
DRAFT - do
not

cir
cul

ate
An Introduction to Proofs about Concurrent Programs

K. V. S. Prasad
(for the course TDA383/DIT390)
Department of Computer Science

Chalmers University

October 17, 2018

1

Rough sketch of notes released since it will be too late for this course if we wait till
the notes are polished.

The plan is roughly this:

• State diagram based proofs - these are easy to understand in principle, and are
what SPIN does. The text-book does these in enough detail, including in Chap. 3.
The remaining issue it how to tell SPIN what we think is true, so it can hunt
for counter-examples. We have already seen one way, assertions. These are often
enough for safety properties, but will not do for liveness in general. For that, we
need LTL, covered later.

• Syntactic proofs (i.e., arguing from the program text). We do these in par-
allel with state diagrams, but do them in stages. The first stage uses informal
but hopefully rigorous arguments, with a little propositional calculus notation for
compactness. Simple theorems of propositional calculus are assumed. Temporal
aspects (arguing about coming or previous states) are first treated entirely infor-
mally. Later sections use LTL notation. It is possible to formalise the programming
language semantics, but that is not included here. So our arguments will continue
to be held together by informal steps.

The goal is first to get you to follow the informal reasoning. Can you make your own
arguments? (By the way, no one does formal reasoning before doing the informal thing
first). Finally, and only in principle, the goal is to get you to see how to use a SPIN like
model checker.

A basic idea we explore first is INVARIANTS.
1The moral rights of the author have been asserted. ©

1

DRAFT - do
not

cir
cul

ate
1 Chapter 3
For the examples here, Chap. 3 of the textbook gives arguments based on the state
diagram. Here we give text-basd arguments.

1.1 Notation
Let the boolean p2 mean that process p is at label p2, etc. Abusing notation, we
sometimes also write p2 to mean the label p2 itself.

Logical symbols: We use ∨ for inclusive or, ∧ for and, ¬ for not, → for implies, and
↔ for implies and is implied by.

1.2 “Hardware processes”
At a higher level, with software processes and events managed by run-time support
(RTS), a process can be marked blocked while waiting for some event, and be unblocked
and marked ready by the RTS when the event occurs. Then await B can be interpreted
as block until B. Only ready processes are given CPU time; blocked processes are not,
since they cannot run.

Until we introduce semaphores and other abstract synchronisation and communi-
cation structures, we keep matters simple, and assume that p and q run on separate

dedicated CPUs. We interpret await B to mean
loop

skip
until B

; that is, keep doing a skip

(do nothing) until B becomes true. This re-formulation is called busy-waiting.

1.3 Definitions: fairness, deadlock, livelock, starvation
Because only one CPU at a time can access a shared variable, we still face issues of
scheduling—not a process onto a CPU, but a CPU to a shared variable by a bus arbitrator
or similar. We assume weak fairness: a scenario is weakly fair if a continually enabled
command will be executed at some point.

Since there is no blocked state, and no blocking command, processes are either run-
ning or terminated. This means in this set-up we cannot have deadlock, which we define
as “everyone blocked”. We can have livelock, which we define as “everyone busy-waiting”.
Note that these definitions differ from those of the textbook (I find those definitions con-
fusing).

We agree with the textbook’s definition of (individual) starvation: a process can
get stuck forever (busy)-waiting to enter its critical section. A special case is that of
non-competitive starvation, or NC-starvation, where p starves if q loops in its NCS.

A working equivalence is that in deadlock and livelock, processes mutually starve each
other. In individual starvation, a scenario exists where one particular process starves.
The third attempt below shows a program that can livelock even though no process
NC-starves, i.e., the only starvation possible is mutual.

2

DRAFT - do
not

cir
cul

ate
1.4 First attempt, Alg. 3.5, p. 53

The program:

integer turn := 1
p q

loop forever loop forever
p1: await turn=1 q1: await turn=2
p2: turn:=2 q2: turn:=1

We write t for the variable turn, and let t1 mean t = 1 and t2 mean t = 2.
Then we have invariants: T1=t1 ∨ t2 and T2=¬(t1 ∧ t2). The first is established

by noting what values are assigned to t, and the second follows from the nature of
variables—they cannot hold two values simultaneously.

Then it follows that p2 → t1 because p has just got past p1, and any interference
from q can only result in (re)-setting t to 1. Similarly, q2 → t2.

1.4.1 Mutex

We have to show that M=¬(p2 ∧ q2) is invariant. We have p2 → t1 → ¬t2 → ¬q2, and
similarly q2 → ¬p2, so M holds.

1.4.2 Livelock

Let L=p1 ∧ ¬t1 ∧ q1 ∧ ¬t2. Then L contradicts T1. Thus ¬L is an invariant, and since
L defines livelock, we have shown that livelock cannot happen.

1.4.3 Starvation

NC-starvation is possible. The scenario p1, p2, q1 achieves this if q1 loops, which it may,
according to the conditions of the CS problem.

1.5 Second attempt, Alg. 3.7, p. 56

The program:

boolean wantp := false, wantq := false
p q

loop forever loop forever
p1: await wantq = false q1: await wantp = false
p2: wantp := true q2: wantq := true
p3: wantp := false q3: wantq := false

We write wp for wantp and wq for wantq.
Note that only p sets wp and only q sets wq. Let T1=(p1∨p2) ↔ ¬wp, and T3=p3 ↔

wp. Then T1 and T2 are invariant. Similar invariants hold for q.
Note that we cannot claim p2 → ¬wq even though ¬wq is needed for p to get past

p2, since we do not know where q is. It may just have executed q2.

3

DRAFT - do
not

cir
cul

ate
1.5.1 Mutex

This would require that (p2 ∨ p3) → ¬(q2 ∨ q3). But to ensure anything about where q
is, we have to ensure somthing about wq. For example, wq → ¬q2. The premise for the
mutex statement tells us nothing about wq. So we cannot prove mutex, and indeed it is
easy to write a scenario where it is broken: p1, q1.

1.5.2 Livelock

Let L=p1∧wq∧q1∧wp. Then L defines livelock, and contradicts T1, so ¬L is invariant.
That is, livelock cannot happen.

1.5.3 Starvation

Let S=p1 ∧ wq ∧ q1. Then S defines NC-starvation of p, where q loops in its NCS. But
q1 → ¬wq, so S is self-contradictory. That is, ¬S is invariant, and p cannot starve this
way. Note that here q is looping in its NCS, not in its pre-protocol. Both are notated
q1 in the abbreviated program.

But p can starve if it is only scheduled to look at wq after q2. Is tis weakly fair?

4

DRAFT - do
not

cir
cul

ate
1.6 Third attempt, Alg. 3.8, p. 57

The program:

boolean wantp := false, wantq := false
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp := true q2: wantq := true
p3: await wantq = false q3: await wantp = false
p4: critical section q4: critical section
p5: wantp := false q5: wantq := false

We write wp for wantp and wq for wantq. Again, only p sets wp and only q sets wq.
Let T1=(p1 ∨ p2) ↔ ¬wp , and T2=(p3 ∨ p4 ∨ p5) ↔ wp. Then T1 and T2 are

invariant. Similar invariants hold for q.
Note that we cannot claim p4 → ¬wq even though ¬wq is needed for p to get past

p3, since we do not know where q is. It may just have executed q2.

1.6.1 Mutex

We have to show that M=¬(p4∧ q4) is invariant. M holds at the start. Can we go from
a state where M holds to one where it doesn’t? Suppose p is at p4, and q is not already
at q4. To get to q4, we need ¬wp so that q can get past q3. But this contradicts T2. So
M is invariant: mutex is assured.

1.6.2 Livelock

Let L= p3∧wq ∧ q3∧wp; then L defines livelock. But L can be true; nothing in the in-
variants contradicts it, so livelock can happen. A scenario for this is: p1, q1, p2, q2, p3, q3.

1.6.3 Starvation

Let S=p3 ∧ wq ∧ q1. If S can be true, p can be NC-starved. But T1 says q1 → ¬wq,
which contradicts S. So ¬S is invariant; NC-starvation cannot occur.

But can p3 ∧ wq forever, thus starving p, in some other scenario? Since wq ↔
(q3 ∨ q4 ∨ q5) is invariant, this means (q3 ∨ q4 ∨ q5). The case q3 is livelock; and q has
to pass q4, q5 in finite time. So there is no individual starvation.

5

DRAFT - do
not

cir
cul

ate
1.7 Fourth attempt, Alg. 3.9, p. 59

The program:

boolean wantp := false, wantq := false
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp := true q2: wantq := true
p3: while wantq q3: while wantp
p4: wantp := false q4: wantq := false
p5: wantp := true q5: wantq := true
p6: critical section q6: critical section
p7: wantp := false q7: wantq := false

Note that this program has dispensed with the await statement, writing out the
busy-waits explicitly.

We write wp for wantp and wq for wantq. Again, only p sets wp and only q sets wq.
Let T1=(p1 ∨ p2 ∨ p5) ↔ ¬wp , and T2=(p3 ∨ p4 ∨ p6 ∨ p7) ↔ wp. Then T1 and T2

are invariant. Similar invariants hold for q.
Note that we cannot claim p4 → ¬wq even though ¬wq is needed for p to get past

p3, since we do not know where q is. It may just have executed q2 or q5.

1.7.1 Mutex

We have to show that M=¬(p6∧ q6) is invariant. M holds at the start. Can we go from
a state where M holds to one where it doesn’t? Suppose p is at p6, and q is not already
at q6. To get to q6, we need ¬wp so that q can get past q3. But this contradicts T2,
which says p6 → wp. So M is invariant: mutex is assured.

1.7.2 Livelock

Let L= p3∧wq∧ q3∧wp; then a path where states repeatedly satisfy L defines extended
livelock. But L can be true; nothing in the invariants contradicts it, so livelock can
happen. A scenario for this is: p1, q1, p2, q2, p3, q3, followed by the execution of the
pre-protocol loops p3, p4, p5 and q3, q4, q5 in parallel.

1.7.3 Starvation

Let S=p3 ∧ wq ∧ q1. If S can be true, p can be NC-starved. But T1 says q1 → ¬wq,
which contradicts S. So ¬S is invariant; NC-starvation cannot occur.

But can p3 ∧ wq forever, thus starving p, in some other scenario? Since wq ↔
(q3 ∨ q4 ∨ q6 ∨ q7) is invariant, this means (q3 ∨ q4 ∨ q6 ∨ q7). Suppose p is in its pre-
protocol loop. Either q is also stuck in its pre-protocol loop, or it escapes. In the latter
case, wq is false in q1, so p is stuck forever only if the scheduler never lets p3 execute
when q1. Fair?

6

DRAFT - do
not

cir
cul

ate
[Question 1 of exam 28 Oct 2017.] Here is yet another algorithm to solve the

critical section problem. It is, as far as I know, a new variant of Ben-Ari’s variant of
the bakery algorithm. It has a finite number of states, whereas Ben-Ari’s version has
infinitely many states (but a finite window sliding along them).

The algorithm uses atomic await commands (2, 5) that await either of two condi-
tions, and atomic switch/case commands (1, 4, 3 and 6). In the switch/case com-
mands, the test on s, and the subsequent assignment to it, take place without interrup-
tion. The default fallback case in every switch does not change the value of any variable.
The global variable s can take any of 5 possible values: Z, P, Q, PQ or QP.

enum s = Z;
thread p thread q

while true do { while true do {
// non-critical section // non-critical section

p2: switch (s) { q2: switch (s) {
case Z: s = P; break; case Z: s = Q; break;
case Q: s = QP; break; case P: s = PQ; break;
default: break; default: break

} };
p3: await (S==P || S==PQ) q3: await (S==Q || S==QP)

// critical section // critical section
p5: switch (s) { q5: switch (s) {

case P: s = Z; break; case Q: s = Z; break;
case PQ: s = Q; break; case QP: s = P; break;
default: break; default: break;

} }
} }

Mutex:
IH: p5 \& q5 = false.
Base: p5 \& q5 is false at the start.
Step: Suppose p5 first.

Then either q2 or q3 when p moved to p5.
Suppose q2 when p5 becomes true.

Then P or PQ, so when q moves to q3,
PQ and q is stuck at q3.

Suppose q3 when p5 becomes true.
Again, q will stick there.

So IH is maintained.

No livelock:
Suppose p3 \& q3. Can Z be true?

Suppose q3 and p arrives at q3. Then P or QP.
If p3 and q arrives at q3, then Q or PQ.

No Z in either case. So p or q will pass their await.

7

DRAFT - do
not

cir
cul

ate
Progress:

Suppose already at p3. Then there was a time when either P or QP.
P and q2 -> PQ and q3 stuck, so p moves.
P and q3. q3 stuck, and p moves.
P and q5. leads to P and q2, see above.
P and q stuck in NCS. Then either

this was the first time q was in NCS, when Z, and now P.
Or q has passed q5, and so P.

QP (so p stuck at p3)
and q2 leades to q3 then q5 then P. See above.
Similarly QP and q3 or q5.

QP and q stuck in NCS. Then
this is not the first time q in NCS, since we had Q and so q2.
So q has passed q5, and so P.

For the transition table, etc., see the exam and solutions on the course webpage.

8

	Chapter 3
	Notation
	``Hardware processes"
	Definitions: fairness, deadlock, livelock, starvation
	First attempt, Alg. 3.5, p. 53
	Mutex
	Livelock
	Starvation

	Second attempt, Alg. 3.7, p. 56
	Mutex
	Livelock
	Starvation

	Third attempt, Alg. 3.8, p. 57
	Mutex
	Livelock
	Starvation

	Fourth attempt, Alg. 3.9, p. 59
	Mutex
	Livelock
	Starvation

