
TDA357/DIT621 – Databases
Lecture 7 – Functions and triggers

Jonas Duregård

Course representatives

• As I should have already have mentioned, the course representatives are:

Mohammed Bashar Dumairieh

Erik Johnsson

Ivan Lyesnukhin

Elin Sandahl

Niclas Tauson

• If your name is on the list, I would like to have a talk with you in the break

Closing words on high level design

• Like ER-diagrams Functional Dependencies allow us to model a domain

• "courseCode -> teacher" is a statement with at least three interpretations:

• Formal: "There exists a partial function that takes a courseCode attribute
value as parameter, and computes a teacher value"

• Informal: "If I know a course code, I can determine a teacher"

• Domain conceptual: "At most one teacher can work on a course"

• ER is generally more expressive than FD's (we can say more about the domain
using ER), but there are some exceptions (things FD's can do that ER can't)

• Normalization is a big thing in Databases. The idea is that we describe the
domain with functional dependencies, and then calculate a good design

• In practice, things are usually not that simple

Using functional dependencies to find keys

• One thing that FD's are really good for is identifying secondary keys

• Introduces UNIQUE-constraints in the schema/SQL-code

• Good thing for us, because ER can not do this!

• If you find several keys in a table, choose a primary key and make the rest UNIQUE

• A special case of this is when two attributes that determine one another e.g.
email -> username
username -> email

• Use either email or username as primary key, and mark the other UNIQUE

• There are at least three UNIQUE constraints to find in Task 2!

• Use FD's to find/motivate your UNIQUE constraints

Recognize FDs in a domain description

• Things like "each course have a teacher" (teacherID -> courseID), "some
teacher have an office" (teacherID -> officeID)

• Note that "each course have a teacher" and "each course may have a
teacher" give the same FD (a limitation of FD's)

• Things like "a teachers can have a role in a course" may mean (teacherID,
courseID -> role)

• Also: Look at each attribute and ask yourself "What do I need to know to
determine this uniquely?" (May be multiple answers, for multiple FDs)

• Things like "each A has a unique x" means (x -> all attributes of A)

Today: Triggers and stuff
Here are a few things that our high level design can not express:

• Events

• Example from domain: "when a student unregisters, the first student from
the waiting list should be moved …"

• ER describes what a database can contain, not operations on it

• The design can only make sure to accommodate both the state before the
event and after the event, but not the event itself

• Advanced cross-table constraints

• Example from domain "A student can only register if they have passed all
prerequisites"

• Can not be expressed using reference/unique/value constraints

• This lecture we will solve these problems using the magic of SQL ☺

Side note: atomicity
• All SQL modifications are atomic: If I execute a DELETE/UPDATE/INSERT and

there is an error, no rows will have changed

• For instance for a delete, if just one matching row can not be deleted,
nothing gets deleted

• Intermediate changes are never visible to other users of the database (rows
do not disappear and then reappear again, they either change or they don't)

• This says something about how intricate a DBMS is, imagine implementing
this on a data structure in Java! (A method that removes all members
satisfying a criteria, but rolls back all changes if there is an error)

• Works even if the server looses power in the middle of an update(!)
(The update will either be performed completely or nothing is changed)

Cascading

• Remember: deletes/updates may fail due to references from other tables

• I can not remove a student unless I first remove all that students grades

• By default a query that attempts to delete a referenced row fails and nothing is
deleted, this can be changed when creating the reference:

• Delete all referencing row as well:
student TEXT REFERENCES Students(id) ON DELETE CASCADE,

• Can potentially lead to deleting the whole database

• Silently leave the referenced rows (possibly deleting other rows):
student TEXT REFERENCES Students(id) ON DELETE RESTRICT,

• Makes DELETE-operations non-atomic

Modes for ON DELETE/UPDATE

• ON [DELETE/UPDATE] [CASCADE/RESTRICT/SET NULL]

• ON DELETE CASCADE: Delete this row if the referenced value is deleted

• ON UPDATE CASCADE: Update this value if the referenced value is updated

• RESTRICT: "silently" prevent deletes/updates to referenced value (do not
raise an error)

• SET NULL: Set this value to NULL if the referenced value is updated/deleted

• ON UPDATE is usually OK to CASCADE, for ON DELETE, be more careful

A complete example

• Here is the LimitedCourses table, extended with the follow behavior:

• If a course is deleted (in Courses), its limit is also deleted

• If a course code is changed in Courses, it is also changed here

• Both of these make sense: Why give an error when deleting a course
simply because it has a limitation?

CREATE TABLE LimitedCourses(

course CHAR(6) PRIMARY KEY,

seats INTEGER NOT NULL,

FOREIGN KEY (course) REFERENCES Courses

ON DELETE CASCADE ON UPDATE CASCADE

);

• Note that this says nothing about the other direction (if a course code
is changed in LimitedCourses for instance)

What is the sensible ON UPDATE/DELETE here?
• Argue for a sensible policy for the references in Lectures:

• For Courses.(code, year):
ON DELETE CASCADE ON UPDATE (CASCADE/RESTRICT/nothing)
If a course is deleted, delete its lectures, if a year is changed…?

• For Rooms.name:
ON UPDATE CASCADE ON DELETE (nothing/SET NULL)

If a room is renamed, update lectures
If a used room is removed, give an error (or set to NULL? Needs to allow null
values for room attribute)

• Raising an error is never totally wrong (it will never corrupt your database, but
may make it less usable)

Lectures(course, year, weekday, hour, room)

(course, year) -> Courses.(code, year)

room -> Rooms.name

How to identify ON DELETE/ON UPDATE

• If you need to do something like "When a student is deleted, it should
automatically be unregistered from all courses"

• Note how this is clearly not something that we can model in ER

Advanced cross-row/cross-table constraints

• Sometimes we want constraints affecting multiple rows/multiple tables

• Some such constraints can already be implemented:

• Unique/primary key constraints are cross-row constraints
(You need to look across rows to know there are no conflicts)

• Foreign keys are cross-table constraints
(You need to look in another table to know if a value is allowed)

• Other constraints can not be expressed using references/keys, examples:

• Two columns should be mutually exclusive ("shared keys")

• A column should contain consecutive numbers starting from 1

• …

ASSERTIONS

• Assertions are part of the SQL standard

• They allow us to write conditions that should be globally true for the database

• Syntax:
CREATE ASSERTION <assertion name> AS

CHECK <condition>;

• Very difficult to implement efficiently in a DBMS

• For instance: We can write an assertion that states that all course registrations
have happened within the last year from today

• When should this be checked? What happens when it is suddenly false?

• Not implemented in Postgres or in most major DBMS

User created functions

• Most DBMS allows users to create functions, these can be used
similar to COALESCE() and other functions we've seen

• Functions are stored in the DB server and executed in queries etc.

• Sometimes called "stored procedures"

• Reasons not to use functions

• They do not fit nicely into the relational data model

• May be poorly optimized

• Poorly standardized between DBMSs (code from one DBMS may
work in another with some alterations, or it may not work at all)

• Reasons to use functions

• There are some things that simply can not be done without them

CREATE FUNCTION

CREATE FUNCTION <name>(<parameter types>) RETURNS <return type> AS
<code>

• Example:

CREATE FUNCTION nextNumber(CHAR(6))

RETURNS BIGINT AS

$$ SELECT COUNT(*)+1 FROM WaitingList WHERE course=$1

$$ LANGUAGE SQL;

Function name
unnamed parameter

(in this case a course code)

refers to parameter value
Start/end of code Language of the code(?)

Languages

• Functions in Postgres can be written in different languages

• We will look at two of them:

• SQL – you know this!

• PL/pgSQL – new stuff!

• Postgres version of Oracles PL/SQL (Procedural Language/SQL)

• The language is procedural in the sense that (unlike SQL) programs are
written as sequences of instructions

• Similar to general purpose languages (like C, Java) in theory, similar to
SQL in syntax

What does this function do?

• Returns the next position a student should get in WaitingList
(assuming the database is currently consistent)

• nextNumber('TDA357') results in 3

• nextNumber('TDA143') results in 2

• nextNumber('XYZ123') results in 1

• Could be a really useful thing!

CREATE FUNCTION nextNumber(CHAR(6))

RETURNS BIGINT AS

$$ SELECT COUNT(*)+1 FROM WaitingList WHERE course=$1

$$ LANGUAGE SQL;

Table: WaitingList

student course position

Student1 TDA357 1

Student2 TDA357 2

Student1 TDA143 1

Similar but not identical to

the table in the assignment

Creating functions

• First create all the tables, views etc. that the function is using, then
run CREATE FUNCTION

CREATE Table WaitingList(

student TEXT,

course CHAR(6),

position INT,

PRIMARY KEY(student,course)

);

CREATE FUNCTION nextNumber(CHAR(6))

RETURNS BIGINT AS

$$ SELECT COUNT(*)+1 FROM WaitingList WHERE course=$1

$$ LANGUAGE SQL;

Functions are part of the design!

Using functions

• In SELECTS:

SELECT nextNumber('TDA357');

SELECT code, nextNumber(code)

FROM Courses;

• Even more useful for this one, In INSERT:

INSERT INTO WaitingList VALUES

('Student1','XYZ123',nextNumber('XYZ123'));

code | nextnumber

--------+------------

TDA357 | 3

TDA143 | 2

XYZ123 | 1

If the database is consistent, always gets the right number

nextnumber

3

Table: WaitingList

student course position

Student1 TDA357 1

Student2 TDA357 2

Student1 TDA143 1

Table: Courses

code Name

TDA357 Databases

TDA143 Programming

XYZ123 Fake course

Still not completely safe

INSERT INTO WaitingList VALUES

('Student1','XYZ123',nextNumber('XYZ123'));

• This goes a long way to make sure we use the right position, but:

• The two codes need to match

• It's still possible to inserts without using the function

• Deleting from the list creates "holes", and then using the function
causes primary key collisions �

• Let's try and fix that!

The assertion approach
• Idea: Write a query that finds courses with corrupted waiting lists

• Then write an assertion that the query must give 0 rows

• Observation: A course list is corrupted under any of these conditions:

• Its lowest position for the course is not 1

• Its highest position is not equal to its total number of waiting students

• Solution:

CREATE ASSERTION No_invalid_positions AS

CHECK NOT EXISTS

(SELECT course FROM WaitingList

GROUP BY course

HAVING MIN(position)!=1 OR MAX(position)!=COUNT(*));

• Assertions don't work in Postgres �

Triggers

• Triggers are procedures (functions) stored on the server, executing when
certain actions are taken (like updating, inserting or deleting from a table)

• Postgres syntax example:

CREATE FUNCTION <trigger function name>()

RETURNS trigger AS $$

<Trigger code>

$$ LANGUAGE plpgsql;

CREATE TRIGGER <trigger name>

AFTER DELETE

ON <Table name>

FOR EACH ROW

EXECUTE PROCEDURE <trigger function name>();

When is the trigger executed? Possible values:

[BEFORE/AFTER/INSTEAD OF] [DELETE/UPDATE/INSERT]

A function with a special return type

Uses PL/pgSQL

When are triggers useful?

• When modelling events

• Something is supposed to happen when a user takes certain actions

• Like in the assignment: When a student is unregistered from a course,
another student from the waiting list may take its place

• Cross-row or cross-table constraints

• Like a more powerful check constraint, ensure invariants across tables
that are more complicated than uniqueness/reference constraints

Let's make a simple trigger

• When a student is deleted from the waiting list, "compact" the positions

• Remove the hole in the consecutive positions for a course created by
removing the student from the list

• We assume the table is consistent before the deletion

• Observation: Can be expressed as a single update, decreasing position by one
for all higher positions than the deleted one

• The variable OLD is a special variable for triggers on updates/deletes

• It contains the values of a row that has been (or is about to be) deleted

• Note that if the delete affects multiple rows, the function is called once for
each row (not once for the whole DELETE statement!)

The trigger function

CREATE FUNCTION compact()

RETURNS trigger AS $$

BEGIN

UPDATE WaitingList SET position = position-1

WHERE course = OLD.course AND position > OLD.position;

RETURN OLD;

END;

$$ LANGUAGE plpgsql; Course and position values of a deleted row

Terminates the function

Creating the trigger itself

• The trigger function is just a function, if it is not called it does nothing

• This code tells Postgres to execute the function AFTER a row has been
deleted from WaitingList:
CREATE TRIGGER waiting_deleted

AFTER DELETE

ON WaitingList

FOR EACH ROW

EXECUTE PROCEDURE compact();

• The trigger needs to be created after creating the function and the table

The function we created on the previous slide

Effect of the trigger

• Note: The trigger was executed twice here

• For the TDA143 row, it didn't really do anything (0 rows updated)

Table: WaitingList

student course position

Student1 TDA357 1

Student2 TDA357 2

Student1 TDA143 1

DELETE FROM WaitingList WHERE student = 'Student1';

Table: WaitingList

student course position

Student2 TDA357 1
Student2 was bumped to position 1, sweet!

Triggers and errors

• Updated/deletes that execute triggers are still atomic

• If there is an error for any row, nothing is changed

• Triggers can raise errors (RAISE EXCEPTION '<error message>';)

• Conclusion: We can use Triggers as a kind of 'poor mans assertions', where
we write a function that gives an error for invalid operations

• The problems of assertions are avoided because we have to specify
exactly when the condition is checked

• New task: Use this to prevent insertions on incorrect positions

IF-statements and variables in (Postgres) PL/SQL
-- Raise an error if the inserted row has a bad position

CREATE FUNCTION valid() RETURNS trigger AS

$$DECLARE cnt INT;

BEGIN

SELECT COUNT(*) INTO cnt

FROM WaitingList

WHERE course = NEW.course;

IF (NEW.position = cnt) THEN

RETURN NEW;

ELSE

RAISE EXCEPTION 'invalid position';

END IF;

END;

$$ LANGUAGE plpgsql;

Declare an integer variable named cnt

Assign the variable the result of

a (single line) query

Use IF/ELSE to either terminate

gracefully or raise an error

NEW contains a value that

has just been inserted

Creating the INSERT-trigger

• The valid function (from previous slide) should be called after each insert
(still done before the change is actually visible to anyone)

CREATE TRIGGER waiting_inserted

AFTER INSERT ON WaitingList

FOR EACH ROW

EXECUTE PROCEDURE valid();

• If the call to valid() raises an error for any inserted row, all changes are
"rolled back" to before the INSERT-statement was executed

Variables

• Like local variables in Java and similar languages

• Declared in a single DECLARE block at the start of the code (after $$)

• Each declaration is terminated with ;

$$

DECLARE

cnt INT;

myBool BOOLEAN;

BEGIN

...

Declares two variables

SELECT ... INTO

• Used to run a query and store the result in a variable (declared earlier)

• Raises an error if the query does not give exactly one row

• Things like
SELECT credits INTO creds FROM Courses WHERE code=x;

work only if you know x is a valid code

• Tip: Simple aggregates always give one row (possibly containing null)

SELECT MAX(credits) INTO creds

FROM Courses WHERE code=x;

• Variable creds will be null if x is not an existing course code

IF-statements
• You know them, you love them.

• Syntax for if-elseif-else:
IF (<condition>) THEN
...

ELSIF (<condition> THEN
...

ELSE
...

END IF;

• Both ELSIF and ELSE are optional

• Will run ELSE when condition is UNKNOWN

• Limitation: You can not have queries in your conditions! Use variables.
• Things like "IF (x=SELECT ...) THEN" do not work
• Use SELECT ... INTO to fetch data from tables (see previous slide)

Aggregate functions are your friends

• To test something like "Is this student registered for this course",
write a query that counts the number of registrations the student has
for the course (will be 1 or 0)

• Alternatively, you can use EXISTS
SELECT

(EXISTS (SELECT *

FROM WaitingList

WHERE course=NEW.course)

) INTO myBool;

Check if NEW.course has at least one waiting student (TRUE or FALSE in myBool)

Start of Lecture 8
The story so far

• Our goal is to model events and cross-table

• Can use ON DELETE CASCADE and such to automatically modify references

• Assertions are nice but not supported by our DBMS

• We can write function in different languages, one is PL/pgSQL

• Trigger functions are special functions meant to be executed before/after a
row is deleted, inserted or updated

• Has special variables OLD and NEW to represent the row being
deleted/inserted/updated

• After creating the function, we need to create a trigger that specifies
when the function is executed

• By raising errors in triggers we can emulate assertions!

Are we safe now?

• Consider the WaitingList(student,course,position) example

• We have made sure that INSERT is only allowed with valid positions

• We have made sure that DELETE will compact to consecutive positions

• So are we 100% sure that waiting lists have consecutive positions?

• No! We can still do UPDATEs on waiting list.

• We could add a trigger ON UPDATE that fixes things?

• Dangerous: The DELETE trigger will perform an UPDATE, which will
trigger the ON UPDATE trigger!

• If we make an UPDATE trigger that performs UPDATE, we may get an
infinite recursive function call �

Triggers on views

• Views are amazing for providing a useful interface for applications

• We can select from "tables" that seem to have lots of redundancy, but
actually they just reflect data redundancy-free tables

• Example: the PassedCourses view that contains credits for each grade
(in a table, that would violate BCNF!)

• Unfortunately, we can SELECT from views, but not INSERT or DELETE

• Triggers changes that!

• E.g. by writing a trigger INSTEAD OF INSERT ON <view name>, we can
do INSERT INTO <view name> VALUES(…) to execute the trigger

INSTEAD OF INSERT on views
• The NEW variable contains the values for an inserted row

• Uses the columns and types in the view, not in any underlying tables

• Will not automatically insert anything anywhere, the trigger will have to
execute INSERT on the underlying tables for anything to happen

• The row that was added may not show up when selecting from the view

• Should always return NEW
CREATE FUNCTION Insert_function() RETURNS trigger AS $$

BEGIN

-- Code goes here

RETURN NEW;

END; $$ LANGUAGE plpgsql;

CREATE TRIGGER Insert_trigger

INSTEAD OF INSERT ON <view name goes here>

FOR EACH ROW EXECUTE PROCEDURE Insert_function();

INSTEAD OF DELETE on views

• The OLD variable contains a row from the view that matches the WHERE-
clause of an executed DELETE-query

• Will report "X rows deleted", which really means the trigger was executed
for X rows in the view, the database may not have been changed at all

• Should always return OLD

CREATE FUNCTION Delete_function() RETURNS trigger AS $$

BEGIN

-- Code goes here

RETURN OLD;

END; $$ LANGUAGE plpgsql;

CREATE TRIGGER Delete_trigger

INSTEAD OF DELETE ON <view name goes here>

FOR EACH ROW EXECUTE PROCEDURE Delete_function();

Should I write triggers on tables or views?

• Writing simple triggers on tables is OK

• If your triggers do modifications (INSERT/UPDATE etc) to the database, it may
be more appropriate to write it on views

• One nice way to think about it: INSERT/UPDATE/DELETE on tables are our
internal operations that need to be used very carefully (like private methods)

• Operations on views are our exported interface, and all operations are safe by
design, there is no way to corrupt the database by inserting into views

• When designing the triggers on views we modify the tables directly, but never
from applications that use them

Triggers in the assignment

• You will be writing triggers on the Registrations view (the one containing
student, course and status (registered/waiting)

• For DELETE, this means that you can write a single query to unregister
a student either from the waiting list or the registration list

• You will use them both to raise errors for invalid modifications and to
model events (moving from waiting list to registrations)

• All triggers in the assignment should be written on views!

Debugging triggers

• Stuff not working? Is you IF doing THEN when it should be doing ELSE?

• You can place lines like these anywhere in your trigger to inspect the value
of a variable at that position:

RAISE NOTICE 'new course: %', NEW.course;

RAISE NOTICE 'variable is: %', cnt;

• Text will show up in the output of PSQL or the 'messages'-tab in pgAdmin

• If no text shows up no matter where you put the code, it means your trigger
isn't executed (e.g. because you run a DELETE that matches no rows)

• CLEAN UP YOUR DEBUG CODE BEFORE SUBMITTING YOUR SOLUTION!

More PL/SQL features

• Assignments: You can do "simple assignments" (no queries):

variable := variable * 2 ;

• Loops
LOOP EXIT WHEN counter = n ;

counter := counter + 1 ;

END LOOP ;

• Cursors can be used to loop over the contents of a query

• Overusing cursors is a common problem for students (e.g. instead of writing
a query that counts the number of unread prerequisites a student has, they
loop through prerequisites and check each with a query

• Think relationally when possible, not procedurally!

• All Postgres PL/SQL features: https://www.postgresql.org/docs/10/plpgsql.html

Even more PL/SQL: Recovering from errors
• A code block (BEGIN <code> END;) can have an EXCEPTION clause

• This is like try/catch in Java

• Syntax:
BEGIN

<code that may cause exception>

EXCEPTION

WHEN <error code>

<code that handles exception>

END;

• There are error codes for violated unique constraints (unique_violation),
foreign key violation (foreign_key_violation) and about a million other things
here: https://www.postgresql.org/docs/9.5/errcodes-appendix.html

• You can catch errors you throw yourself, but it's better to not throw them

Side note: Inserting selections

• It's possible to insert the result of selection:
INSERT INTO Table2 (SELECT * FROM Table1);

• Inserts all resulting rows (result types must match columns)

• Can use WHERE, and all other features of queries

• Means INSERT triggers may run multiple times for a single INSERT

• May be useful in triggers to copy more than one row from one table
to another

Trigger return values

• Triggers usually return NEW or OLD (New for INSERT/UPDATE and OLD
for DELETE)

• Using assignments it's possible to change the values in NEW before
returning it. For INSERT/UPDATE triggers, this will modify the
inserted/modified row

• Can be used to make a much nicer version of the insert trigger for
WaitingList, that automatically assigns the correct position to the
inserted row instead of raising an error

• Does not work for inserts on views

• If a BEFORE trigger returns NULL, it will skip the update for that row
and proceed without any error

Triggers are powerful tools
… but they are also complex to make

• You may introduce bugs in your triggers

• Performance may be problematic with lots of triggers

• Not an issue if the trigger is executed every time a student registers

• May be an issue if it is run every time a webpage is refreshed

Using views as constraints?

• Sometimes it's possible to implement a constraint using a view

• If an attribute has a lot of dependencies on other rows/tables,
perhaps it should not be a column in a table, but merely in a view?

• Example: A constraint like "nrStudents should be the actual number
of registered students for the course"

• In fact, the whole WaitingList example could be implemented by
having TIMESTAMPS or relative numbers in the table, and showing
the absolute positions only in a View

