
E-R diagrams and database schemas

Functional dependencies

Definition (tuple, attribute, value). A tuple has the form

{A1 = v1, . . . , An = vn}

where A1, . . . , An are attributes and v1, . . . , vn are their values.
Definition (signature, relation). The signature of a tuple, S, is the set of all its attributes, {A1, . . . , An}. A relation
R of signature S is a set of tuples with signature S. But we will sometimes also say ”relation” when we mean the
signature itself.
Definition (projection). If t is a tuple of a relation with signature S, the projection t.Ai computes to the value vi.
Definition (simultaneous projection). If X is a set of attributes {B1, . . . , Bm} ⊆ S and t is a tuple of a relation with
signature S, we can form a simultaneous projection,

t.X = {B1 = t.B1, . . . , Bm = t.Bm}

Definition (functional dependency, FD). Assume X is a set of attributes and A an attribute, all belonging to a
signature S. Then A is functionally dependent on X in the relation R, written X → A, if
• for all tuples t,u in R, if t.X = u.X then t.A = u.A.

If Y is a set of attributes, we write X → Y to mean that X → A for every A in Y.
Definition (multivalued dependency, MVD). Let X,Y,Z be disjoint subsets of a signature S such that S = X ∪Y ∪Z.
Then Y has a multivalued dependency on X in R, written X →→ Y , if
• for all tuples t,u in R, if t.X = u.X then there is a tuple v in R such that

– v.X = t.X
– v.Y = t.Y
– v.Z = u.Z

1

Definition. An attribute A follows from a set of attributes Y, if there is an FD X → A such that X ⊆ Y .
Definition (closure of a set of attributes under FDs). The closure of a set of attributes X ⊆ S under a set FD of
functional dependencies, denoted X+, is the set of those attributes that follow from X.
Definition (trivial functional dependencies). An FD X → A is trivial, if A ∈ X.
Definition (superkey, key). A set of attributes X ⊆ S is a superkey of S, if S ⊆ X+.
A set of attributes X ⊆ S is a key of S if
• X is a superkey of S
• no proper subset of X is a superkey of S

Definition (Boyce-Codd Normal Form, BCNF violation). A functional dependency X → A violates BCNF if
• X is not a superkey
• the dependency is not trivial

A relation is in Boyce-Codd Normal Form (BCNF) if it has no BCNF violations.
Definition (prime). An attribute A is prime if it belongs to some key.
Definition (Third Normal Form, 3NF violation). A functional dependency X → A violates 3NF if
• X is not a superkey
• the dependency is not trivial
• A is not prime

Definition (trivial multivalued dependency). A multivalued dependency X →→ A is trivial if Y ⊆ X or X ∪ Y = S.
Definition (Fourth Normal Form, 4NF violation). A multivalued dependency X →→ A violates 4NF if
• X is not a superkey
• the MVD is not trivial.

Algorithm (BCNF decomposition). Consider a relation R with signature S and a set F of functional dependencies.
R can be brought to BCNF by the following steps:

1. If R has no BCNF violations, return R
2. If R has a violating functional dependency X → A, decompose R to two relations

• R1 with signature X ∪ {A}
• R2 with signature S − {A}

3. Apply the above steps to R1 and R2 with functional dependencies projected to the attributes contained in each
of them.

Algorithm (4NF decomposition). Consider a relation R with signature S and a set M of multivalued dependencies.
R can be brought to 4NF by the following steps:

1. If R has no 4NF violations, return R
2. If R has a violating multivalued dependency X →→ Y , decompose R to two relations

• R1 with signature X ∪ {Y }
• R2 with signature S − Y

3. Apply the above steps to R1 and R2
Concept (minimal basis of a set of functional dependencies; not a rigorous definition). A minimal basis of a set F
of functional dependencies is a set F- that implies all dependencies in F. It is obtained by first weakening the left hand
sides and then dropping out dependencies that follow by transitivity. Weakening an LHS in X → A means finding a
minimal subset of X such that A can still be derived from F-.
Algorithm (3NF decomposition). Consider a relation R with a set F of functional dependencies.

1. If R has no 3NF violations, return R.
2. If R has 3NF violations,

• compute a minimal basis of F- of F
• group F- by the left hand side, i.e. so that all depenencies X → A are grouped together
• for each of the groups, return the schema XA1 . . . An with the common LHS and all the RHSs
• if one of the schemas contains a key of R, these groups are enough; otherwise, add a schema containing just

some key

2

Relational algebra

relation ::=

relname name of relation (can be used alone)

| σcondition relation selection (sigma) WHERE

| πprojection+ relation projection (pi) SELECT

| ρrelname (attribute+)? relation renaming (rho) AS

| γattribute*,aggregationexp+ relation

grouping (gamma) GROUP BY, HAVING

| τexpression+ relation sorting (tau) ORDER BY

| δ relation removing duplicates (delta) DISTINCT

| relation × relation cartesian product FROM, CROSS JOIN

| relation ∪ relation union UNION

| relation ∩ relation intersection INTERSECT

| relation − relation difference EXCEPT

| relation ./ relation NATURAL JOIN

| relation ./condition relation theta join JOIN ON

| relation ./attribute+ relation INNER JOIN

| relation ./oattribute+ relation FULL OUTER JOIN

| relation ./oLattribute+ relation LEFT OUTER JOIN

| relation ./oRattribute+ relation RIGHT OUTER JOIN

projection ::=

expression expression, can be just an attribute

| expression → attribute rename projected expression AS

aggregationexp ::=

aggregation(*|attribute) without renaming

| aggregation(*|attribute) → attribute with renaming AS

expression, condition, aggregation, attribute ::=

as in SQL, but excluding subqueries

3

SQL

statement ::= type ::=

CREATE TABLE tablename (CHAR (integer) | VARCHAR (integer) | TEXT

* attribute type inlineconstraint* | INT | FLOAT

* [CONSTRAINT name]? constraint deferrable?

) ; inlineconstraint ::= ## not separated by commas!

| PRIMARY KEY

DROP TABLE tablename ; | REFERENCES tablename (attribute) policy*

| | UNIQUE | NOT NULL

INSERT INTO tablename tableplaces? values ; | CHECK (condition)

| | DEFAULT value

DELETE FROM tablename

? WHERE condition ; constraint ::=

| PRIMARY KEY (attribute+)

UPDATE tablename | FOREIGN KEY (attribute+)

SET setting+ REFERENCES tablename (attribute+) policy*

? WHERE condition ; | UNIQUE (attribute+) | NOT NULL (attribute)

| | CHECK (condition)

query ;

| policy ::=

CREATE VIEW viewname ON DELETE|UPDATE CASCADE|SET NULL

AS (query) ; deferrable ::=

| NOT? DEFERRABLE (INITIALLY DEFERRED|IMMEDIATE)?

ALTER TABLE tablename tableplaces ::=

+ alteration ; (attribute+)

|

COPY tablename FROM filepath ; values ::=

postgresql-specific, tab-separated VALUES (value+) ## VALUES only in INSERT

| (query)

query ::=

SELECT DISTINCT? columns setting ::=

? FROM table+ attribute = value

? WHERE condition

? GROUP BY attribute+ alteration ::=

? HAVING condition ADD COLUMN attribute type inlineconstraint*

? ORDER BY attributeorder+ | DROP COLUMN attribute

|

query setoperation query localdef ::=

| WITH tablename AS (query)

query ORDER BY attributeorder+

no previous ORDER in query columns ::=

| * ## literal asterisk

WITH localdef+ query | column+

table ::= column ::=

tablename expression

| table AS? tablename ## only one iteration allowed | expression AS name

| (query) AS? tablename

| table jointype JOIN table ON condition attributeorder ::=

| table jointype JOIN table USING (attribute+) attribute (DESC|ASC)?

| table NATURAL jointype JOIN table

setoperation ::=

condition ::= UNION | INTERSECT | EXCEPT

expression comparison compared

| expression NOT? BETWEEN expression AND expression jointype ::=

| condition boolean condition LEFT|RIGHT|FULL OUTER?

| expression NOT? LIKE ’pattern*’ | INNER?

| expression NOT? IN values

| NOT? EXISTS (query) comparison ::=

| expression IS NOT? NULL = | < | > | <> | <= | >=

| NOT (condition)

4

compared ::=

expression ::= expression

attribute | ALL|ANY values

| tablename.attribute

| value operation ::=

| expression operation expression "+" | "-" | "*" | "/" | "%"

| aggregation (DISTINCT? *|attribute) | "||"

| (query)

pattern ::=

value ::= % | _ | character ## match any string/char

integer | float | string ## string in single quotes | [character*]

| value operation value | [^ character*]

| NULL

aggregation ::=

boolean ::= MAX | MIN | AVG | COUNT | SUM

AND | OR

triggers ## privileges

functiondefinition ::= statement ::=

CREATE FUNCTION functionname() RETURNS TRIGGER AS $$ GRANT privilege+ ON object TO user+ grantoption?

BEGIN | REVOKE privilege+ ON object FROM user+ CASCADE?

* triggerstatement | REVOKE GRANT OPTION FOR privilege

END ON object FROM user+ CASCADE?

$$ LANGUAGE ’plpgsql’ | GRANT rolename TO username adminoption?

;

privilege ::=

triggerdefinition ::= SELECT | INSERT | DELETE | UPDATE | REFERENCES

CREATE TRIGGER triggernane | ALL PRIVILEGES ## | ...

whentriggered

FOR EACH ROW|STATEMENT object ::=

? WHEN (condition) tablename (attribute+)+ | viewname (attribute+)+

EXECUTE PROCEDURE functionname | trigger ## | ...

;

user ::= username | rolename | PUBLIC

whentriggered ::=

BEFORE|AFTER events ON tablename grantoption ::= WITH GRANT OPTION

| INSTEAD OF events ON viewname

adminoption ::= WITH ADMIN OPTION

events ::= event | event OR events

event ::= INSERT | UPDATE | DELETE ## transactions

triggerstatement ::= statement ::=

IF (condition) THEN statement+ elsif* END IF ; START TRANSACTION mode* | BEGIN | COMMIT | ROLLBACK

| RAISE EXCEPTION ’message’ ;

| statement ; ## INSERT, UPDATE or DELETE mode ::=

| RETURN NEW|OLD|NULL ; ISOLATION LEVEL level

| READ WRITE | READ ONLY

elsif ::= ELSIF (condition) THEN statement+

level ::=

SERIALIZABLE | REPEATABLE READ | READ COMMITTED

| READ UNCOMMITTED

indexes

statement ::=

CREATE INDEX indexname ON tablename (attribute+)?

5

JSON

Both json* and member* indicate comma-separated lists. Strings are in double-quotes, numbers use decimal dot.

json ::= object | array | string | number | boolean

object ::= "{" member* "}"

member ::= string ":" json

array ::= "[" json* "]"

JSON Path: Expressions are built from operators, the result is an array with all matching json elements.
$ is the path for the root of the document
. is the child operator (e.g. $.name gives the value of the name attribute of the root node)
* is the wild-card operator, it selects all attribute values of an object, or all items in an array
.. is the recursive descent operator (e.g. $..name gives the value of the name attribute of all nodes)
[n] is array indexing (n is an integer)
[n:m] is array slicing, selecting all indexes from n to m in an array
[a,b,c] selects multiple attributes (in double quotes) or array indexes
[?(condition)] is used to filter values
@ is the current object in conditions ($.*[?(@.x>1)] gets attributes of the root node whose x attribute exceeds 1)

JSON Schema: Each schema is a JSON document.
false matches nothing
true matches everything (same as {})
Objects contain any number of keywords (as keys), that limit what is accepted. Keywords and types of values:
• "enum" (array) accepts only the listed values.
• "type" (string) accepts only the given type, one of object/array/string/number/integer/boolean.
• "minimum","maximum","minLength","maxLength","minProperties","maxProperties","minItems","maxItems" (integer)

specifies bounds for numbers, string lengths, array lengths and number of attributes respectively.
• "properties" (object with name:schema pairs) specifies schemas for attributes of objects.

E.g. {"properties":{"x":{"type":"string"}, "y":false}} accepts only objects where the type of attribute ”x” is a
string (or ”x” does not exist) and attribute ”y” does not exist.

• "additionalProperties" (schema) specifies the schema for all attributes not mentioned in ”properties”.
• "required" (array of strings) accepts only objects that have all the listed attributes
• "items" (schema) accepts only arrays where all items are accepted by the given schema
• "contains" (schema) accepts only arrays that where at least one item is accepted by the given schema
• "uniqueItems" (boolean) if boolean is true, accepts only arrays where items are unique
• "allOf", "anyOf", "oneOf" (array of schemas) accepts only what is accepted by all of, at least one of, or exactly one of

the given schemas.
• "not" (schema) accepts only what is not accepted by the given schema.
• "definitions" (object with name:schema pairs) specifies named schemas, that can be used with "$ref". Only used in

the root object of a schema.
• "$ref" (string) accepts values that are accepted by the referenced schema. Use "#" to refer back to the root of the

schema. Use "#\definitions\x" to refer to definition ”x”.

6

