT symmetric’

Data.
- n of type int
- Aoftype double[] []

Implementation: main

CHALMERS

import javax.swing.*;

public class Symmetric {
public static void main (String[] args) ({

String input = JOptionPane.showInputDialog (“Input matrix size: ");
int n = Integer.parselnt (input)
double[][] A = readMatrix(n) ;

if (isSymmetric (A))
JOptionPane.showMessageDialog (null, “SYMMETRIC") ;

else
JOptionPane.showMessageDialog (null, “NOT symmetric");

CHALMERS

Implementation: readMatrix

public static double[][] readMatrix(int size) {
double[] [] theMatrix = new double[size] [size];
for (int row = 0; row < size; row = row + 1) {
for (int col = 0; col < size; col = col + 1) {
String q = “Input element (" + row + “row,

String input = JOptionPane.showInputDialog(q) ;

theMatrix[row] [col] = Double.parseDouble (input) ;

"+ col + “"col)";

J

return theMatrix;

Implementation: isSymmetric

public static boolean isSymmetric (double[][] matrix) {
boolean okay = true;
for (int row = 0; row < matrix.length; row = row + 1)
for (int col = 0; col < matrix[row].length; col = col + 1)
if (matrix|[row] |[col] != matrix[col] [row])

okay = false;
return okay;

Implementation: isSymmetric - ver. 2

With the previous implementation, we end up checking each
pair alj, aji twice. We can avoid that by only looping over the
lower-half of matrix A.

public static boolean isSymmetric (double[][] matrix) {
boolean okay = true;
for (int row = 0; row < matrix.length; row = row + 1)
for (int col = 0; col <= row && col < matrix[row].length; col = col + 1)
if (matrix|[row] |[col] != matrix[col] [row])

okay = false;
return okay;

}

Other iImplementation of readMatrix

CHALMERS

Using a
Scanner object

import java.util.*;

public static double[] [] readMatrix (int size) {
double[][] theMatrix = new double[size] [size];
String input = JOptionPane.showInputDialog(“Input elements: ");
Scanner sc = new Scanner (input) ;
for (int row = 0; row < size; row = row + 1) {
int col = 0;
while (col < size) {
i1f (sc.hasNextDouble()) {
theMatrix[row] [col] = sc.nextDouble () ;
col = col + 1;
} else {
input = JOptionPane.showlInputDialog(“Input more elements: ");
sc = new Scanner (input) ;

J

return theMatrix;

Multidimensional arrays

- Arrays can have more than two dimensions: an
array of arrays of arrays of....

int[][][] cube = new 1nt[3][3][4];

oooo}\
™N
|

ooooL/_/

oooo}\
™N
|

olo|lolokF—

ooooL\

OO |0 (O«
O|O|O|O |«

OO0 |0 |«

Multidimensional arrays

- A picture can be represented as a bidimensional array of
color dots (“pixels”)

- In black-and-white (grayscale) pictures, each pixel is a

value in the interval [0, 255], where 0 is black and 255 is
white

- In color pictures, each pixel is three values In the interval
[0, 255], representing the intensity of red, green, and blue

- Example: grayscale and color pictures of size 800x600
pixels:

int[][] grayImage = new 1nt[800] [600];
int[][][] colorImage = new 1nt[800][600][3];

ArraylList

Class ArrayList

- An array is a static data structure, whose size is fixed upon creation
and cannot be changed while the program executes. In some
applications, we may not know the size of the data when the program
starts, and thus we need dynamic data structures, whose size can
grow and shrink as the program needs.

- We could “simulate” a dynamic structure using an array, for example:
Create an array that is as large as the maximum data size
Keep track of how which elements are actually added to the array
To add an element: use an empty slot
To remove an element: mark a slot as empty

- Class ArrayList Is a library class that provides a flexible

Implementation of dynamic list data structure. Whenever we need

dynamic data management, it's usually much simpler to use
ArrayList Instead of (monodimensional) arrays

. ArrayList IS In package java.util

Class ArrayList

- Clarr ArrayList IS generic.This means that we can create
lists of elements of any type (like for arrays). When we
declare a variable of type ArrayList, we also declare the type
of its elements. Examples:

ArraylLlst<String> words = new ArrayList<String> () ;
ArraylList<Integer> values = new ArrayList<Integer>();
ArrayList<BigInteger> bigValues =

new ArrayList<BigInteger>();
ArrayList<Person> members = new ArrayList<Person> () ;

. ArrayList can only store object/reference types, not
primitive types (such as int, double, boolean and char)

- When we need a list with elements of a primitive type, we
use its corresponding wrapper type instead

Class ArrayList<E>

CHALMERS

Operation Description

ArrayList<E> () Create an empty ArrayList for elements of type E

Add elem as last element of the list (after all other

void add(E elem)
elements)

Insert elem at position pos in the list, shifting all

void add (int pos, E elem) _ _ _ _
other elements at the insertion point to the right

E get (int pos) Return element at position pos

E set(int pos, E elem) Replace the element currently at pos with elem

Remove the element at position pos, shifting all

E remove (1nt pos) _
other elements at the removal point to the left

Class ArrayList<E>

Operation Description

int size () Return the number of elements Iin the list

Return true if the list is empty, otherwise

boolean isEmpty ()
return false

Return the position (index) of elem in the

int 1ndexOf (Object elem) o) _ _
list; If elem Is not in the list, return -1

Return true of elem is in the list,

boolean contailins (Object elem) _
otherwise return false

void clear () Remove all elements in the list

Return a textual representation of the list

String toString () _
content in the form [e,, e,, . . ., e/]

Methods indexOf and contains compare elem to the elements in the list using a method
public boolean equals (Object obj)

which must be defined for the class E. All standard classes such as String, Integer
and Double, include a definition of equals.

Autoboxing and autounboxing

- We can often mix primitive types and their corresponding
wrapper types thanks to autoboxing and autounboxing

Integer talObjekt = new Integer (10);
// without autoboxing

int tal = talObjekt.toValuel() ;
// without autounboxing

Equivalently, and more simply:
Integer talObjekt = 10; // autoboxing

int tal = talObjekt; // auto-unboxing

For loop over collections (for each)

- A special form of the for loop is convenient to loop over every element
of an array, or of a list like ArrayL.ist

double[] wvalues = new double[100];
ArrayList<String> listan = new ArraylList<String> () ;

for (int index = 0; i1ndex < wvalues.length; 1ndex = 1ndex +1) {
System.out.println (values|[index]) ;

}

for (int pos = 0; pos < listan.size(); pos = pos +1) {
System.out.println(listan.get (pos));

for (double v : wvalues)
System.out.println (v);

for (String str : listan)
System.out.println(str);

Example: read a set of numbers

- Write a method with signature

private static ArraylList<Integer> readSet ()

that reads integers in any order, and returns a list where all read integers
appear exactly once:

If an element is read multiple times, it appears only once in the output
If an element is read once, it appears once in the output
If an element is not read, it does not appear in the output

Example: input integers
1,4,1, 2,4,5,12,3,2,4,1

output list:
1,4,2,5,12,3

Analysis and implementation

CHALMERS

- Algorithm:
1. while (there are more integers)

1. Read the next number

2. If (the number is not already in the output list)
add the number to the list;

2. Return the output list

public static Arraylist<Integer> readSet () {
ArraylList<Integer> set = new ArrayList<Integer> () ;
Scanner 1n = new Scanner (System.in) ;
while (in.hasNextInt()) {
int value = 1n.nextInt():;
i1f (!set.contains (value)) {

set.add (value) ;

}
}

return set;

Class PhoneBook Implemented with arrays

CHALMERS

public class Entry ({
private String name;
private String number;
public Entry (String name, String number)
this.name = name;
this.number = number;

}
public String getName () {

return name; Maximum
} public class PhoneBook { number
public String getNumber () { private Entry[] book; of entries Actual
return number; private int count; number of
} public PhoneBook (int size) { stored
} book = new Entry[sizel: elements
count ="UT7
J Runtime
public void put (String name, String nr) error

book[count]|] = new Entry(name, nr); if count >=
count = count + 1; size

}

public String get (String name) {
String res = null;
for (int 1 = 0; 1 < count; 1 = 1 +1)

i1f (name.equals (book[i].getName()))
res = book[1i].getNumber () ;

return res;

Class PhoneBook implemented with ArrayList

CHALMERS

public class Entry {

private String name;

private String number;

public Entry (String name, String number)
this.name = name;
this.number = number;

}

public String getName () {
return name;

}
public String getNumber () import java.util.Arraylist;

return number;
} public class PhoneBook {

} private ArraylList<Entry> book = new ArrayList<Entry> () ;

public void put (String name, String nr) {
book.add (new Entry(name, nr));

public String get (String name) {
String res = null;
for (Entry e : book)
if (name.equals(e.getName()))
res = e.getNumber()
return res;

Shorthand operators

Shorthand operators

CHALMERS

- Shorthand operators are more concise forms of assignments

- There are shorthand operators for increment and decrement,
each in prefix and postfix version

Shorthand Full form
++x x + 1
——X x — 1
X++ x + 1
X— = x — 1
X =Yy X = X TV
X —-=y X =X -y
X *=y X = X * vy
X /=y X =X /vy

Shorthand operators

CHALMERS

- The difference between the prefix and postfix operators is when the increment or
decrement is executed within an expression

- With the prefix operators, the increment/decrement occurs first, and then the whole
expression is evaluated:

firstNumber = 10;
secondNumber = ++firstNumber;

In the end, firstNumber == secondNumber == 11

- With the prostfix operators, the whole expression is evaluated first, and then the
Increment/decrement occurs (without affecting the value of the expression)

firstNumber = 10;
secondNumber = firstNumber++;

In the end, secondNumber == 10 and firstNumber == 11

The most common, and simple, usage of the prefix/postfix operators is as stand-alone
statements:
++filrstNumber; firstNumber++

- The behavior of complex combinations of pre- and postfix operators can be quite
tricky. Rule of thumb: only use them in simple expressions!

