AN OB
2P NEVY \IN
B A\
(=g
WA O s D) V’"J
2, CELAANEY (7
X jam—\ 97
1829 i
ANES VS <
S

UNIVERSITY OF TECHNOLOGY

Object-oriented Programming Project

Implementation

Dr. Alex Gerdes
TDA367/DIT212 - HT 2018

Summary previous lecture

Seminar

Domain model -> design model -> implementation
Test-driven development

Sequence diagram

Thinking high and low

Monopoly: unit tests and Travis

Technical debt

- The design Is really important!

- We design the model

- We design the full application

good design

cumulative
functionality

no design

-— design payoff lin@ ~———e—gpb e e e

time

Next iteration (sprint)

You should be (nearly) finished with the first iteration:

- First version of RAD
» Description of application
» User stories
» Domain model

- Design model (will end up in SDD)
- Implementation: able to run application and tests!

Next iteration:

- Refactor before you begin!
- Revise User Stories (content, estimation, priority)
- Choose new set of User Stories lteration 1 lterations Last Iteration

- Update models ﬂ/\ - \{w}

- etc. U

First runnable |
version

Add functionality >

Refactoring

Interfaces and abstraction

Make objects “of the same type”

// Possibly to treat Spaces from some specific point
public class Space implements IBuyable { \y convention

.o using leading "I”
} for interfaces

// Probably not useful (don’t need to shield model classes
// from each other)
public class Space implements ISpace {

}

- Guarantee certain operations are available
- Possible to store heterogenous objects in Collections

- Isolate the model
- Shield different parts of application

- Try to abstract, but don't overdo! Abstract away from:

- file formats
- Storage systems

Implementation principles

CHALMERS

Smells
Extensibility Substitutability

* |nappropriate naming * Long method

* Comments * Long parameter list

* Dead code * Switch statements

* Duplicated code * Speculative generality

* Primitive obsession * Oddball solution

* large class * Feature envy

* God class * Refused bequest

* Lazy class * Black sheep

* Middle man * Contrived complexity ReRieIe s aEsh

* Data clumps * Divergent change nas a well-defined nts Single Responsibility Principle
* Data class * Shotgun Surgery

Open/Closed Principle
Liskov Substitution Principle

4 Interface Segregation Principle
* Inherit members from parent class

+ Abstraction Dependency Inversion Principle

3 Define and eXECUte abStraCt aCtions :lebob.com/ArticleS.UncleBob.PrinciplesOfOod
* Encapsulation
* Hide the internals of a class

* Polymorphism

Check this during code
review / reflection

* Access a class through its parent interface

Refactoring

Refactor after each iteration

- Check against implementation principles
- Keep functionality the shame
- Run tests! (regression testing)

GOOD SIGNS OF OO
THINKING

+ Short methods WRE REFACTORING CYCEE

» Simple method losic stgrt with working, testeq cer'
R 2 while the design can be simplified do:

choose the worst smell

* Few Instance variables select a refactoring that addresses that smell
apply the refactoring
» Clear object responsibilities e Uior e tosts SEit pac

» State the purpose of the class in one sentence

» No super-intelligent objects

Application design

Domain model contains the core classes from the analysis

Design model is the domain model adapted for implementation

- Extended with “technical’-support classes

Control is a layer coordinating the flow between the model and services

Services are everything supporting the model

- GUI
- Handling of resources

- Persistence (save to file, database)

Resources

- Communication (network, ...) Services

Resources Control

- Data for configuration, initialization, ... Design Model

- Images, sounds, ...

. . . Domain
- Internationalisation data Model

Application design

: L
e
i
User P i Infrastructure
Interface : ApPplication : Domain

src: https://www.slideshare.net/srinip/domain-driven-design-development-spring-portfolio

Package structure

edu.chl.hajo.monopoly

Main

util

service

ctrl

event

CHALMERS

Package structure

CHALMERS

Application should be partitioned into packages
- Organises the overall structure of application

- Each package should have a well defined purpose (same as classes,
methods)

Arrows show dependencies

- util and config used by many but uses NONE (only incoming
arrows)

- Arrows for util and config not shown, would clutter up

Model not dependent on services (used via ctrl)

Package structure should guarantee unique qualified class names

Use UML package diagram

Circular dependencies

CHALMERS

AN
/ \
/ \ b
/ \
y / N
/ o N\
c / >
~
~
-~
-
~

Analysis tools

JDepend Se—

=STAN

Structure Analysis for Java

DON'T SHOOT THE MESSENGER %

Powered by

JACOCO FindBugs

Java Code Coverage

Use tools to increase design and code quality!

- Some built in to IDE’s
- See web!
- Possible to incorporate into pom.xml (Maven project)

Design review

Every class has well defined responsibility (represents one concept)?
Redundancy? Split or collapse classes? Introduce generalisation?
Missing or unnecessary classes (convert to attribute)?
Directions of associations
No cyclic traversal of associations or dependencies (no mutual)

- Model in one package (possibly organisational subpackages)?
Interface(s) to model (model package) to use by others?
Building the model (factories)?

- Aggregates and call chains?
Parameterization of model (user options)?

- Absent values (avoiding null)

- Are unit tests in place for the entire model?

s everything located in one single place?

CHALMERS

MVC implementation

MVC design review

CHALMERS

View

\
\

View possibly '+ Possibly mutual
access model, ‘. dependencies (!)

\

Observer Pattern

model never \
access view *

: (directly) ’
Indirectly Model Control
GUI update
Model never e e
access view Control access

model. Model
never access
control

- Different opinions about MVC structure

- This is a push design (vs. pull design) when using an
Observer pattern

Observer design choices

Observer [

\ Prefer!

Observable

Observer ¥ Observer
Observable

Observable Observer
Observer < Observable
Observable ClDEErE Observable

/ Observer

Observer
Ad hoc Observer Observer using Event bus

An alternative implementation of the observer pattern is an event bus

The bus is interface to model (along with types of messages)
Observables publish events

Observers register as event handlers

All events pass through the bus, easy to inspect/log events

Implementing EventBus

CHALMERS

public class DicePanel implements IEventHandler ... {

@Override
public void onEvent(Event evt) {
if (evt.getTag() == Event.Tag.DICE FST) {
int i = (int) evt.getValue();
diceOne.setText(String.valueOf(i));
} else if (evt.getTag() == Event.Tag.DICE SEC) {
int i = (int) evt.getValue();
diceTwo.setText(String.valueOf(1i));

EventBus is a singleton class with methods register/unregister/publish

IEventhandler is interface with method onEvent

Keep model clean

- We don't want to clutter model
classes with event publishing

- Do event publishing in
setters (possibly private).
Class must use setters, not
direct assignments!

- Alternatives:

- Wrap aclassinan
'Observable’ class and
forward calls

- Extend a class and add
publishing in sub-class

public class Dices {

private int first;
private int second;

private void setFirst(int first) {
this.first = first;
EventBus.BUS.
publish(new Event(Event.Tag.DICE FST, first));

}

private void setSecond(int second) {
this.second = second;
EventBus.BUS.
publish(new Event(Event.Tag.DICE SEC, second));

Existing EventBus

CHALMERS

import com.google.common.eventbus.*;
// Google Guava Eventbus
public static final EventBus BUS = new EventBus();

// Outgoing from model to GUI

@Subscribe

public void onEvent(MessageChangeEvt evt) {
msg.setText(evt.getMsg());

¥

public class Model {
public void setMsg(String msg) {
this.msg = msg;
// State change inform view
BUS .post(new MessageChangeEvt(msg));

MVC vs MVP vs MVVM

CHALMERS

View Controller

tictactoe.xml Setup View TicTacToeActivity Interact with
menu_tictactoe.xml '

View Presenter
uctacto?.xm] Presenter <Interface>
menu_tictactoe.xml TicTacToePresenter Interact

1 F o< > - \Vi[h

T!cTacToeVle\'/» : Interface: Aok View
TicTacToeActivity Setup Itself

View) ViewModel

Invoke Action

tictactoe.xml ViewModel <Interface>
menu_tictactoe.xml TicTacToe ViewModel Interact
TicTacToeActivity Bind to Data il

src: https://academy.realm.io/posts/eric-maxwell-mvc-mvp-and-mvvm-on-android/

Choosing GUI technology

CHALMERS

b yrincowitie SWIX ‘::Dutron

MenuWidgetl MenuWidger2 e]
TeolbarRwtton v ToolbarChechBox U button na ms: p
PanelCaption Ser He’n ’\Gt,on me =" L= an X I oo
am \bu p Iy |
& Panel SelectedTab | OwherTar tto 2 T Xt= a
Tem 1 ® RadeoButtonl UncheckedCheckBox 'J ne'
= = [CEEE | M e

flem 5

Item 1 >

JavaFx

S,

Using a graphics framework

PROCESS uPPATE |l penper @
INPOT GAMNE

Probably no "full' MVC design when using a graphics framework

No problem, but the model should be isolated!
- Mostly using a pull design (render ask model for data)
- Control replaced by update game (method periodically called by framework)

Render model

N
/

data = getData() « >

Model
w = wrap(data)

render(w)

N w type supplied

_/ by framework

Framework

No rendering data in model
No imports of framework classes in modell!

If the rendering Is handled by framework:

- Wrap model data in framework classes
- Keep model clean

Visual appearance

TN
Map<Data, Look> map ...

data
look

getData() - > Model
map.get(data)

render(look)

AN
~

Framework

NO visual attributes (icons, sprites, names of files) in
model!

- Let framework, given the data, find the look!

Services

Implementing a Service

Application
dependency
(this is what
rest of
application
can see)

MyService

<<Static Factory>>
= > ServiceFactory

+ getService(): IService

<<Interface>>
|IService

?

R | _
<<Hidden>>
Servicelmpl

IService s = ServiceFactory.getService();
s.doService(...);

CHALMERS

Implementing a Service

Services are implemented using a Facade pattern

An interface used by control layer and a Factory to
Instantiate a service

All other classes are package private (i.e. no public)

Implement pure data classes as immutable value objects
whenever possible

Use of generics may remove dependencies

Often need to decide on data format

- Try to shield application from changes in data formats!

Example Services

XML-RPC

Kryonet

Emulate

RMI

INetwork ’?
Application Calls Send (")
™ receive(...)
IPerisistence
Application Calls > r‘ead (o)
write(...)

Flat text file

XML

Serialization

Database

Hard coded

Usage of a Service

Model P Model

. «—> I
S Service

Control

- Again: don't clutter the model!

- No service code in model

- Use a controller:
» Get data from model and shuffle to service or

» Get data from service set in model

Exception handling

try { > Model

4 =

Ycatch(){
}

H

View

» Service1

—> ServiceZ2

Control

+ Exceptions may come from Model or Services

- Model or Services called from control
» Model never calls service directly
- Handle exceptions in control
- Propagate message to view to inform user

A note on databases

2 “fia” 56

Mismatch! 3

—_—

‘gotaplat | 8000
sen

2 ‘avenyn” | 7000

OO modell Relational database

O0O-models and relational databases don't match

OO0 model is a web of objects
Database Is primitive data in tables

Object relational impedance mismatch

Possibly : Use some ORM framework (Hibernate)

Avoid using databases, emulate (use an interface)!

System Design Document (SDD)

The system design document’s (SDD) goal is to make the implementation of
the application understandable

The SDD document completely describes the system:
at the architecture [high] level,
Including subsystems and their services,
hardware mapping,
data management,
access control,
global software control structure.

Audience: software architects and programmers

The SDD is a "live" document that should be expanded and refined during/
after iterations

The SDD is about communication, no strict rules on how to write it

CHALMERS

We prefer a top down explanation:

- Start out with the high level (big picture):

» Hardware setup, communication, applications involved (if
applicable)

- then refine in each step:
» Structure of (each) application
» Packages
» Design model

» Possibly classes/interfaces
- until close to code:

» when reaching this level: the code and the tests are the
documentation

Summary

We have discussed many implementation issues:

- Refine and refactor both design and implementation
- MVCissues

- Services
- System Design Document

Next: continue until finished &

