Introductory Computer Science Education
at Carnegie Méllon University:

A Deans' Perspective
Randal E. Bryant
Klaus Sutner
Mark J. Stehlik

August, 2010
CMU-CS-10-140

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

The School of Computer Science at Carnegie Mellon Univeisiplanning major revisions to

its introductory course sequence in ways that will affedt jost our own students, but also the
many students from across campus who take computer sciencges. Major changes include:
1) revising our introductory courses to promote the pritlegf computational thinking, for both

majors and nonmajors, 2) increasing our emphasis on thetnaedke software systems highly
reliable and the means to achieve this, and 3) preparingestsidor a future in which programs
will achieve high performance by exploiting parallel exeon.

Keywords: computer science education, introductory computer seiecmmputational thinking,
parallel computing, Java

1 Introduction

The School of Computer Science at Carnegie Mellon Univeisifplanning major revisions to
its introductory course sequence in ways that will affedt jnst our own students, but also the
many students from across campus who take computer sciencges. A committee of computer
science faculty, chaired by Bob Harper, has done a care@lysis of our current course structure
and proposed important changes ([1], included here as Afipén) We are indebted to the efforts
of these faculty members in thinking about both the intéllatunderpinnings of our courses as
well as the many practical issues faced when making chaongesitse structure or content. In this
document, we provide the perspective of a Dean, an Assdaeda, and Assistant Dean regarding
the introductory portions of our program and the motivagidor changing it. We collectively
have more than 70 years of experience in undergraduate ¢engmience education at Carnegie
Mellon. We have taught many of the courses in our curriculwa,have interacted extensively
with our students, and we have had many conversations withlomnni and their employers. Over
the years, undergraduate education has taken an incrgakigber priority among our faculty,
and we take great pride in the quality of our program.

Given the success of our current program, a natural quetstiask is “Why change it?” Both our
students and their employers are very pleased with the més®f our program. In making any
changes, we must take care not to unintentionally cause.harm

Three main factors motivate our desire for change—one camgehow we communicate an in-
tellectual vision for computer science, one concerningctienging ways that computers get used
and one concerning how computer systems are constructed.

e Promoting Computational Thinking. Prof. Jeannette Wing introduced this term [7] to cap-
ture the idea that computer scientists have developed emgys of formulating and solving
computational problems, yielding a rigorous disciplinéghna well-defined intellectual core.
The principles embodied in this core can inform other digegs, including math, science,
engineering, as well as aspects of humanities, arts, anddass We would like to pursue
her vision by bringing elements of computational thinkingpi our introductory computer
science courses, especially those targeting nonmajordeiMere that, even for nonmajors,
our introductory courses can serve the dual roles of progidi useful set of computer sci-
ence skills while also providing a rigorous grounding in gaitational thinking, enabling
students to acquire new skills throughout their careers.

e Increasing software reliability. There is a growing sense that we must inject greater disc
pline into the software development process. As computagrams control safety critical
systems, the consequences of bugs become much more sémiadslition, the rising num-
ber and sophistication of malicious hackers create an@mvient in which seemingly minor
bugs lead to serious security breaches. Inspired by the @fd?kof. Edmund Clarke, we be-
lieve it is important to introduce students to the tools aechhiques by which they can
reason about and evaluate their programs right from the star

e Preparing for a world of parallel computation. Maintaining the ever-increasing computer

1

performance we have experienced since the 1950s will sa@piresthat we write programs

that can exploit parallel computation. With the exceptibsaveral upper-level and graduate
courses, our current presentations of how computers apératv they are programmed, and
what constitutes an efficient algorithm are based on a pweriyential model. As champi-

oned by Prof. Guy Blelloch [3], we want our students to thitloat how to decompose a

problem such that many parts of the problem can be solvedrallpla

This document focuses on the introductory computer scienceses and two of our five core
courses. We continually revise and refine our more advancerses, as well. These revisions
tend to be less disruptive, however, since they involve fiaalker student populations and do not
require as much coordination with other parts of the uniters

2 Whom We Serve

Unlike many of our peer institutions, the School of Comp@&etence provides computer science
education for almost the entire campus. Every semester,ave around 900 students taking
our introductory courses, including students from all SIikeges offering undergraduate degrees
Considering that the university has around 1,450 entenmiprgraduate students every year, anc
even accounting for the fact that some students take twoduottory courses, we can see that out
courses engage a large fraction of the undergraduate $tuatesome point in their time here.

We can partition the students taking our courses into theeeigl categories

CSMajors Our undergraduate program enrolls 130-140 students per {éey are admitted
directly into our program as entering freshmen. Their baolgds range from students who
have never written a line of code in their lives to ones whoehdeveloped commercial
software.

Allied Nonmajors A number of other students take multiple courses in commdience. These
include all of the electrical and computer engineering msajaround 150 per year), plus
some students in math, science, other parts of engineenmpeven some in such diverse
majors as architecture, psychology, and philosophy. Tkas#ents can be distinguished
from the other nonmajors by the fact that they take at leastadrour “core” courses, typ-
ically 15-211 (algorithms and data structures) or 15-2I8njguter systems). Some of the
Electrical and Computer Engineering (ECE)students takeymaore CS courses, covering
a large fraction of the undergraduate program. Around 3@estis each year fulfill the re-
quirements to receive a minor in computer science. All ttidre are around 200 students
per year whom we would classify as “allied nonmajors.”

Other Nonmajors Over 600 students per year take one or two computer scienrsawithout
any plan to go beyond an introductory level. Many of them a&aguired to take at least
one CS course as part of their degree requirements. Thisdeslaround 50 students per
year enrolled in the Information Systems program in the 8thbHumanities and Social
Science.

| mplications

The diversity of the students we encounter has significa@roeissions for how we structure our
introductory courses:

e The sheer number of students taking introductory coursessss our teaching resources.

e Over half of our students never go beyond an introductorgllelhat we teach them in their
first course will define their entire concept of the field of qauter science.

e We must satisfy the educational needs of a wide variety adesits, ranging from those
wishing to pursue computer science for the rest of theislizethose hoping to get by with
minimal exposure.

e \We must structure our course sequences to be compatiblewitimber of different educa-
tional programs.

Providing an educational model for theworld

In addition to educating our own students, Carnegie Mellas the opportunity, and perhaps the
duty, to inform the world with a vision for computer scienchkieation. Jeannette Wing’s writings

on computational thinking have inspired educators wortthvi We historically played a major

role in designing the advanced placement exams for comgatence. Our Alice Project has

demonstrated that young people can learn the concepts@rigomnoning in the context of computer

game construction and storytelling. Our success in fematgggpation in computer science has
gained widespread recognition.

How we teach introductory computer science is especialpoirrant in this role as an educational
model. When students learn computer science in high scloel,primary objective is to gain
advanced placement, skipping over one or more collegd-teweses. The advanced placement
exam is designed to test mastery of freshman-level maté&tight now, that exam is largely a test
of elementary programming in Java. High school teachersigidy motivated to “teach to the
test,” and consequently students are given a very skiletgd perspective on computer science
This conveys a message to many high school students—thexes/we would like to recruit—
that computer science has little in the way of intellectuadtent and that their career opportunities
will be limited to sitting in cubicles all day long churningibcode that will have little impact on
the world. Students also see this path as providing wealecgm@spects, as they appear to be
jobs that can readily be outsourced to lower wage countridais, how we teach introductory
computer science at Carnegie Mellon has a ripple effect andoziety views computer science as
an intellectual discipline.

Overall, universities in the United States saw steep dnogsiroliments in computer science pro-
grams, after peaking during the “dot-com boom.” At Carndgedlon, we saw this as a drop in
the number of students applying to the computer scienceranodrom an all-time high of 3,237
in 2001 to a low of 1,732 in 2005. (Since we have the luxury ¢écténg only the top students

3

from our applicant pool, we have been able to maintain a gtestd of 130—140 entering students
per year without compromising at all on quality.) Fortumgteur applicant pool has returned to
a healthy level, with 3,026 students—the second highesteumver—applying to enter in 2010.
Nationally, the number of students deciding to major in catepscience has risen only slightly
in the past few years. Contrary to this trend, and to the jptices of many, the U. S. Bureau of
Labor Statistics forecasts that, during the period of 2@08-8, almost 75% of the nation’s new
science and engineering jobs will be in computing fields,levhust 16% will be in other engi-
neering disciplines. They forecast that close to 140,00(j@enings in computing fields will be
created during that time while only 50,000 students wilkeree degrees in computer science and
related areas.

One unfortunate trend is that computer science coursesipidy disappearing from our nation’s
high schools due to budget pressures, the need to devotesallinces to achieving the metrics
imposed by the No Child Left Behind Act, a lack of qualifieddkars, and a lack of interest on
the part of students. One consequence of this is that, @thour enrollment numbers are very
strong, an increasing number of our students have had diggrtunity to program computers.
Thus, we must continue to accommodate a wide range of prggreence among students taking
our introductory computer science classes.

Major efforts are underway by the Association for Computitachinery (ACM—a computer sci-
ence professional society), the Computing Research Assme) the National Science Foundation,
and even the Department of Defense to find ways to infuse areaipgion and excitement for com-
puter science in middle and high school students in the drétates, through experiences both
within and outside of the classroom. As an institution thahts to be viewed as one of the thought
leaders for the field, we would like to play a role in these e0A first step is to make sure our
introductory courses provide a more inviting picture of theaning of “computer science.”

3 Proposed Changes

Figure 1 highlights the proposed introductory courses aversl of the follow-on core courses.
The content of the courses are summarized as follows. Weadaawore extensive descriptions
later in this document and in the report of Appendix A

15-110: Principles of Computer Science. An introduction to compatéence, based on the prin-
ciples of computational thinking. Many taking this coursd e nonmajors, but we will
also use it as the entry point for any entering student withtéd programming experience,
as indicated by the dashed line from 15-110 to 15-122.

15-122: Principles of Imperative Computation. Introduces studdatmethods for writing and
reasoning about programs written in an imperative styler@leach step of computation up-
dates some portion of the program state. The course will gorigeour current Java-based
introductory programming course (15-121) to include eletasy algorithms and data struc-
tures and how to systematically reason about program behder example by expressing
invariant properties of loops.

15-213 15-210 15-214
Software
Computer Data structs. system
systems & algorithms construction
15-122 15-150
Imperative Functional
computation computation
/’7
4”
15-110
Computer science
principles

Figure 1:Proposed introductory and follow-on cour ses. Arrows indicate prerequisite dependen-
cies.

15-150: Principles of Functional Computation. Introduces stude¢atmethods for writing and
reasoning about programs written in a functional style, nel@ecomputation is realized as
a nested sequence of function calls, each call defining a neap hputs to outputs, but
not altering any state. The course covers methods to defiheemson about data types,
infinite data structures, and higher-order control comssruThe material will be based on
the current 15-212 course, which will be discontinued.

15-210: Fundamental algorithms and data structures, along witp@tipg theoretical founda-
tions and practical applications. Our existing data stmed and algorithms course (15-211),
but totally revamped to include ways to reason about andnipditheir performance on both
sequential and parallel machines.

15-213: Introduction to computer systems. Our existing coursedaucing students to how com-
puter systems execute programs, store information, andnconcate, presented from a pro-
grammer’s perspective. This course will remain largelyhanged.

15-214: Principles of software system construction. A new course Will cover the method-
ology for designing large-scale software systems, indgdibject-oriented programming,
concurrency, and component-based software reuse. Thedodki$ course is shaded in
gray, since much about this class has not been resolveddingl its name, course number,
prerequisites, and content.

Students wanting to take 15-210 would need to take both tipenative and functional program-
ming courses. Students just wishing to take 15-213 (inalgidiost ECEs) would only need to take
15-122. Most nonmajors would just take 15-110, and thiss®gould also be used to help stu-

dents who need more familiarity with programming before/thee ready for the two introductory
programming courses.

The two major changes to the overall course structure areol)ng our coverage of functional
computation to an introductory course that precedes the statictures and algorithms course,
and 2) creating a new course on software system constructibe first change is based on our
belief that a functional perspective should be a key parkpfessing and reasoning about parallel
computation. The second is in recognition of the need tabetiepare students for the complex
software systems they will encounter in their careers.

Let us now review the motivation for this course structure.

Computational thinking from the start

Computational thinking, a term coined by Prof. JeannettegN¥], refers to the set of concepts
and strategies used by computer scientists to formulatesalvd problems. As she has described
it, computational thinking involves two primary aspects:

e Creating Abstractions. Every field of engineering or science involves creating anding
with abstracted models, such as those found in Newtoniarmamécs and Keynesian eco-
nomics. In computer science, however, we can often be meedice with our abstractions,
since these abstractions serve more as principled waysuiigte a system, rather than as
models of real-world processes. Consider, for examplenaneretailer's computer system.
It incorporates many abstract models: client/serverticaeial database, distributed transac-
tions, program objects, etc., that enable the designereetiieca system that provides the
necessary functionality in a reliable and secure way. Thesdels are based on organizing
principles and not on abstracted views of real-world systelm constructing such models,
system designers are constrained more by their imagirsga#ind the need to manage com-
plexity than by the laws of physics. (Of course, there is s@mgpling of computational
models to the real world, and hence, for example, our inténesxpressing programs in
ways that are amenable to parallel execution.)

Important forms of abstraction in computer science include

Algorithmic formulations: Many problems in computer science can be formulated as a
stract processes or classes of operations on data that catvied by systematic com-
putational methods. There is a wide range of possible swlutiethods that can then
be analyzed for both correctness and efficiency. Often,@esitategory of algorithm
can solve problems across many application domains. Sceex@ample, the idea of
hashing—creating a mapping where the output appears tmdemay distributed even
if the input data are not—finds applications in informatietrieval, digital signatures,
and distributed file sharing. The study of algorithms is dallactually deep and com-
pelling subject that we cover from many different perspasiin our courses, with
some requiring an extensive mathematical background.

Modularity: Modular design involves partitioning a system into compasgsuch that each
component can have a succinct description of its behavigraperties, hiding the
details of its implementation. Some common forms of modiylam computer science
include procedures, data abstraction, and object-odeptegramming. Of course,
modular design is also used in many other domains, rangamg luilding construction
to product supply chains, but the use of modularity in corapatience can be much
more complete and pervasive.

e Realizing Abstractions. Computer science offers a wide range of different ways tdemp
ment particular abstractions. Compared to other fields gineering, our abstractions are
less coupled to a particular physical realization. Mosthef traditional focus has been on
mapping a computation onto a single, sequential processemwe will describe shortly,
however, there are increasing opportunities to divide upsk and map it onto multiple
computing elements, either through parallelism or distrdmn.

A second dimension concerns iteration versus recursianways of scaling a computation
to multiple elements. Both approaches can be applied tceseigl parallel, and distributed
computations.

Our introductory courses should present the core concdpteroputer science, conveying the
principles of computational thinking. Even though we candelve into them deeply, we can
provide enough coverage to demonstrate the intellectudlpaactical value of the principles of
computer science. We will still teach students how to writegpams, since programming provides
the tools to actually try out computer science concepts aakkerthem more concrete, but we must
not let the mastery of programming skills be the principleu®. We also recognize the desire of
other departments to have students be able to write progmswdve problems in their domains.

One other aspect of computational thinking is to think abbleaw the power of computation can
be applied to tasks that we encounter in our courses, professsand day-to-day lives. When
a mathematician has a conjecture, it often makes sense te assmall program that will test
the conjecture for millions of cases before attempting anfdrproof. When computer architects
design microprocessors, they routinely write programseioegate large collections of tests that
exercise different combinations of instructions. When ohe&s wanted to appeal his property
assessment, he wrote programs that extracted the recoml#iol 00 comparable properties from
the Allegheny County website. One of the most powerful pobigity tools we could provide
students in all disciplines is instruction and experienceaviiting programs that automate tasks
such as these.

The desire to introduce the concepts of computer sciengetev@onmajors motivates our recast-
ing 15-110, which currently focuses on programming in J&vde a more general introductory
course based on the theme of computational thinking. We\aethat modern programming envi-
ronments and languages simplify the task of writing codaughdhat we can cover basic computer
science concepts and provide practical programming skilbssingle course that is suitable for a
broad cross section of students. In their programming assggts, students will be able to apply
sophisticated analyses to data collected from a varietyiftdrdnt sources, including laboratory

7

equipment, image databases, and the world-wide web.

Our two other introductory courses: 15-122 and 15-150 vidbanclude many aspects of com-

putational thinking. Their principal aim, however, is tagtbuilding the foundations for a more

extended study of computer science. Whereas 15-110 shewddcburse that provides a general
picture of the essence of computer science, the other uasego into greater depth but with a
narrower focus.

The need for reliable and secure programs

The consequences of writing buggy programs are becomimngasmgly serious. As computers are
increasingly used to control critical resources, such astipacemakers, antilock braking systems.
and the national power grid, a simple bug can literally cguseple to die. In addition, most
security breaches in computer systems occur due to pooittewprograms. For example, a buffer
overflow exploit involves having an attacker supply a laigfjeeam of data than was anticipated by
the programmer, causing corruption of the program datatsires. With the increasing number
and sophistication of malicious adversaries in the wonjdteans are exposed to a very hostile
testing environment that is likely to uncover even the masicore bugs.

As an illustration, the recent Operation Aurora attacks @timmes at Google, Adobe, and other
companies gained initial entry by exploiting a weaknessterhet Explorer. A user's machine
could become infected when a downloaded page caused malicazle to be executed by refer-
encing an invalid pointer. The attackers then inserted & baor into the companies’ systems
to access their source code repositories. The attack iesiaivany steps of both gaining access
and hiding its trail [8]. As this example illustrates, thas&nce of many, seemingly minor flaws
in commercial software allows adversaries to tunnel thaysvthrough many layers of security.
Programmers must increase code quality to ensure thatécisrs against attack. For example,
Microsoft went from having a reputation for being somewhatadier about software quality to
viewing code security as a primary concern [6].

Writing secure and reliable code requires programmers todre disciplined in how they reason
about and test their programs. It might have been commortipeaat one time for students to
continually modify their programs, adding more and more plaxity, until they could pass a set
of tests representing “typical” cases. Now we want studenke able to argue both formally and
informally that their programs will run under all possiblenglitions. We want them to understand
the logical methods by which they can reason about progranasto be familiar with the growing
collection of tools that can aid systematic program devalept. Both of the introductory pro-
gramming courses: 15-122 and 15-150 will go beyond the nreckaf writing code to include
more on the fundamental principles of programming. Theseimies will be reinforced in 15-
214, which will also introduce methodologies and tools fesgoning about large-scale software
systems.

Preparing for parallel computation

For decades, hardware designers have used the ever-ingreamber of transistors that can be in-
tegrated onto a single chip to produce faster microproecss¥ée could reliably expect a program
to run faster by simply upgrading to a newer processor. Whdenumber of transistors that can be
integrated onto a chip continues to double every 18-24 nspstimiconductor manufacturers are
no longer able to design circuits that will execute indivatloode sequences much faster. Insteac
they have shifted to a strategy of increasing the numberdd#pendent processors, ares, inte-
grated onto a single chip. Making a program run faster nowireq that it be written in such a way
that multiple parts can be executed in parallel. Opporiesifor parallelism also arise in lower-
level forms, where entire vectors of data can be processepdrallel. Our changing technology
has led to a mismatch, where the widely used model of compuathased on sequential execution
does not reflect the parallel execution modes supportedebigdhdware. We must therefore shift
to models that expose the many opportunities parallel éxacwithin computations.

Current multicore processors only have 4 or 8 processoscakehieving such small-scale par-
allelism requires only minor modifications to existing pragis. One simple strategy is to as-
sign dedicated cores to background tasks, including mengmetwork ports, scanning files for

viruses, and backing up files. We can anticipate much higkgregs of parallelism in the fu-

ture, but our current programming methods will not be ablgdanuch beyond 16- or 32-way

parallelism.

Our plan for revising (and renumbering) our data structames algorithms course 15-210 is to
teach students timink parallel. By this we mean that every aspect of how programs are exptess
how they are analyzed, and how they are optimized will be rlkeaato consider 1) how they would
perform if there were unbounded computing resources, ahd\®)they would perform if limited
to n processors, with sequential execution being the speceal at = 1.

In terms of expressing programs, a first step is to eliminatestructs that artificially introduce

sequential behavior. Rather than writing loops that segignstep through a set of values, we
will use constructs that express operations at a highef, lemeexample mapping a function to
all elements of a set. The functional programming modelg barned in 15-150 will help them

reason about programs at this higher level of abstraction.

The course will present traditional key algorithmic tedues: such as divide-and-conquer, dy-
namic programming, and greedy methods, as well as onedisp#gioriented to parallel compu-
tation, such as contraction and map/reduce.

Rather than writing and measuring parallel programs focigjgemachines, our plan is to express
and reason about parallelism at a much higher level of atigira In particular, we can charac-
terize a program in terms of itsork W, expressing the total number of operations that must b
performed, and itspan S, expressing the longest sequential dependency. Giventansygith

n processors, the potentially achievable execution timelavtherefore benax(S, W/n). This
measure covers the extreme cases of maximal parallei§nar{d purely sequential execution
(W), as well as everything in between. This form of analysismsaral extension of the asymp-
totic analysis of sequential programs that has proved smt@fe for reasoning about algorithms

in machine-independent ways. For example, the traditiamatage case analysis of Quicksort
generalizes to showing it has sp@ilog n) and workO(n logn).

Our coverage of parallel computing in 15-210 will focus deterministic parallelism, where the
outcome of a computation is fully determined by the data amidby some chance ordering of
events. By contrast, some systems attempt to extract eksail throughconcurrency, where a
program is divided into a number of tasks that are executeseparate processor cores, with their
interactions coordinated by synchronization operatiohss is a more difficult and more error-
prone way to improve program performance. As we will discaoss coverage of concurrency will
be more as a way to support distributed computing and thelingmnaf asynchronous events.

4 Other Important Trends

To close out our discussion of trends for our field, we inclseleeral other recent ones. These are
trends that will be dealt with directly in more advanced cast We believe, however, that our
revised 100- and 200-level courses will help lay the grousrdvior them.

Concurrent and distributed computing

Distributed computing involves organizing a system as almnof concurrently active computing
agents that coordinate their actions via a set of protodMkereas parallel computing is purely
a technique to improve performance, a distributed systemenist to facilitate communication
among independent entities (e.g., the set of Internet hosts process asynchronous events (e.g.
the requests to a server from multiple clients.) Distriduggstem design typically involves more
concern for fault tolerance, reliability and security thfan raw performance. The boundaries
between the two classes of system are not precise, howarezx&mple, the large-scale “cluster”
computing systems used at companies such as Google [2]ractused using distributed system
principles, but many are used to perform parallel compubwey very large data sets. (One way
Google has made it tractable to write programs for theiritsted system infrastructure is to layer
their Map/Reduce programming model [5], a form of deterstiniparallelism, on top of it. This
shields programmers from the pitfalls of managing low-léask coordination themselves.)

In our curriculum, we begin introducing students to the @&gis of concurrency in 15-213, our in-
troductory computer systems course. Our planned 15-21r¥$ean software system construction
will have much more extensive coverage of concurrency, dsasebject-oriented abstractions.
Both of these are key components of most large-scale, lalisérd software systems. We also have
several advanced courses on the principles of distribysesis and web-based programming.

Data-intensive scalable computing

Whereas traditional high-performance computing focusesnaximizing the ability of systems
to perform complex numerical computations, an emergingscte applications derives benefits

10

from collecting and analyzing data sets consisting of mldtierabytes of data. (A terabytelig'?
bytes. By reference, the set of all books in the U.S. Librdrfongress, when converted into
digital form, would require around 20 terabytes.)

At Carnegie Mellon, we've taken oData Intensive Scalable Computing (or “DISC”) as a major
focus for our research efforts. We believe that the poteapiglications for data-intensive comput-
ing are nearly limitless, that many challenging and exgitesearch problems arise when trying to
scale up our systems and computations to handle terabgte-datasets, and that we need to ex:
pose our students to the technologies that will help thene eath the increasingly data-intensive
world. Realizing the promise of DISC requires combiningtdients of people from across many
disciplines, and Carnegie Mellon, with its strengths inieagring, computer science, and many
application disciplines, has played a major role in gettumjversities involved in this style of
computing [4].

From an educational perspective, we believe that our révisgriculum will provide students with

a strong foundation for data-intensive computing. For elamthe Map/Reduce programming
model pioneered at Google [5] for mapping data-intensiy@iegtions onto large-scale, cluster
computing systems has its roots in functional programmihigving students learn functional
programming from the start, and evaluating the efficiencglgbrithms from both sequential and
parallel perspectives will serve our students well as theteyprograms for these machines. Our
more advanced courses in distributed systems and parl@itams now include coverage of
Map/Reduce programming and its applications.

5 Practical Matters

Our discussion so far has focused largely on the concepaigid or our curriculum and courses.
Some people have expressed concerns about how these chalhgéfect the ability of students
to gain skills that will help them with their further studi@gs both computer science and other
areas) and for their careers. We address these concernsCareegie Mellon has long been an
institution that strives to teach students deep principlese preparing them for the workforce.
We believe that our courses can serve both roles.

Preparing studentsfor their careers

Of the 140 or so students who receive undergraduate degreesputer science each year, arounc
35 go on to graduate school, including masters and PhD progiacomputer science, as well as
to business, law, and medical schools. The majority of audestts enter directly into the work-
force, at large computer companies (such as Microsoft amagd) at technology startups, and
also at companies that make extensive use of computer tegynespecially financial services.
Regardless of their employers, most of our students puestimical careers. While we seek stu-
dents who will become leaders, we count more VPs for engimgamong our alumni than CEOs.
Thus, while some undergraduate programs view their primpparpose as preparing students for

11

advanced study or for managerial positions, we find that miostir graduates make direct use of
the technical knowledge they gain from our program.

A significant tension exists in any educational program anévery course as to whether the
purpose is to teach fundamental principles or to teach agablskills. On one hand, useful skills

help students get jobs, but on the other hand, they tend tinteeobsolete within 5-10 years. We
want our students to get jobs but also to be able to havedtwaidireers spanning perhaps 50 years

We have designed our computer science program to satidiygioais. Our courses combine strong
foundations with deep experience involving real-life syss. In talking with employers, we are
often praised for producing students who can be productivimeir first day of work, while con-
tinuing to adapt to the many changes that occur over the yé#&$each our students classical and
current material as well as how they can learn new matereshfelves. We avoid teaching skills
that are largely artifacts of current technology. We do eath courses in .NET programming or
in Cisco router configuration. We generally avoid propmgtsystems and languages.

How important isthe selection of programming language?

Discussions about course design in computer science afieklgfocus on the choice of program-

ming language. While we acknowledge that choosing the lage(s) taught in a course requires
careful consideration, we admonish people not to fixate mmgly on this issue. Languages fall

into a small number of general classes. Once one has gaipediexce in one language in a
category, it is fairly simple to pick up another, often by pignreading a language manual.

In conversations with recent alumni, we have been advisa&dttis more important that we pro-
mote a sense of flexibility—that students should be expasedvariety of programming models
and become comfortable with learning new languages threatiistudy.

Note that, unlike others, we do not advocate eliminating orimmzing programming as a key
aspect of introductory computer science. We continue tewekhat writing programs is one of
the core activities of a computer science education. Writimde is the means by which we convert
general concepts of computing into concrete realizatiowlsimthe process gain a more complete
understanding of the concepts. We want students—majora@mahajors—to have the writing of
code as one of the sharpest tools in their toolboxes whemaatirig new tasks.

What about Java?

The Java programming language has emerged as one of the rdespvead platforms for large-

scale software development. It has the advantages of (g&jutatesign and standardization to
work in many different hardware and operating system cordigons, (2) an extensive set of
libraries enabling application programmers to focus omHeyel objectives rather than low-level

implementations, and (3) increasingly sophisticated en@ntations that allow programs to have
performance comparable to that of carefully crafted, highhed code. We also take pride in
the fact that James Gosling, the developer of Java, is anmalsiof our computer science PhD

12

program.

That said, we do not believe Java is the right language foodiuictory programming courses. As
a first language, it has two major shortcomings:

e It takes a lot of work to do simple things. The overhead involved in writing even the most
elementary Java program, with class definitions, invokim@lies to do simple printing, etc.,
get in the way of introducing the basic concepts of prograngmome introductory courses
try to minimize the “Java-ness” of the coverage by havingetis write programs that make
no use of class abstractions. Basically, they do C programmith a slightly different
syntax. But, that is clearly a compromise, fully satisfyimgjther goal of minimizing the
mechanics of writing programs or of teaching Java programgmi

e It hides too much about what's really going on. One of Java’s strengths is the rich set of
libraries supporting different data abstractions. In ggirdictionary data type, the user need
not know whether it is implemented as a hash table or a badaimee. That’s great when
the objective of a program is to implement some applicaton,it's not helpful when the
objective is to teach students about algorithms and thefopeance. It is difficult even for
experienced Java programmers to understand and optin@zerte and space costs of their
programs. For novice programmers trying to learn aboutieffialgorithms, the language
and its runtime system mask important performance issues.

We would also argue that our current approach of teaching ds\an introductory language and
then never revisiting the language later does an injusticiava itself. Java provides many rich
capabilities that are worthy of study in more advanced asird-eatures such as introspection.
type hierarchy, concurrency, and performance optiminatieserve a more thorough treatment
after students have gained greater sophistication in timeierstanding of programming languages
and concurrent programming.

Our new 15-214 course on software system constructionnallide object-oriented programming,
since this is an important approach for structuring compglaikware systems. They are currently
planning on using Java for this course, for its support okots, concurrency, and component-
based software reuse. Using Java for this course will bgitigsite Java within our curriculum.

What language do we plan to usein 15-1107?

As mentioned, we believe that our new 15-110 course can gaheeconceptual basis of computer
science plus provide concrete experience in writing pnogréhat solve practical problems. We
plan to do this by using a so-calledripting language. Compared to languages such as C or Jave
these languages have simplified syntax and type systemghapndave primitives that make it
easier to invoke other programs and to process strings tbtexata. Our current plan is to use
Python, but we do not view this choice as a fundamental rement.

small scripts that automate some routine task, these lgeguare perfectly usable for writing
sophisticated programs. They sacrifice some amount of eaioce, and they do not contain

13

some of the features desired for assembling large-scal@aaf systems, but they are well suited
for the needs of an introductory computer science coursaimaer of other universities have also
developed introductory courses based on languages sugcftresP

Scripting languages work within interactive programmingieonments that foster an incremental,
“learn by doing” approach to software development. Prognans write in small chunks, testing
each chunk before integrating it into the rest of the codeis &pproach works well for writing
small, application-specific programs, and is less time gomnisg than the more deliberative pro-
cess required by the edit/compile/test/debug cycle of ncorerentional languages. Python has
available a large set of libraries supporting scientific patmg and graphics.

In discussions with faculty in other science and engingedapartments, we have found them
very receptive to the idea of switching away from Java, bahtthey often ask that we teach the
language included as part of taTLAB mathematical modeling system. We believe, howevel
that MATLAB is not the right choice for introducing students to the c@isaf computational
thinking. It really is a language for manipulating matricest a general-purpose programming
language. We also believe that students can readily le@matiguage once they have become
familiar with other languages and the underlying princspdé computation. Python, for example,
has libraries that allow the construction and manipulatbmatrices in a style similar to that
supported byWATLAB , and so the transition t@ATLAB by students who have taken 15-110 shoulc
require little effort. The validity of this belief has beerrdonstrated by our colleagues at other
institutions.

Our shift to Python will let us satisfy the twin goals of presag the important concepts of com-
puter science while also providing students with skillg thay can apply to other courses and in
their jobs. Experience at other schools lends credencad@pitimistic outlook. But, we also do
not view the shift to Python as the most important aspectisfadburse. Our larger goal is to get
students to think about computer science in terms of a setrefrinciples and strategies, rather
than to create programs in a particular language.

6 Conclusons

Although there are many details to work out, we are movingéhath a revised set of introductory
computer science courses that we believe will better sejemand nonmajors alike, and will
put Carnegie Mellon at the intellectual forefront of comguscience education. We will shift
away from a focus on the mechanics of programming and insteaer the general principles of
computer science, based on the theme of computationalitiginkVe will have students learn to
reason about programs in more systematic ways, recogrizenmcreasing need for secure and
reliable programs. We will prepare students for a time whaaltel computing becomes the main
method by which we can continue to push the limits of comppeformance.

This document has only provided a high-level view of our pkehstructure for introductory com-
puter science. Details on course offerings, requirememd,how we will transition to this new
structure will be discussed elsewhere.

14

Acknowledgments

We are grateful to the faculty committee members who spemyrhaurs studying the needs of
all of the students taking introductory computer scienagses and devising a plan for the future,
under the guidance of Bob Harper. Other committee membefsda: David Andersen, Guy
Blelloch, John Lafferty, Frank Pfenning, Andre Platzerd &anny Sleator. Both they, and other
faculty members have given valuable feedback on this dontinespecially: Jonathan Aldrich,
Tom Cortina, Mike Erdmann, and Ananda Gunawardena.

Jeannette Wing has been very helpful in reviewing this demtrand helping refine our under-
standing of computational thinking.

References

[1] D. Anderson, G. Blelloch, R. Harper, J. Lafferty, F. Pfemg, A. Platzer, D. Sleator, and
M. Stehlik. Recommendations for revising introductory guiter science. Carnegie Mellon
University, February 2010.

[2] L. A.Barroso, J. Dean, and U. Holze. Web search for aglafhe Google cluster architecture.
|EEE Micro, 23(2):22—-28, 2003.

[3] G. E. Blelloch. Programming parallel algorithmSommunications of the ACM, 39(3):85-97,
1996.

[4] R. E. Bryant. Data-intensive supercomputing: The caseDiSC. Technical Report CMU-
CS-07-128, Carnegie Mellon University, 2007.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified data gsougon large cluster<€Com-
mun. ACM, 51(1):107-113, 2008.

[6] S. Lipner. The trustworthy computer security developtigecycle. In20th Annual Computer
Security Applications Conference, pages 2—13. IEEE, 2004.

[7] J. M. Wing. Computational thinkingCommunications of the ACM, 49(3):33-35, March 2006.

[8] K. Zetter. Google hack attack was ultra sophisticatezly mletails show.\red Magazine,
Jan. 14 2010.

15

A Introductory Curriculum Review Committee Report

Attached is the report generated by the committee formedwiew and recommend revisions to
the introductory computer science curriculum.

16

Recommendations for Revising Introductory
Computer Science

David Andersen Guy Blelloch Robert Harper (chair)
John Lafferty Frank Pfenning Andre Platzer Danny Sleator
Mark Stehlik.

February, 2010

1 Background and Motivation

In the Spring of 2009 SCS Dean Randy Bryant, CSD Head PeterdrmekAsso-
ciate Dean Klaus Sutner asked Robert Harper to form a coemnitt review the
introductory curriculum in Computer Science with thesesiderations in mind:

1. Theintroductory curriculum had been largely stable for@than ten years,
so it was time to review and reconsider our offerings in lighicademic and
industrial trends, especially the increasing importarfqaoallel computing.

2. The financial stringencies being faced by the universgitytéd the available
resources for any change.

3. Dean Bryant suggested that we reconsider the role of ddke introductory
and core curriculum.

2 Activities

The committee met almost weekly to discuss the current sfatiee curriculum,
to isolate particular issues, and to propose alternativatsnhight better serve our
goals overall. The committee collectively and individyaslought input from a
number of faculty within SCS, including Dave Feinberg, Tooriha, Klaus Sut-
ner, Bill Scherlis, and Chris Langmead. The chair met witbutla dozen faculty
from across campus (in three groups representing CIT, MBS HSS) to inform
them of proposed changes and to solicit recommendations. chair consulted
regularly with the URC, which conducted an informal survéyundergraduates

about the proposed changes. The chair met regularly witim Begant to discuss
progress. The chair made three presentations during thesdrakster of 2009:
to the Dean’s Advisory Board, to the Alumni Advisory Boarahdato the Com-
puter Science Department faculty. Committee member MagkI&tmet with the
Student Advisory Council to discuss the proposed changes.

3 Objectives

The committee formulated these objectives for the resirirgd of the introductory
curriculum:

The introductory curriculum should stimulate excitememt@omputer Sci-
ence by emphasizing its enduring scientific and engineguringiples and
its wide applicability to many problem areas. It should avoier-identification
with the ups and downs of the computer industry.

To support flexibility in admissions, including increasitig representation
of women and minorities, the introductory curriculum stibatcommodate
students with widely varying backgrounds and levels of prapon. For
example, it should not rely too heavily on prior computingpesience (for
example, through AP CS), but should still challenge mongeeenced stu-
dents.

The introductory curriculum serves two broad classes afesits, those for
whom the introductory courses are a terminal education ina@& those for
whom the introductory courses are preparation for the corectilum and
upper division courses. The needs of these two broad cladsssadents
are often incompatible; the introductory curriculum shibbk restructured
to better serve their needs.

It is important to prepare students for summer internshépsaaly as the end
of the first year, but certainly (and in most cases more tgzdity) by the
end of the second year.

The introductory and core curricula should be brought upate do reflect
changes in the field over the last decade, and to anticipabest as possible,
expected trends over the next decade. For example, asgtiaralbecomes
prevalent, it becomes important for students to be taugthtind of parallel,
rather than sequential, computing as the ordinary casellg8lynas formal
methods become more important in ensuring software quatityecomes
more important for students to be proficient in the prin@pté logic and
semantics that underly them.

¢ Although object-oriented programming (in its myriad fo)msmains a dom-
inant theme in industrial software development, the usebgéat-oriented
languages, such as Java, at the introductory level intexlgonsiderable
complexity and distracts from the core goals at the intrtalyclevel. It
seems preferable to give fuller coverage of OO design antemmgntation
methodology to later in the curriculum to allow more focusedcentration
on basics at the introductory level.

e The revisions to the curriculum are to be undertaken witlghttresource
constraints.

Obviously these objectives are not entirely compatiblet &@ample, current
industrially relevant languages stress sequential progriag at the expense of
parallel programming. Moreover, the complexity of langemguch as Java im-
pede efforts to teach basic principles of program desigraaiaty/sis. Put the other
way around, if currently industrially relevant languagesl &echniques are to be
emphasized, the goals of introducing parallelism and eatifin concepts are nec-
essarily compromised. Put yet another way, the goal to peegtadents for sum-
mer internships conflicts, to some degree, with the goaladct@ew approaches to
programming.

4 Current Structure

The current introductory curriculum streams both termanadl non-terminal stu-
dents through the same set of courses. A prime objectivepsefpare continuing
students for 15-211 (Data Structures and Algorithms) ar@13 (Computer Sys-
tems). The courses are structured to support both studdhteemputing experi-
ence and those without. The main introductory courses aseth

e 15-110: Introduction to Programming. For students with nmputing
background as preparation for 15-121, and for non-comtgsiudents. Taught
using Java.

e 15-121: Introduction to Data Structures. Main preparatayril5-211. Stu-
dents with computing background start here. Also servegesnsl course
for IS students. Taught using Java.

e 15-123: Effective Programming in C and UNIX. Preparation 6—213.
Introduction to C programming and UNIX (command-line) olTaught
using C and various scripting languages.

The current pre-requisite structure among these coursesfalows:

3

15-110 is required for 15-121 and 15-123.

Either 15-110 or 15-121, and 21-127, are required for 15-251
15-121 and 21-127 are required for 15-211.

15-123 is required for 15-213.

15-251 is required for 15-212.

Since 15-211 is taught using Java and 15-213 is taught usinigi<Cconsidered
essential that the introductory curriculum be taught usiege languages.

Discussions of the current curriculum raised a number ohtgpiincluding
these:

1.

For most non-continuing students (other than IS stujiéimse is little to be
gained by learning the Java language. Moreover, most sisgernceive that
the point of 15-110 and 15-121 is to “learn Java,” and heneg ke little
value in taking the course. One symptom is that some studeaitsuntil
their last semester to take 15-110 or 15-121 as requiretiéarrhajor.

Across campus many faculty complained that learning desnot appro-
priate for their students, but still many faculty felt thhetpurpose of 15—
110 and 15-121 is to teach a particular language. (The mosmomly
advocated alternative was MatLab, with some support foh&ytor simi-
lar scripting language, SQL for manipulating databases,taeC*" STL.)
There is some support across campus for teaching computintamentals,
but many faculty continue to perceive these courses as staihing.

For IS students there is strong support for learning Jacause of its per-
ceived relevance to the software industry. This recomménua consistent
with the pervasive attitude that introductory CS is a fornskifls training,
and does not address the question of what should be a funtiradacation
in CS for IS students.

The different sections of 15-110 use different textbaakds different teach-
ing styles, and differ widely in their degree of rigor. It ifen a matter of
accident which students end up in which sections.

There is a strong overlap between 15-110 and 15-121, &xthat that in
some cases half or more of the semester in 15-121 is speneoeary
programming techniques that are also covered in 15-110ré&xsen for the
overlap is that students enter with widely differing baakgrds.

6. The structure and content of 15-110 and 15-121 is ovetg§rméned by the
needs of 15-211, given that relatively few students takinegintroductory
courses in fact go on to more advanced computing courses.

7. There may be more effective means of delivering skillgning for both
continuing and terminal students. For example, one canimeagtroduc-
ing mini-courses in Unix skills, or in using MatLab, that ¢tdaddress these
needs. Itis strongly felt that the introductory curriculstrould focus on en-
during principles, rather than on currently applicabldiskind technologies.

Historically, 15-211 has suffered from the sometimes-actinf objectives of
introducing rigorous computer science as well as teachiogrpmming. The Fall
and Spring semesters have developed a different balancepbfasis on program-
ming technique versus the algorithms component. It appbatslava exacerbates
the problem because the language is relatively complex eesl ot admit a simple
subset that could be used in this course.

There is an issue of overlap between 15-211, 15-251, 15-&MP15-451,
known as “the RSA problem” but which extends to more than fjist one topic.
There is some danger of perpetuating, or even aggravalirsgptoblem in the re-
vised curriculum, as discussed below. This problem shogiladaressed separately
from the present proposal by more careful coordination antba courses.

5 Proposed Structure

The recommendations of this committee may be summarizeallaw/$:

1. Reposition 15-110 to provide a fundamental groundindh@grinciples of
computer science, primarily aimed at non-continuing sttslelt will also
provide a foundation for students who may wish to transitmi5-122 or
15-150.

2. Redefine 15-211 (and renumber) to teach data structuksalgorithms
based on a parallel, rather than sequential, computatioodkl.

3. Replace 15-121 by two new entry-level courses, 15-150qiBles of Func-
tional Computation) and 15-122 (Principles of Imperatiaputation).

4. Refactor 15-212 into 15-150 and 15-211.

5. Introduce a new course on programming methodology to eosgie for
material lost from the current 15-211 and 15-212.

6. Relegate 15-123 to a skills elective to be taken befordests take upper-
level systems courses. It might also be useful to considering other skills
electives, such as programming with MatLab, to satisfy deina

These recommendations represent the consensus of the tteefar the eventual
outcome of restructuring our introductory CS curriculunheTprocess of making
these changes requires careful planning not addresse idatument.

None of these courses is defined by the language in which itbeagpught.
This is not to say, however, that the choice of language igrarp or unimportant.
On the contrary, language matters, and for this reason we imalicated likely
choices in each case.

Reposition 15-110 The goal of 15-110 should be to provide a fundamental ed-
ucation in the principles of Computer Science for termintatients. This should
include: (1) how to design programs that solve a computatiproblem; (2) basics
of time and space complexity of algorithms and their roleesigning programs;
(3) the capabilities and limitations of computer arithrop(?) computing with ag-
gregate data structures such as vectors, matrices, lisgremams; (5) basics of
data acquisition and analysis. Such a course would addnesseeds of a large
majority of students across campus, and provide a foundé&diolearning popular
languages and technologies used in various disciplinasexample, the proposed
course addresses core ideas of database manipulation{rof eval other numeric
computations, and of scripting programs to build applaai

After analyzing a number of possible alternatives, it isoramended that the
revised 15-110 be based on the Python programming langaadehat it follow
the How to Design Programs curriculum developed by Matthias Felleisen and his
co-workers. There was some support for using the updatéectiiaf Scheme de-
veloped by Felleisen, but on balance of considerationsstfelathat Python would
be an acceptable compromise. It is important that a langfagéis course sup-
port convenient programming with high-level aggregatadatuctures, rather than
their low-level representations, and that it be convenienbuilding applications
that collect and analyze data available on the web.

Redefine 15-211 The current 15-211 focuses on using conventional imperativ
programming techniques to implemesatjuential algorithms on a variety of data
structures. These methods are inherently sequentiakssite for example, the
iteration of primitive operations in loops, rather than @ggate operations on whole
structures. Moreover, these methods stegbemeral, rather tharpersistent, data
structures—those for which operations irrevocably alver trepresentation of the

data structure in memory, rather than compute a new datetsteubased on one
or more given data structures.

Modern approaches to algorithms treat parallel computat®the fundamen-
tal notion, with the sequential algorithms emerging ase¢hegh a low degree of
parallelizability (ratio of overall work to critical patlehgth). Moreover, for both
reasons of parallelism and reasons of expressivenessstpetslata structures are
increasingly important, but are neglected in current teakis and curricula. The
committee recommends that 15-211 be redesigned emphasakejism and per-
sistence as fundamental algorithmic concepts, while nomg to cover basics
such as asymptotic analysis, divide-and-conquer, dynanaigramming, sorting,
balanced trees, priority queues, dictionaries, and graphe course will continue
to include programming projects that demonstrate the ushese algorithms in
practical applications.

It is important to distinguishparallel computation from concurrent computa-
tion. Concurrency is concerned with the problem of coordinatmgdtiple stateful
computations by controlling how they interfere with eachest Parallelism, in-
stead, is concerned with exposing the opportunities fdy sunultaneous compu-
tation in a way that isolates their stateful effects so thmdifficulties arise from
their interaction. Parallelism raises no concerns abotrectness, beyond those
of the sequential case, but provides opportunities for ngrefater efficiency of
execution.

To make this possible, it is essential to uskiactional programming model,
which stresses computation with data structures as aggreglues, rather than as
objects represented in memory, and which supports interéex-free simultaneous
computation. For this reason it is essential that the revi$e-211 be taught using a
language with functional programming capabilities, whastuld include Standard
ML, Objective Caml, Haskell, or Scala. It must also suppariear cost model that
allows asymptotic complexity to be assigned to program#evrin that language;
this appears to rule out Haskell as a choice for this coureavéhtional imperative
and, especially, object-oriented programming languagesat suitable for this
purpose, because of their over-emphasis on mutation anestafity.

Replace 15-121, Refactor 15-212It is recommended that the first-year intro-
ductory for continuing students consist of two courses,158-Functional Com-
putation and 15-122 Imperative Computation. These aredettto be entry-level
course$ that provide a grounding in the two fundamental models of aia-
tion, the functional and the imperative, and prepare stisdien the 200-level core

Though we expect that, as now, students with no prior program experience would likely
take 15-110 as preparation.

courses. These two courses are expected to be cohererttimetypaoth are to place
a strong emphasis on writing clean, correct code, they arglmnentary in that
15-150 will stress high-level abstraction and composifidnciples, whereas 15—
122 will stress the realization of these abstractions im$eof lower-level mecha-
nisms.

Course 15-150 is intended to teach functional programmansfyle of pro-
gramming that avoids (but does not rule out) mutation of datactures, and
that emphasizes programming with data structures as aajgreglues. There is
a strong emphasis on recursive programming, and a corrégsgpamphasis on in-
ductive methods for reasoning about such programs. Datetstes are conceived
abstractly in terms of the operations on them, rather thaerms of their realiza-
tion in memory. Types play a central role in specifying peogs and in delineating
their modular structure. One may think of 15-150 as the fiafft lor two-thirds
of the current 15-212. Appropriate languages for this ecowsuld be Standard
ML, Objective Caml, Haskell, or Scala, according to whaglaage is chosen for
15-211.

Course 15-122 is intended to teach imperative programmmdgraethods for
ensuring the correctness of programs. Higher-level atigires are to be built up
in terms of these representations. Students will learn thegss and concepts
needed to go from high-level descriptions of algorithmsdoect imperative im-
plementations, with specific application to basic datacstmes and algorithms.
The emphasis is on iteration of basic operations such agresent, and the most
important reasoning methods are pre- and post-conditiodso®p invariants. The
course is explicitly intended to incorporate up-to-dateahmds and tools for mech-
anized analysis programs to prepare students for modetwagef development
techniques. Standard languages such as C or C++ are ndilsuia this course
because their complexity and deficiencies impede bothnmiband mechanized
reasoning techniques. An experimental safe subset of Cing laeveloped as a
vehicle for teaching this course, with a transition to fulaChe end. The motiva-
tion for using a C subset is that it eases the transition tg€lfiand allows linking
to existing C code, and, unlike C, has a semantics that is alohemo verification
and analysis.

The proposed changes to 15-211 and the introduction of T6#dply sig-
nificant changes to 15-212. Approximately two-thirds of thaterial in 15-212
would be moved into 15-150 and 15-211.

Programming Methodology The committee recommends that a new course on

programming methodology be introduced that provides stisde@ith a grounding
in techniques for building large-scale programs. This &haclude, but not be

limited to, object-oriented programming methods. Someendtcurrently in 15—
121 and 15-211 would be moved to this course. A proposal fercthurse, and its
position in the curriculum, is under development.

Skills Courses The committee recommends that 15-123 be reduced to an elec-
tive that can be taken by students as preparation for addacmeses that require
familiarity with Unix-based command-line tools.

More generally, the committee recommends that the needkiils slectives
be reviewed, and that new courses be introduced that fultth :1eeds as may be
identified. One candidate, in addition to 15-123, would be@ase on MatLab,
which is often requested by faculty across campus.

Any skills offerings should be clearly distinguished fronetintroductory and
core curriculum as envisioned here.

Prerequisite Structure The following pre-requisite structure is proposed:
e 15-122 is required for 15-213.
e 15-150 and 15-122 are required for 15-211.
e either 15-122 or 15-150, and 21-127, are required for 15-251

It is not yet clear how to position the proposed programmirgghmdology course.

6 Concerns

Current resource constraints raise serious impedimemntsefasion in both the
near- and long term. Any changes would have to be phased duaifg, re-
quiring double offerings for the next few years. Severautertrack faculty have
offered to help design and implement new course offeringsttis requires that
their current teaching obligations be filled by some otheamse Teaching track
faculty would have to devote time to the transition to a newiculum.

Currently IS students are required to take 15-110 and 15-8der the pro-
posed revision it is no longer clear what is the appropriat®sd-level course for
such students.

A roll-out plan for the proposed curriculum remains to beised. Aside from
the personnel issues alluded to above, there is signifiodmilence to be expected
as students shift from one regime to another. To some extenthianges can
be made gradually, but dependencies among the courses weed to require
coordinated changes at multiple levels simultaneously.

The use of a non-standard language for 15-122 raises capcenee it re-
quires development of all new course materials and softvieckiding a compiler
for the language. The risk is mitigated by the fact that treppsed language is a
safe C subset that compiles to C, and by the fact that Framiai?ig is volunteering
to develop this course and its infrastructure.

About one third of 15-212, including metaprogramming andccmorent pro-
gramming, is not carried over into 15-150 and 15-211 undeiptbposed revi-
sions. This represents a significant loss of content for whiz obvious replace-
ment is available under the proposed restructuring.

10

