Granule: A language for

fine-grained reasoning via

eraded modal types

Dominic Orchard
http://dorchard.co.uk

http://github.com/dorchard/granule University of

Kent

http://dorchard.co.uk
http://github.com/dorchard/granule

Modern programming challenges

* Manage sensitive private information
* Obey statetul protocols

* React to and understand the effect of uncertainty

+ concurrent & distributed

2123

The types-for-verification paradigm

——. e 8 - —

. % I'~e:m, &1 I'Fex:m2, @
Undesirable G P N rarely New
> 2 I'bey:bool, g I'bey:7, d I'bFey:T, D0 >
Program (1) I' - if eg then e; else ex : 7, Py @ (D1 + D2) language /
behaviour extension

New type system

e.g. ownership types ®

* Bespoke effect types \\2 Idrls

® Domain-specific

* Highly coupled

3/23

Granule - fine-grained program reasoning

Track information
for quantitative reasoning

Goal: extensible

Be strict about resources

Precision

Goal: tull dependent types

Graded

modal

types

Linear

types

Indexed
types

SMT
solver

(e.g. Z3)

4/ 23

Granule demo 1

linear basis

5/23

modality — use any number of times (or !)

d

linear types — use exactly once

Modal logic - possibility & necessity

A = Ais “necessarily” true, A true 1n all worlds
Axioms: A— A Rule: — A
A— A - 0OA

(A— B)— DA— OB

OA = A“possibly” true, A true in some worlds

Axioms: A — OA
OOA—= QA
(A— B)— OA— OB

7/23

Graded modalities (informally)

Monads Comonads

Graded slogan:
match the structure of proof/
program with structure in

the indices

@Wﬁh structure

Graded monads Graded comonads 8 /23

modality — use any number of times (or !)

d

linear types — use exactly once

o modality — use any number of times

d

n modality — use at most n number of times

linear types — use exactly once

Bounded Linear Logic

(In 1n Girard et al. '92)

Family: On A where n € N — A can be used 7 times

Structure: (N, =, 1, +, 0)

Axioms:

A—1
reg A= 0Op0Og A .

114_‘—%"f1 7°| S f4‘—$’ 7*[4 X S fq

(A— B)—>0,4—0,B sA— OpA where r < s

11/23

Granule demo 2

bounded linearity

n A written in Granule as type A |n|

and indexed types

12 /23

Bounded Linear Logic

(In 1n Girard et al. '92)

Family: On A where n € N — A can be used 7 times

Structure: (N, =, 1, +, 0)

Axioms:

A—1
reg A= 0Op0Og A .

114-__% 14- 7ﬁ| S fl‘—% 7°14_>< S fq

(A— B)—>0,4—0,B sA— OpA where r < s

13 /23

Semiring-graded necessity

Family:

n A

Structure: (R, #, 1, +, 0, <) ... (ordered) semiring

Axioms:
reg A= 0OpOg A
1A— A
(A— B)— 0,4 —

B

04 — 1
A—-0,A X OA

T

A —

rA where r < s

also known as “coeftects”

modelled by graded comonads

14 /23

Granule demo 3

security coeffects
({Private, Public}, A, Private, v, Public)

] A written in Granule as A [1]

Combining Effects and Coeffects via Grading [Gaboardi, Katsumata, O, Uustalu, Breuvart."| 6] 15/23

Linear types with semiring-graded necessity

Iex:ARt: B I'tt:A— B ARt :A
ax abs app
I'+AFtt . B

r:AFx: A ' xt: A— B

Resource accounting: r,s € (R, *,1,4+,0, <)
lypes: A B:=A—B|0,A|c A |r]
Contexts: I[''A = AT |[.AT |-
——

non-linear variable (discharged modality)

Contraction:
(z: A T)+ (x: A A) is 1ll-formed
(:E : .TA’F) T (.CC - SAvA) — &L T+SA7 (F+A)

I't: A

Weakening: = N
y L0 :

16 /23

Linear types with semiring-graded necessity

Shift linear variable dJor Nex:AFt: B
to modal: I'N'e:L4AFt: B

(derelection)
Propagate grading: b '+t: B
(promotion) PY ST - 4] : 0, B
Composition/cut: letDF "t LA Azl AFE: B

F—I—Al—let [33]:?51 intQ:B

A core quantitative coeffect calculus [Brunel et al."| 4] 17/ 23

Eftects via graded possibility
()

Graded necessity: Graded possibility:
rx o A — 0,0, A Or Oy A — O A
114.——% 14_ _/1 — <$> 14
A— B)—0,A— 0B A— B) = OrA— OB

Meta-language style: (do in Haskell)

'Fe: A T'Fe :0,A Tov:AFey:0,B
I'F(e):0/A 'Flet Qv =e;iney: $.0yB

18/ 23

Granule demo 4

revisiting the file handling demo

effect-graded possibility

(X, @,) = (List {R, W, C, RW, O}, ++, [])

<>x A written in Granule as A<x>

19 /23

Granule demo 5

Bounded sessions

20/ 23

Graded modalities (informally)

Graded slogan:
match the structure of proof/
program with structure in

the indices

/
Uﬁth structure

21/23

!

Coefttects /

necessity

ettects /
possibility

Graded Modal
Type Theory

22123

Modern programming challenges

« Manage sensitive private information

+ Security coettects

» Obey stateful protocols FUEIEES

“ Graded by pairs of pre-post conditions (see parameterised monads)

* Or, graded by “morphigms” giving proof between pre-and-post

* React to uncertainty

* Capture exact requirements with modality

In progress

+ concurrent & distributed

“ Session types + fine grained resources + effects

23 /23

What next?

Granule with extensible graded modalities

* Pick-your-own-gradings, and combine
* User-defined (within Granule)

* May need extra solver support

Interacting possibility and necessity modalities:
* Combining effects and coettects via grading (Gaboardi et al. 2016)

e Classical data flow analyses
Full-dependent types

Decompose and re-express existing work

24 [23

Here 1s what [consider one of the
biggest mistakes of all in modal logic:
concentration on a system with just
one modal operator

Dana Scott (1968)

Download me and play!

http://github.com/dorchard/granule

Use graded modalities in your research!

Graded possibility: Graded necessity:
<>x<>yA%<>x@yA res A — Op0Og A
A— OrA 14— A
A— B)— OrA— OB (A— B)— 0OrA—

Thanks!

http://github.com/dorchard/granule

Backup shdes

Other applications / GMTTs

Contextual Model Type Theory (Nanevski et al. ‘08)
OpA — Ais true under closure of I

Resources for dependent lollipop (McBride '16)
Hardware schedules (Ghica et al. '14)
Explicit provability logics (Artemov 95, '01)

Multi-stage programming (generalising Pfenning & Davies)
Costs (ct. Cicek et al. 17)
Robustness / sensitivity (Gaboardi et al., Pierce et al.)

Provenance

Probabilistic programming (forwards / backwards)

Type state (stateful protocols)

28 [23

The Essence of Graded Modality

Recall, monoid homomorphism (X, ®,1) il (Y,e,¢)

Xx X vy

e
I D °
/ Y Y

X F>Y X - > Y

-

Graded necessity, with (X, ®,I) is a lax monoid homomorphism

XY xx 22 pPypP

I 'reﬂ/ D trans o
Y ' Y

X - > PP X > PP
L]
A refl A A trans A
A — f®g g—f

29 /23

The Essence of Graded Modality

Graded necessity, with (X, ®,I) is a lax monoid homomorphism

[x []

1 X x X > PP x PF
Id
I| refl D trans o
Y / " / Y
X - | 24 X - > PP

General graded modality 1s a lax functor (category homomorphism)

Cx [

1 C(P,Q) x C(Q,R) PP x PP
1dp freﬂ % .
C(P, P) — C(P,R) = ~ PP

Dz’dpA — A DgofA — DngA

