Object-oriented programming

Lecture 4: methods and top-down design

A __ _:{_-_,r
CHALMERS

Krasimir Angelov
September 2018

Chalmers University of Technology

Reminder

CHALMERS

* Just a few days left to the deadline for lab 1

Summary Lecture 3

* double: a real number limited in size and
precision

lteration: while-, do- and for-statements
* Variable scope

* Repeated Program Execution

* praintt

Abstraction

Psychological Experiment

FUTE

CHALMERS

Psychological Experiment

FUTE

CHALMERS

Programming = modelling

CHALMERS

* A computer program is a model of a real
or imaginary world; usually there is a
complex system which must be
modelled

* In object oriented programming this
world consists of a number of objects
which together solve a given task.

- The different objects have specific
responsibilities

- The objects cooperate by
communication with each other via

To do a good model of reality,
messages

and therefore to allow a good

_ , program design, is a
- A message to an object is a call from challenge.

another object to make something
done

THE LIFE OF A SoOFTWARE MUCH LATER...\

ENGINEER. .

CLEAN SLATE. SoLliD
FounNDATIONS. THIS TiME
T wWillL BUILD THINGS THE
RIGHT WY,

OH MY. 1’VE
DONE IT AGAIN,

T TR T T

Abstraction

* An abstraction helps to hide some details in what we do, in order
better understand other aspects.

* Abstraction is the most important tool we have to handle complexity
and to find general solutions.

- Because of all the details, we cannot see the woods for the trees. Two

problems can look different while on a higher level of abstraction
they are identical

Top-down design

Top-down design

* One problem solving method which builds on using
abstractions is top-down design

* Top-down design means that we first see the problem on a
higher abstraction level and divide it into smaller and simpler
problems.

* Every sub-problem is then considered on its own. This reveals
more of the aspects of the original problem. On the other hand
every sub-problem only affects some of the aspects and not
others so we are still not overwhelmed with details.

* If necessary the sub-problems are again divided into even
smaller problems, until they are so simple that can be solved
Immediately.

* Top-down-design is based on the principle:
divide-and-conquer

Top-down design

CHALMERS

Original Problem \

Problems that
are divided into
sub-problems.

Problems that are
simple enough to
be solved directly.

Bottom-up design

* Related to top-down design is bottom-up design

* Bottom-up design means to start with developing small and generally
reusable programming components and then combine them to bigger
and more powerful tools

* An important aspect of object oriented programming, which aligns with
bottom-up design, is re-usability

* Re-usability is the strive to design classes which are so general that
they can be used in many programs.

* InJava there is a standard library which contains a large number of
such general classes; the standard library can therefore be seen as a
"toolkit" from which we can pick up components for the system that we
want to build.

* For the development of Java programs we usually combine top-down
and bottom-up design.

Modular design

* In aJava program:
abstraction mechanisms = classes + methods

* Top-down design in Java =
division it into classes and methods, which on

the other hand are divided into new classes and
methods.

* We should strive for a modular design where
every sub-problem (= class or method) does a well

defined task and is as independent from the others
as possible.

Modular design

CHALMERS

* A well done modular design means that the
system is divided in clearly identifiable
abstractions. The assumptions with such
a system are:

- It Is easy to modify

- The components can be reused

- There is a clear division of responsibilities
between the components

- The complexity is reduced Design systems around
stable abstractions and
- The components can be replaced exchangeable components,
in order to allow small and
- Simplifies testing stepwise changes.

- Allows parallel development

Example

Problem: write a program which reads the radius and the
hight of a cylinder, then computes and prints the area and
the volume of the cylinder. The area A and the volume V of
a cylinder can be computed with the following formulas:

A = 27rh + 27r? V = 7wrh /*\
where r is the radius and h is the hight of the cylinder i
+ Algorithm:
1. Read the radius of the cylinder r T

. Read the hight of the cylinder h
. Compute the area of the cylinder
. Compute the volume of the cylinder

o b~ W N

. Print the area A and the volume V

Solution 1

* All the steps in our solution are more or less trivial, so the
program can be written as a single main program:

import javax.swing.?*;
import java.util.¥*;

public class CalcCylinder {
public static void main (String[] args) {
String i1nput = JOptionPane.showInputDialog ("Give radius and hight:") ;
if (input !'= null) {
Scanner sc = new Scanner (input) ;
double radius = sc.nextDouble() ;
double height = sc.nextDouble() ;
double area = 2 * Math.PI * radius * height +
2 * Math.PI * Math.pow(radius, 2);
double volume = Math.PI * Math.pow(radius, 2) * height;
JOptionPane.showMessageDialog (null, "The area of the cylinder is "
+ area +
"\nThe volume of the cylinder is "
+ volume) ;

Solution 2

CHALMERS

* Part of the solution is to compute the area and the volume
as sub-problems, they can be reimplemented as separate
metods!

import javax.swing.¥*;
import java.util.¥*;

public class CalcCylinderVv2 {
public static void main(String[] args) {
String input = JOptionPane.showInputDialog ("Give radius and hight:") ;

if (input !'= null) {
Scanner sc = new Scanner (input) ;
double radius = sc.nextDouble() ;
double height = sc.nextDouble() ;
double area = computeArea (radius, height) ;
double volume = computeVolume (radius, height) ;
JOptionPane.showMessageDialog (null, "The area of the cylinder is "

+ area +
"\nThe volume of the cylinder is "
+ volume) ;

Solution 2, continuation

private static double computeArea (double radius, double height) {
return 2 * Math.PI * radius * height +
2 * Math.PI * Math.pow(radius, 2);
}

private static double computeVolume (double radius, double height) {
return Math.PI * Math.pow(radius, 2) * height;
}

- Comments: we have declared the metods
computeArea and computeVolume as private

because they are helper methods to let the main
program to do its task.

Solution 3

* We can divide the problem further by isolating sub-problems

private static double computeArea (double radius, double height) {
return computeSideArea (radius, height) + 2 * computeCircleArea (radius) ;

private static double computeVolume (double radius, double height) {
return computeCircleArea (radius) * height;

private static double computeSideArea (double radius, double height) {
return computeRectangleArea (computeCirclelLength (radius), height) ;

private static double computeCircleArea (double radius) {
return Math.PI * Math.pow(radius, 2);

private static double computeCirclelLength (double radius) {
return 2 * Math.PI * radius;

private static double computeRectangleArea (double width, double height) {
return width*height;

Solution 4

* In the previous solutions we had a class which contains both the main
program and the private class methods computeArea, computevVolume,

computeSideArea, efc.

* It is possible (and useful) to put these methods in another class and then
then the external metods must be made public.

public class Cylinder {
public static double computeArea (double radius, double height) {

return computeSideArea (radius, height) + 2 * computeCircleArea (radius) ;

}

public static double computeVolume (double radius, double height) {
return computeCircleArea (radius) * height;

}

private static double computeSideArea (double radius, double height) {
return computeRectangleArea (computeCirclelLength (radius), height) ;

}

private static double computeCircleArea (double radius) { What are the

return Math.PI * Math.pow(radius, 2); aqvantqgescﬁ
} this design?

Solution 4, continuation

import javax.swing.*;
import java.util.*;

public class CalcCylindervV4 ({
public static void main(String[] args) {
String input = JOptionPane.showInputDialog ("Give radius and hight:") ;

if (input !'= null) {
Scanner sc = new Scanner (input) ;
double radius = sc.nextDouble() ;
double height = sc.nextDouble() ;
double area = Cylinder.computeArea (radius, height) ;
double volume = Cylinder.computeVolume (radius, height) ;
JOptionPane.showMessageDialog (null, "The area of the cylinder is ”

+ area +
"\nThe volume of the cylinder is™"
+ volume) ;

Note: for the program to
work the class Ccylinder

must be in the same folder
as the class
CalcCylinderV4

Pause (15 min)

Methods

The parts of a method

modifier type name (parameter list) {
variables and statements
return result;

}

modifier void name (parameter list) {
variables and statements

}

- Methods can be class methods or instance
methods

* Methods can return a value or do not return a
value

* Methods can also be private or public

The parts of a method

- The statement
return Xx;

terminates the method and the value x will be the result which is
returned from the method.

- A method which does not return value (a void-method) have no return-
statement or have return-statement which doesn't have a result.

type of return value

the method's name
para meters

modifiers

public static 1nt maxValue (1nt a, 1nt b) {
int result;
if (a > b)
result = a;
else

result = b; /eturn value
return result;

The parts of a method

* It is important to remember that:
return x;

terminates the method, because the following example also works:

type of return value

the method's name
para meters

modifiers

public static 1nt maxValue (1nt a, 1nt b) {
if (a > b)

return a;<s§\§§\§§:.
return b;) return values

-

Method sighature

CHALMERS

& o

- the method's parameter list with their types and order

public static int maxValue (int a, int b);

* A methods signature consists of:

- the method's name (1,_;0 '
-t éﬁ' o

ne method's return type

whether it is a class or instance method

* A method call can be seen as a message that the sender
sends to the receiver

* The parameter list describes what type of data the sender
can send in the message. Conversely, the result type
describes what type of answer the sender gets in response
from the receiver.

Formal and actual parameters

CHALMERS

import javax.swing.*;
import java.util.*;

public class Example {
public static void main(String[] args) {
String input = JOptionPane.showInputDialog("Give three integers") ;
Scanner sc = new Scanner (input) ;

int valuel = sc.nextInt() ;
int value2 = sc.nextInt() ;
int value3d = sc.nextInt () ;
int big = maxValue (valuel, value2); < — actual parameters
big = maxValue (big, value3) ; ~—
JOptionPane.showMessageDialog (null,
"The biggest of the integers " + wvaluel + ", " + wvalue2 +
" and " + value3d + " is " + big);

public static int maxValue(int a, int b) {

int result; ‘ ‘
if (a > Db)

result = a; formal parameters
else

result = b;
return result;

Method call

* With a call to a method the following happens:

- the values of the actual parameters are copied to the
corresponding formal parameters

- the execution continues with the first statement in the
called method.

* when the execution of the called method is completed, the
execution of the caller is resumed.

Execution order

public static int maxValue(int a, int b) {
int result;
if (a > b)
result = a;
else
result = b;
return result;

int big = maxValue (valuel, value2) ;

big = maxValue (big, value3);

Parameter passing

* All primitive data types and all classes can be used in
the parameter list and/or as a result type

* In Java the parameter passing is always by value, but
what constitutes a value is different for classes and
primitive types:

- When the actual parameter is a primitive type the value is
for example an integer like 1 or 2, or a real number like
3.15, or a boolean constant like true or false.

- When the parameter is an object (an instance of a class)
then the value in the parameter is just a reference to the
object. This means that the actual and the formal parameter
have access to the same physical object.

Parameter passing (example)

* The value of the actual parameter
valuel is copied to the formal

parameter x
Caller method Called method

* valuel and x are different physical Actual parameter | Formal parameter
locations

- A change in the value of a doesn't int valuel int a
affect the value in the variable

valuel

lilll

someClass someClass
- The value of the actual parameter P 14

p IS copied to the formal parameter
Y

* p and y are going to refer to the /
same physical object]

* A change in the object which is
referenced by the variable y
affects the object which is
referenced by the variable p, since
thet are the same objects

Lab 2

* In Lab 2 we will program a robot which is modelled with the given

class Robot

* The goal with the lab is to break the task that the robot must do
into sub-problems and to build abstractions which can be
Implemented as simple and reusable methods - with the help of
the operations that the robot provides

CHALMERS

* The robot lives in a simple world and can only do these simple

operations:

Method

void move ()

Use

Move one step forward, if the robot ends up outside of
the world, or in a wall this causes an execution error

boolean frontIsClear/()

returns true if it is possible for the robot to move ()
without causing execution error, otherwise returns false

void turnLeft ()

rotate 90° to the left

void makeLight ()

Lights up the the current position. If the position is
already lighted up, an execution error occurs.

boolean onDark ()

returns true if the robot stays on a dark position,
otherwise returns false

int getDirection ()

returns the robot's direction

Lab 2 (example)

* Suppose that the situation is like on
the picture. The goal is to move
the robot to the dark position.
In that case an operation for turning
around would be a useful abstraction.

* The robot doesn't have an operation turnAround, instead it
must be implemented with two calls to the operation turnLeft
or two calls to turnrRight.

- |In the lab the robot is an instance variable called robot. This
means that the abstraction turnaAround must be implemented
as an instance method:

public void turnAround () {
robot. turnlLeft () ;
robot. turnlLeft () ;

}

Preconditions and postconditions

* Suppose that we have a situation
like on the picture. Our task is to
move the robot to the light position
In front of the robot and make it
dark. This can be done with the
abstraction moveAndDarken.

* The implementation has the
following look:

public void moveAndDarken () {
robot .move () ;
i1f (!robot.onDark())
robot .makeDark () ;

Preconditions and postconditions

* The method (the abstraction) works perfectly for
the scenario from which we started:

e

Before After

- But there are several scenarios where the
method doesn't work, for example:

Preconditions and postconditions

* When we use a method we must know what assumptions are made in
the implementation of the method, i.e. conditions that must be valid for
the method to work correctly. These assumptions are called
preconditions and must be specified.

* It is also important to know if the method causes any side effects when it
IS executed. The goal with the method moveAndbarken is to move the
robot to the next position forward and to make it dark. This means that
the robot will be on a new position after the execution of the method?
This is a side effect which must be specified in a postcondition.

* There must be a way for the caller to check the precondition. In our
example this can be done with the method frontIsClear ().

public void makeNorthDark () {
robot .move () ;
1f (!robot.onDark())
robot .makeDark () ;

Pre- and Post-condition

* A cylinder cannot have a negative radius or negative hight

* A circle cannot have a negative radius

public class Cylinder ¢{

public static double computeArea (double radius, double height) {
return computeSideArea (radius, height) + 2 * computeCircleArea (radius) ;

}

public static double computeVolume (double radius, double height) {
return computeCircleArea (radius) * height;

}

private static double computeSideArea (double radius, double height) {
return computeRectangleArea (computeCirclelLength (radius), height) ;

private static double computeCircleArea (double radius) {
return Math.PI * Math.pow(radius, 2);
}

CHALMERS

Pre- and Post-condition

* The programmer must know the following in order to
correctly use a method:

- The method's name
- The method's parameter list

- The method's return type

What the method does:
* which preconditions must apply

* what postconditions (or side effects) method has
Complexity?

* |In order to use the method, the programmer doesn't need to
<now how the method is implemented. It is interesting to
<now what the method does, not how it does it!

Javadoc

o s

CHALMERS

public class Cylinder {

* @return is a predefined annotation

. . . public static double computeArea (double radius, double height) {
* @before IS a Self'deﬁned annOtat|On return computeSideArea (radius, height) + 2 * computeCircleArea (radius) ;

}

- The command:

public static double computeVolume (double radius, double height) {
javadoc -tag before:a:"Before:" Cylinder.java return computeCircleArea (radius) * height;
}

creates a documentation for the class
Cyllnder 18 the form Of html_ﬁles private static double computeSideArea (double radius, double height) {
return computeRectangleArea (computeCircleLength (radius), height) ;

- Examples of other pre-defined }

annotations:

private static double computeCircleArea (double radius) {
return Math.PI * Math.pow(radius, 2);

- @author)
}
computeArea
- @before N
public static double computeArea(double radius,
double height)
_ . Returns:
@version the area of a cylinder with assigned raduis and height
Before:
radius >= 0 && height >= 0
- @exception
computeVolume
public static double computeVolume(double radius,
- @param double height)
Returns:
the volume of a cylinder with assigned raduis and height
Before:

radius >= 0 && height >= 0

Live coding: Lab 2

abstraction
reusability modular design

top-down bottom-up
divide-and-conquer

class methods instance methods
public and private
method signature

precondition postcondition
actual and formal parameters

	Slide 1
	Några meddelande
	Sammanfattning föreläsning 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Abstraktion
	Slide 10
	Top-down design
	Slide 12
	Bottom-up design
	Modulär design
	Slide 15
	Exempel
	Lösning 2
	Lösning 2, fortsättning
	Lösning 3
	Lösning 4
	Lösning 4, fortsättning
	Slide 23
	Slide 24
	Uppbyggnaden av en metod
	Slide 26
	Slide 27
	Uppbyggnaden av en metod
	Formella och aktuella parametrar
	Metodanrop
	Parameteröverföring
	Slide 32
	Slide 33
	Laboration 2
	Laboration 2
	Förvillkor och eftervillkor
	Förvillkor och eftervillkor
	Förvillkor och eftervillkor
	Förvillkor och eftervillkor
	Förvillkor och eftervillkor
	Slide 41
	Slide 42
	Slide 43

