A IR
ZENEPN\D
{ /_1\?/A\==4,
==/
= S, W
W o %
2, CELAANEY (7
X ===\ 97
1829 Yz
ANES VS <
TS

UNIVERSITY OF TECHNOLOGY

Object-oriented Programming Project

Analysis

Dr. Alex Gerdes
TDA367/DIT212 - HT 2018

Course representatives

Representatives:

Alrik Kjellberg
- Edvin Leido
- Pontus Lindblom

- Carolina Larsson
- Oskar Lyrstrand (GU)
- David Weber Fors (GU)

Contact details on course website

Meeting after lecture (?)

Summary previous lecture

User Stories

- Describe the requirements and the acceptance criteria

- Can also hold information about the estimate and the
priority

- Should describe the value of the story

- Can be updated continuously

- INVEST criteria

- In Requirements and Analysis Document (RAD)

Backlog / sprintlog

- Brake down In tasks

- Vertical slices!

Summary previous lecture

Workflow:

- Project idea: have this really clear
- Define User Stories

- Prioritise the User Stories
- Break down the User Stories in tasks
- Make rough estimation of User Stories (in person-days)

- Make a selection for 2 to 3 weeks

- Design (this and next lecture)

- Implement (start with defining tests, TDD)
- Check acceptance criteria

- Reflect and iterate

Running example: Monopoly

The idea

The project aims to create a computer based generic version of the well known
board game Monopoly by Parker brothers. Generic in the sense that it's should

be possible to adapt the game to different locations and more. i
rite as

introduction In
. L RAD
Some general characteristics:

- The application will be turn based. The actual player must explicitly end his or her
turn. The next player is chosen by the application from a preset ordering. The
ordering is generated randomly by the application at start of the round.

- There are no time constraints for a round.

- The application will end according to the rules or possible be canceled.
If the game Is canceled the player with most resources will be the winner.

- The application will handle all of the bank's responsibilities.

- The application will use a GUI very similar to the original game.

- The application does not include a computer-player. It's impossible to play the game
alone (a person can of course choose to play against herself).

- The application does not save interrupted games or collect any statistics (high score
or other).

User interface sketch

To aid the definition of user stories we create a
preliminary graphical user interface

- A GUI can be referred to from a user story

- Sketch a simple initial GUI

A GUI sketch lets you:

Envision the system (important for customers)
Explore the problem space with your stakeholders

Explore the solution space of your system
Communicate the possible Ul design(s) of your system

User interface sketch

o | | I |)\
L (Move —Endfurn B
: ‘ ’ Dices :
En Gata|~_|
Loy - © Fia \
a

= Fia
1000

Epics

g4 >
CHALMERS

As as: user
| want to: play the Monopoly game
so that: | can have fun

As as: user

Acceptance: | | want to: set up the game
- User can play game according to MP 1t 4 that: the game can commence

Acceptance:
User can set the options

- After all options have been defined
As as: player nber of players etc.), the game is

| want to: take a turn ly to start
so that: | can try to win

Acceptance:
- User can roll dices
- User can make a move
- The state of the game is updated Remember DoD
according to MP rules

User Stories

TS
CHALMERS

As as: user
| want to: choose the number of players
so that: | configure the game And many more!

Acceptance:
- Application can read input from user
- User can fill in number of players
- The game configuration is updated according to
user input
- The game cannot start before the number As as: player
players is configure | want to: roll the dices

- The number of players can not be Change¢ so that: | can make a move
the game has started

Acceptance:
Player can start the roll of the dices
- All players can see the result
- Atter rolling the player can make a move
- The player can only roll the dices one
time

Breakdown in tasks

As as: player
| want to: roll the dices
so that: | can make a move

Acceptance:
- Player can start the roll of the dices
- All players can see the result

- After rolling the player can make a move
- The player can only roll the dices once

Vertical slices!

Show the board
Show the players on the board
Highlight the active player

Allow the active player to roll the
dices

Show the resulting dice values

Make the dices values available
to other actions (next move tex)

Change active player

unctional requirements

CHALMERS

Portabili Personalisation

4 . e . . .
/{,_‘.::/:Z‘y Zo 0(25:/5/ mcve The (;,'3;7/;(3((rm

Zo a differesnt hardeware /.0/(?(fors bndividea/ wsers Yo
. s/ » . B
operat ”q \Syxﬂfem or evern Jdat'ad: M / B Zherr view of Che
: : x orntToraor/i ; }
Mn/xz?emenf Sll/\:-/ enr or neleo Ssolilion /‘7}/ Yat oo
/'Jrof_(:(‘o/ S N : 52"\//@>
ALty o access inforsmalion on Che y
9 ')/l(ations L,e/} A L

r

Performrance [

Throughpet, system load, capacity, Mainz‘ainaéz‘/if}/

wUSer volume, response Uimes, Transit
e fepe =
delay, latency. Possibilities for

) i) : Ameocrnt of e//o;f reguired o marntan
Scheduled processina vs rea/-time. 5 .

4 wlhorisation |
Sec /(f‘/l/ re-fm >e-/>re-n‘ S Lo ensure «. -‘er -3

Can eSS r‘nf\, C ﬂ'ff(ul? feenc Zions . .

u_wf/]'l) Che (?')r)/lc ation */‘3/ USe CasSe, Lxd,s@, on

*1/(’ Sp”fﬂ‘ﬁ}, 1Lf“> /')' y & ((SinesSs !(1/#‘,
field /ey e/ ete)

\und enhanc e) nyﬂ/u’/[(rnn, saledion in

’,').'-ea’zz(ion

Support for multiple /rzn_rjua_c}r;; on
entrg/ puery Screens in data £ields

on ra-‘pnrz‘:i 3 M(.(/z‘:‘*c’}/(r characler
re?u//-emenz‘ S and wumts of measure

Te/seagieiEy S e

RAD so far

1. Introduction

2. Requirements (4

2. User Stories
Functional Requirements
Non-functional Requirements

2.2.GUI
- Sketch

3. Domain model X

Prototyping

CHALMERS

- During this phase you should start out technical
prototyping

- QUI
- Services (file handling, sound, graphics, Android, etc....)
- Hard code, mock anything you need

by,
bjjc .
07
h/a.lj q j’? .
g Hmg
Texs S g, org
Te Uh@ Wy aJS(
)(Z" @J, " at@,, .) {‘
private JPanel createCardsPan§ﬁ> ﬁg k@ key, Oty 161(
e -y(" s Q@/ s
int size = board.size(); g Xty he a1y Sty
cardButtons = new Jﬁutton[s{i J? Thehgy fbs/r @f$44?k@@%
JPanel pnl = new JPanel(); S(¢ JSQQ/J
{~ €L hUe s,
pnl. setLayout(new GrldLayout(51ze, s 2&}2 My) h. hed
for (int row = @; row < size; row++) { (gbh W.Z edng
for (int col = 9; col < size; col++) { JO,‘We 6076 J/E ry ab“);
JButton b = new JButton(); b t~*t Upg h@lz
b.setBackground(cardBacR); eq) OQUQ 'Jbgu
b.addActionListener(this););
b.setName(row + ":" + col); // Use this as Lookup Later,

see actionPerformed

b.setPreferredSize(new Dimension(WIDTH / size, HEIGHT /
size));

pnl.add(b); // Add to panel

cardButtons[row][col] = b; // Store so we can access Later

}
}

return pnl;

}

Analysis

Need for design

T\ L‘) e O /\/L\/ VAL \&{ Me ‘-‘l%qﬁe Men T
OF Code @uaciry: WTFs/mivuTe

Overarching goal:

use abstraction to keep the design of
your application manageable

BAd Code,

(c) 2008 Focus Shift /OSNews/Thom Holwerda - http://www.osnews.com/comics

Goock code

Domain model

Analysis Is the second phase in the process

- During analysis we try to create a model of the problem domain as a
collection of interacting objects

The Domain model

Is the core of our application (domain modelling)

The model is an abstraction of some problem

Is input for the design model

Should be kept in sync!

Based on User Stories and i1dea, have to find:

Objects and how they are related (associations)

Classes for the objects
To a lesser degree: attributes, behaviour (methods)

Avoid too many details (inheritance, ...)

Domain-driven design

Domain-Driven Design by Eric Evans

The book addresses the analysis and

design of software based on domain
knowledge

Pretty advanced, but useful

Free compact version available, link on
course website

Ry

Tackling Complexity in the Heart of Software

Focus on the model

During this phase we adhere to domain driven design

- focus on the core domain and domain logic

- Explore models in a creative collaboration of domain
practitioners and software practitioners.

- Using the (ubiquitous) language of the domain

Solution to the problem lies in the domain model
(implies fat classes)

Design application based on model of the domain

No 'technobabble’

CHALMERS

) N——————— Tndoor Session Tnitializer
i
\Eh:'l'ul'aihmu*vaidu S-’nald’on
” ©

a4

Thirst Quencher Container ‘ Nisibor Montlor ToberFace

1

- %"\% >

Ubiquitous Language

A common language between the domain experts and
the developers

The Domain model should be based heavily on the
Ubiquitous Language

We have a (sub)section in the RAD on this

The common language connects the different models:

- Domain Model -> Design Model -> Implementation

A central model

Different roles in a project: domain experts, designers,
developers, users

Communication is difficult but essential:

- Use common language
- Have a central model (the domain model)

Domain model facilitates discussion
lteratively develop the domain model

Reflect and keep the domain model up-to-date

- Do not allow domain model, design model and implementation
to diverge

Prevent divergence

To maintain the correspondence between model and
Implementation there are specific techniques that Eric

Evans suggests.

>

>

>

s

s

s

solate the domain using a layered architecture
Domain layer techniques

se associations wisely
se appropriate model elements

tilize Modules

src: https://www.cs.colorado.edu/~kena/classes/5448/f12/presentation-materials/roads.pdf

Domain Layer Building Blocks

Associations

Three patterns of model elements

- Entities

» An object that represents something with continuity and identity - something
that is tracked through different states or even across different
Implementations

- Value Objects

» Attribute that describes the state of a particular object aspect
- Services

» Actions or operations

Modules

- “The ideas of high cohesion and low coupling, foten thought of as technical
metrics, can be applied to the concepts themselves. In a MODEL-DRIVEN
DESIGN, MODULES are part of the model, and they should reflect concepts in
the domain (pg. 82)."

Extracting classes

Based on User Stories from the RAD start with the
following simple method:

- Underline nouns in use cases, will become classes

- Underline verbs In use cases, will become methods

- Sometimes hard to know which method belongs to which
class,

» put them in any that seems sensible, improve in next
Iteration

» or leave out for now, will show up later!
- Include as much as possible
» Easy to skip later

Monopoly classes

Monopoly
Dice

Plece
Board

Space (Street,
Electricity, etc. ...)

Jail

Card
Rent
Player
Balance
Building

Bank

UML class diagram

3 fics v Enrollment 4 1

enrolle bo it in .
Student Marks Received Seminar
Name Get Average To Date Name
Address Get Final Mark Seminar Number
Phone Number Fees

Email Address 0n.{ordered, FIFO)

on waiting list 0="

Student Number Add Student
Average Mark 0..* | Drop Student
Is Eligible To Enroll
Get Seminars Taken Professor
Name instructs
Address 0.1

+ Domain Model represented as an \ '
UML class diagram e ﬁ

- Leave out many details

A static view
- NOTE: Assocliations and multiplicity is between objects

Use standard notation!

- The diagram has a meaning.

- Symbols, notations etc. should end up as runnable code!

Associations

A model typically has many associations which can
make implementation and maintenance complicated
(especially many-to-many associations)

Making associations more tractable

- Impose a traversal direction

- Add a qualifier
- Eliminate nonessential associations

This makes associations more expressive of the model
as well as more tractable

Again, use User Stories as a source of inspiration

Multiplicity and direction

Player

Property

Player

Property

Same multiplicity

Property]

[Player

Player has
Collection
of
Properties

Property]

Property]

Objects

Property]

[Player

Property]

Property]

Each
Properties
has
reference
to same
player

CHALMERS

Association class

\ pd
Consult roject
0..m 8{n

¢
/
e \
/ h
Consult
1

A

Set<Allocation>
somewhere in
program

M:N
bidirectional

Project

Allocation

m

\ 4

Mutual Associations

Mutual (bidirectional) associations should be avoided

- Must keep two object in sync (reference each other) i.e. if
new owner have to change 2 references

- Domino effects (change one, affect other)
- Classes not understood In separation

Select association that seems to be used most, remove
other

Mutual!

Player Property

properties

owner

Monopoly domain model

1
Player Monopoly Board
1 2..8
-
1 1 1
1 2 40
Piece Dice Space
il
position

First iteration!

Another domain model

CHALMERS

> D t
Calculator 1 ictionary
L
1
i |12
Board . —1 Whatis this" - Player
1 1 1 1
) n . 1 \ 4 1
Bonus Tilebag Holder
1 1
\ 4 n
- N _
Position . Tile)

A

Yet another domain model

GUI

|

3D Engine

n

1

1

Monster

J

Level — Highscore
B
1
- 1 1
V\,:E izt,;s » Database
! 1
Player Router

Sound

n

Socket

Efficient modelling

- Optimal is to first draw on whiteboard!

- Very fast drawing
- Very fast communication, everyone can participate
- Use phone/camera to document

Enrollmear

- Later use tools to draw UML Ciies

| S¥wlent . \\

Nore o.% _entolled b l..¢ | Servnaer
address >

P Kone number
SYude~§ Mader

MP'NQ ,@a\\
Ctofl Vn\?lt"; b

PN b & Somns
Calevlate Ny

Important Object Characteristics

Unique identity?
Equality?
Immutable?

Persistence?

- Will any objects survive the execution of the program?

Lifecycle

- When is object created?
- How long does It exist?
- When destroyed?

Thin class

public class MyClass {

private ... data;

private ... moreData;

private ... yetMoreData;

public ... setData { ...} No

behaviour!
public ... getData { ...}

public ... setMoreData { ...}
public ... getMoreData { ...}
public ... setYetMoreData { ...}

public ... getYetMoreData { ...}

Fat class

CHALMERS

public class Board {
private final List<Card> cards;

public List<Card> unSelectPair() {
List<Card> s = new ArraylList<>(selected);
selected.clear();

return s; Data and
} behaviour!

public List<Card> removeSelected() {
List<Card> s = new ArraylList<>(selected);
cards.removeAll(selected);
selected.clear();

return s;

}

public boolean hasMatchingPair() {
return selected.size() == 2 &&

selected.get(9).equalsByName(selected.get(1));

Finishing RAD

3. Domain Model
31.Class responsibilities

Best practices for modelling (Evans)

Isolating the domain

User Interface
Layer

Application
Layer

Domain Layer

Infrastructure
Layer

CHALMERS

* A.k.a. Presentation Layer
 Show Information
* Interpret commands

* Thin layer, sirects Ul commands to jobs in the Domain Layer
» Should not contain Business Rules or Knowledge
* No business “state”, may have progress “state”

* Business objects, their rules, and their state
 The majority of the book focuses here

* Generic technical capabilities to support the higher layers
* Message sending, persistence
* Supports the interactions between topmost patterns

src: selab.netlab.uky.edu/homepage/CS618-DDD-Foundations.pdf

Entities

From Evans:
- An object defined primarily by its identity Is called an entity

- What is the identity?

» Consider two person objects: same name, same date of birth
etc.

» Generate an identifier

- Their class definitions, responsibilities, attributes, and
associations should revolve around who they are, rather

than the particular attributes they carry

Values

- Could make all objects entities...

- "Software design iIs a constant battle with complexity. We must make
distinctions so that special handling is applied only where necessary (pg. 98).

- Only use entities where necessary

- An object that represents a descriptive aspect of the domain with no
conceptual identity

It Is recommended that value objects be immutable

- “[I]nstantiated to represent elements of the design that we care about
only for what they are, not who or which they are (pg. 98).

Examples of possible Value objects:

- Money/Currency class
- Point class in a drawing application

Services

- Some aspects of the domain don’t map easily to objects

- A Service

IS some behaviour, that is important to the domain, but does

not “belong” to an Entity or Value object

Example:

Account Transfer

Encapsulate an important domain concept

- Operation names should come from the UBIQUITOUS LANGUAGE

Parameters and results should be domain objects, the operation in

Itself Is s

rateless

Note: There is a distinction between services discussed here that are
used in the domain layer and those of other layers. Technical services
lack business meaning.

Aggregates

CHALMERS

A group of associated objects which are considered as a unit with
regard to data changes

An aggregate should have one root
The root Is an entity object

Outside objects can reference root, but not the other members of

the aggregate

Customer

Customer may
reference the roots
Car and Engine

Car
Aggregate roct

Customer should
NOT reference Tire
and Wheel as are
inside the Car
boundary

Car
boundary

Factories

Encapsulate the information necessary for object
creation

- Includes logic for all creating all the members of an
aggregate

- Allows us to enforce invariants during creation
- Related GoF Design Patterns

» Factory Method

» Abstract Factory

Designing the Factory Interface

» Each operation must be atomic

» The Factory will be coupled to Its arguments

Repositories

Encapsulates logic to obtain object references

Provides a mechanism to persist/retrieve an object

- Keeps persistence code out of the domain layer

Repository interface should be driven by the domain model

Repository implementation will be closely linked to the infrastructure

findCustomer(“C0123”)
CustomerRepository

_ » | findCustomer(string id)
Client co123 addCustomer(Customer)

find or reconstitute

Customer C0123

customerlD = “C0123"
name = “Name”
address = Address

Modules

- “MODULES give peop
detail within a MODU
or they can look at re
exclude interior detal

e two views of the model: They can look at

_E without being overwhelmed by the whole,
ationships between MODULES in views that

 (pg. 109)”

- The MODULES in the domain layer should emerge as a meaningful
part of the model|, telling the story of the domain on a larger scale

(pg. 109).

- MODULES can be dangerous since the cost of refactoring MODULES

can be prohibitive

- “If your model is telling a story, the MODULES are chapters (pg. 110).”

- “Give the MODULES names that become part of the UBIQUITOUS

LANGUAGE (pg. 111).”

Intention revealing interfaces

- “Type names, method names, and argument names all
combine to form an INTENTION-REVEALING INTERFACE

(pg. 247)”

- “Name classes and operations to describe their effect
and purpose, without reference to the means by which
they do what they promise (pg. 247).”

- “Write a test for a behaviour before creating It, to force
your thinking into client developer mode (pg. 247).”

Side-effect free methods

“Interactions of multiple rules or compositions of
calculations become extremely difficult to predict (pg.

250.)"

To make code easier to use, separate calculations and
state change into different operations.

Assertions

- “Assertions make side effects explicit and easier to deal
with (pg. 255).

- “State post-conditions of operations and invariants of
classes and AGGREGATES. If ASSERTIONS cannot be
coded directly in you programming language, write
automated unit tests for them (pg. 256).

Navigation map

CHALMERS

access with REPOSITORIES

access with

/ ~ maintain integrity with /
express model with \

/ act as root of
express model with

encapsulate with gncapsulate with

express model with
/

\

isolate domain with

LAYERED

ARCHITECTURE

N

encapsulate with

MODEL-DRIVEN
DESIGN

encapsulate with

Summary

Summary

Analysis focuses on building a domain model

- We used the requirements from RAD (user stories) to extract
the domain model

- We expressed the model as an UML-class diagram
- We documented model in RAD

Next: From domain model to first Implementation

Course process

CHALMERS

&

_ Text, pictures

Write User Stories and
sketch a GUI

Select User Stories and use
GUI to create object model

UML

/\\/

Dry run the model

JUnit, Java

Implement and test /_/

the model

Expand model

Finished? Retlect

Iteration planning

lteration 1 lterations Last lteration

4\

First runnable
version

Add functionality >

References

https:/ /www.cs.colorado.edu/~kena/classes/5448/f12/
presentation-materials/roads.pdf

selab.netlab.uky.edu/homepage/CS618-DDD-
Foundations.pdf

https:/ /domainlanguage.com/ddd/reference/

https://www.cs.colorado.edu/~kena/classes/5448/f12/presentation-materials/roads.pdf
https://www.cs.colorado.edu/~kena/classes/5448/f12/presentation-materials/roads.pdf
http://selab.netlab.uky.edu/homepage/CS618-DDD-Foundations.pdf
http://selab.netlab.uky.edu/homepage/CS618-DDD-Foundations.pdf

