Formal Methods for Software Development
Proof Obligations

Wolfgang Ahrendt

19 October 2018

FMSD: Proof Obligations CHALMERS/GU 181019 1/39

This Part

making the connection between
JML
and

Dynamic Logic / KeY

FMSD: Proof Obligations CHALMERS/GU 181019

27739

This Part

making the connection between
JML
and

Dynamic Logic / KeY

P generating,

FMSD: Proof Obligations CHALMERS/GU 181019

27739

This Part

making the connection between
JML
and

Dynamic Logic / KeY

P generating,
» understanding,

FMSD: Proof Obligations CHALMERS/GU 181019

27739

This Part

making the connection between
JML
and

Dynamic Logic / KeY

P generating,
» understanding,
» and proving

DL proof obligations from JML specifications

FMSD: Proof Obligations CHALMERS/GU 181019

27739

From JML Contracts via Intermediate Format

to Proof Obligations (PO)

public class A {
/*@ public normal_behavior

@ requires <Precondition>;
@ ensures <Postcondition>;
Q@ assignable <locations>;
ox/

public int m(params) {..}

}

FMSD: Proof Obligations CHALMERS/GU

181019

3739

From JML Contracts via Intermediate Format
to Proof Obligations (PO)

public class A {
/*@ public normal_behavior

@ requires <Precondition>;
@ ensures <Postcondition>;
Q@ assignable <locations>;
ox/

public int m(params) {..}

}

Intermediate Format
(pre, post, div, var, mod)

FMSD: Proof Obligations CHALMERS/GU 181019

3739

From JML Contracts via Intermediate Format
to Proof Obligations (PO)

public class A {
/*@ public normal_behavior

@ requires <Precondition>;
@ ensures <Postcondition>;
Q@ assignable <locations>;
ox/

public int m(params) {..}

}

Intermediate Format
(pre, post, div, var, mod)
S

2

e
©

Proof obligation as DL formula

pre —
(this.m(params) ;)
(post A frame)

FMSD: Proof Obligations CHALMERS/GU 181019

3739

JML Translation: Normalizing JML Contracts

Normalization of JML Contracts

1.

S

Flattening of nested specifications
Making implicit specifications explicit
Processing of modifiers

Adding of default clauses if not present

Contraction of several clauses

Tho following introduces principles of this process

FMSD: Proof Obligations CHALMERS/GU 181019

4739

Normalisation:
Making Implicit Information Explicit

Implicit Information
» Meaning of normal_ and exceptional _behavior
» non null by default

» \invariant for(this) in requires, ensures, signals clauses

FMSD: Proof Obligations CHALMERS/GU 181019 5/39

Normalisation:
Making Implicit Information Explicit

Implicit Information
» Meaning of normal_ and exceptional behavior
» non null by default

» \invariant for(this) in requires, ensures, signals clauses

Turn into general behavior spec. case
1. Add to

» normal_behavior the clause signals (Throwable t) false;

FMSD: Proof Obligations CHALMERS/GU 181019 5/39

Normalisation:
Making Implicit Information Explicit

Implicit Information
» Meaning of normal_ and exceptional behavior
» non null by default

» \invariant for(this) in requires, ensures, signals clauses

Turn into general behavior spec. case
1. Add to

» normal_behavior the clause signals (Throwable t) false;
P> exceptional_behavior the clause ensures false;

FMSD: Proof Obligations CHALMERS/GU 181019 5/39

Normalisation:
Making Implicit Information Explicit

Implicit Information
» Meaning of normal_ and exceptional behavior
» non null by default

» \invariant for(this) in requires, ensures, signals clauses

Turn into general behavior spec. case
1. Add to

» normal_behavior the clause signals (Throwable t) false;
P> exceptional_behavior the clause ensures false;

2. Replace normal _behavior/exceptional behavior by behavior

FMSD: Proof Obligations CHALMERS/GU 181019 5/39

Normalisation:
Making Implicit Information Explicit

Implicit Information
» Meaning of normal_ and exceptional _behavior
» non null by default

» \invariant for(this) in requires, ensures, signals clauses

Making non null explicit in method specifications

1. Where nullable is absent, add o != null to preconditions

(for parameters?) and postconditions (for return values?).

E.g., for method void m(Object o) add requires o != null;
2. Thereafter add nullable, where absent,

to all parameter? and return type? declarations

“of reference type

v

FMSD: Proof Obligations CHALMERS/GU 181019 6 /39

Normalisation:
Making Implicit Information Explicit

Implicit Information
» Meaning of normal_ and exceptional _behavior
» non null by default

» \invariant for(this) in requires, ensures, signals clauses

Making \invariant for (this) explicit in method specifications

1. Add explicit \invariant_for (this) to non-helper method specs:
» requires \invariant_for(this);
» ensures \invariant_for(this);
> signals (Throwable t) \invariant for(this) ;

2. Thereafter add helper, where absent, to al/l methods

FMSD: Proof Obligations CHALMERS/GU 181019 6 /39

Normalisation: Example

/*@ public normal_behavior
@ requires c.id >= 0;
@ ensures \result == el)
@x/
public boolean addCategory(Category c) {

becomes

/*@ public behavior
@ requires c.id >= 0;

@ ensures \result == D I
@ signals (Throwable exc) false;
@x/

public boolean addCategory(Category c) {

FMSD: Proof Obligations CHALMERS/GU 181019 7/39

Normalisation: Example

/*@ public behavior
@ requires c.id >= 0;

@ ensures \result == D I
@ signals (Throwable exc) false;
ox/

public boolean addCategory(Category c) {
becomes

/*Q@ public behavior
@ requires c.id >= 0;
@ requires c !'= null;
@ ensures \result == (...);
@ signals (Throwable exc) false;
@x/
public boolean addCategory(/*@ nullable @x/ Category c) {

FMSD: Proof Obligations CHALMERS/GU 181019 8 /39

Normalisation: Example

/*@ public behavior

@ requires c.id >= 0;

@ requires c != null;

@ ensures \result == (...);

@ signals (Throwable exc) false;

@x/

public boolean addCategory(/+#@ nullable @/ Category c) {
becomes
/*Q@ public behavior

requires c.id >= 0;

requires c != null;

requires \invariant_for(this);
ensures \result == (...);

ensures \invariant for (this);
signals (Throwable exc) false;
signals (Throwable exc) \invariant for(this);
Qx*/
public /*@ helper @/
boolean addCategory(/*@ nullable @x/Category c) {
FMSD: Proof Obligations CHALMERS/GU 181010 9/ 39

@ 0 0 0 o B B

Normalisation

Next Normalisation Steps (Not detailed)

» Expanding pure modifier:
» add to each specification case

»> assignable \nothing;
> diverges false;

» remove pure

» Where clauses with defaults (e.g., diverges, assignable) are
absent, add explicit clauses

FMSD: Proof Obligations CHALMERS/GU 181019 10 / 39

Normalisation: Clause Contraction

Merge multiple clauses of the same kind into a single one of that kind.

For

/*@

c]
c]
c]
c]
c]
c]

instance,

public behavior
requires R1;
requires R2;

ensures
ensures
signals
signals

ox/

E1;
E2;
(T1 exc) 81;
(T2 exc) S82:

FMSD: Proof Obligations CHALMERS/GU

181019

11739

Normalisation: Clause Contraction

Merge multiple clauses of the same kind into a single one of that kind.

For instance,

/*@ public behavior
@ requires R1;

@ requires R2;

@ ensures E1l;

@ ensures E2;

@ signals (T1 exc) S1;
@ signals (T2 exc) S2:
Q@x/

/*@ public behavior

@ requires R1 && R2;

@ ensures E1 && E2;

@ signals (Throwable exc)

@ (exc instanceof T1 ==> S1)
@ &&

@ (exc instanceof T2 ==> S2);
@x/

FMSD: Proof Obligations

CHALMERS/GU 181019

11739

Translating JML into Intermediate Format

Intermediate format for contract of method m
(pre, post, div, var, mod)
with
» a precondition DL formula pre,
» a postcondition DL formula post,

» a divergence indicator div € { TOTAL, PARTIAL},

» a variant term var

» a modifies set mod, either of type LocSet or \strictly_nothing

FMSD: Proof Obligations CHALMERS/GU 181019 12 /39

Translating JML Expressions to DL-Terms:
Arithmetic Expressions

Translation replaces arithmetic JAVA operators by generalized operators
Generic towards various integer semantics (JAvA, Math).

Example:
“+" becomes “javaAddInt” or “javaAddLong”
“~" becomes “javaSubInt” or “javaSubLong"

FMSD: Proof Obligations CHALMERS/GU 181019 13 /39

Translating JML Expressions to DL-Terms:
The this Reference

The this reference, explicit or implicit, has only a meaning within a
program (refers to currently executing instance).
On logic level (outside the modalities) no such context exists.

this reference translated to a program variable (named by convention)
self

FMSD: Proof Obligations CHALMERS/GU 181019 14 /39

Translating JML Expressions to DL-Terms:
The this Reference

The this reference, explicit or implicit, has only a meaning within a
program (refers to currently executing instance).

On logic level (outside the modalities) no such context exists.

this reference translated to a program variable (named by convention)
self

e.g., given class

public class MyClass {
int f;

}

FMSD: Proof Obligations CHALMERS/GU 181019 14 /39

Translating JML Expressions to DL-Terms:
The this Reference

The this reference, explicit or implicit, has only a meaning within a
program (refers to currently executing instance).

On logic level (outside the modalities) no such context exists.

this reference translated to a program variable (named by convention)
self

e.g., given class

public class MyClass {
int f;

}

JML expressions £ and this.f
translated to
DL term select(heap, self, f), pretty-printed as self.f

FMSD: Proof Obligations CHALMERS/GU 181019 14 /39

Translating Boolean JML Expressions

First-order logic treated fundamentally different in JML and KeY logic

JML
» Formulas no separate syntactic category
> Instead: JAVA's boolean expressions extended with first-order

concepts (i.p. quantifiers)

Dynamic Logic
» Formulas and expressions completely separate
» true, false are formulas,
boolean constants TRUE, FALSE are terms
» Atomic formulas take terms as arguments; e.g.:
> x -y <5
> b = TRUE

181019

15 /39

FMSD: Proof Obligations CHALMERS/GU

Translating Boolean JML Expressions

F(v) — v = TRUE

F(o.£) = &(o.f) = TRUE
F(mQO) = E(m)() = TRUE
F(!'b-0) = ! F(b-0)

F(bo & b1) = F(b.0) & F(b.1)
F(o |l b.1) = F(b0) | F(b-1)
F(0 ==>b1) = F(b.0) -> F(b_1)
F(0 <==>b1) = F(b0) <> F(b-1)
F(e0 == e_1) = E(e0) = E(e-1)
F(e0 '= e 1) = 1(E(e-0) = &(e-1))
F(e0 >= e_1) = E(e_0) >= &£(e-1)

v/f/m() boolean variables/fields/pure methods
b_0, b_1 boolean JML expressions, e_ 0, e_.1 JML expressions
& translates JML expressions to DL terms

FMSD: Proof Obligations CHALMERS/GU 181019 16 / 39

F Translates boolean JML Expressions to Formulas

Quantified formulas over reference types:

F((\forall T x; e 0; e 1)) =
\forall T x; (
('x=null & =x.<created>

-> Fle-1))

TRUE & F(e.0))

F((\exists T x; e 0; e 1)) =
\exists T x; (
('x=null & x.<created>

& Fle1))

TRUE & F(e.0))

FMSD: Proof Obligations CHALMERS/GU 181019 17 /39

F Translates boolean JML Expressions to Formulas

Quantified formulas over primitive types, e.g., int

F((\forall int x; e 0; e 1)) =
\forall int x; ((inInt(x) & F(e0)) -> F(e-1))

F((\exists int x; e 0; e 1)) =
\exists int x; (inInt(x) & F(e0) & F(e-1))

inInt (similar inLong, inByte):
Predefined predicate symbol with fixed interpretation

Meaning: Argument is within the range of the Java int datatype.

FMSD: Proof Obligations CHALMERS/GU 181019 17 /39

Translating Class Invariants

F(\invariant_for(e)) = Object ::<inv>(heap,&(e))

> \invariant_for(e) translated to built-in predicate Object ::<inv>,
applied to heap and the translation of e

FMSD: Proof Obligations CHALMERS/GU 181019 18 /39

Translating Class Invariants

F(\invariant_for(e)) = Object ::<inv>(heap,&(e))

> \invariant_for(e) translated to built-in predicate Object ::<inv>,
applied to heap and the translation of e

> Object ::<inv> is considered a specification-only field <inv> of
class Object (inherited by all sub-types of Object)

FMSD: Proof Obligations CHALMERS/GU 181019 18 /39

Translating Class Invariants

F(\invariant_for(e)) = Object ::<inv>(heap,&(e))

> \invariant_for(e) translated to built-in predicate Object ::<inv>,
applied to heap and the translation of e

> Object ::<inv> is considered a specification-only field <inv> of
class Object (inherited by all sub-types of Object)

> Given that o is of type T, KeY can expand (during proof
construction) ‘Object ::<inv>(heap, 0)' to the invariant of T

FMSD: Proof Obligations CHALMERS/GU 181019 18 /39

Translating Class Invariants

F(\invariant_for(e)) = Object ::<inv>(heap,&(e))

> \invariant_for(e) translated to built-in predicate Object ::<inv>,
applied to heap and the translation of e

> Object ::<inv> is considered a specification-only field <inv> of
class Object (inherited by all sub-types of Object)

> Given that o is of type T, KeY can expand (during proof
construction) ‘Object ::<inv>(heap, 0)' to the invariant of T

» Object ::<inv>(heap,0) pretty printed as o.<inv>

FMSD: Proof Obligations CHALMERS/GU 181019 18 /39

Translating Class Invariants

F(\invariant_for(e)) = Object ::<inv>(heap,&(e))

> \invariant_for(e) translated to built-in predicate Object ::<inv>,
applied to heap and the translation of e

> Object ::<inv> is considered a specification-only field <inv> of
class Object (inherited by all sub-types of Object)

> Given that o is of type T, KeY can expand (during proof
construction) ‘Object ::<inv>(heap, 0)' to the invariant of T

v

Object ::<inv>(heap,0) pretty printed as o.<inv>

» Read ‘invariant of o’

FMSD: Proof Obligations CHALMERS/GU 181019 18 /39

Translating JML into Intermediate Format

Intermediate format for contract of method m
(pre, post, div, var, mod)
with
» a precondition DL formula pre ¢,
» a postcondition DL formula post ¢ 7

» a divergence indicator div € { TOTAL, PARTIAL},

» 3 variant term var

» a modifies set mod, either of type LocSet or \strictly_nothing

FMSD: Proof Obligations CHALMERS/GU 181019 19 /39

Translating JML into Intermediate Format

Intermediate format for contract of method m
(pre, post, div, var, mod)
with
» a precondition DL formula pre ¢,
» a postcondition DL formula post & almost,

» a divergence indicator div € { TOTAL, PARTIAL},

» a variant term var

» a modifies set mod, either of type LocSet or \strictly_nothing

FMSD: Proof Obligations CHALMERS/GU 181019 19 /39

Translation of Ensures Clauses

What is missing for ensures clauses?

FMSD: Proof Obligations CHALMERS/GU 181019 20 /39

Translation of Ensures Clauses

What is missing for ensures clauses?

» Translation of \result

> Translation of \old(.) expressions

FMSD: Proof Obligations CHALMERS/GU

181019

20 /39

Translation of Ensures Clauses

What is missing for ensures clauses?

» Translation of \result

> Translation of \old(.) expressions

Translating \result

For \result used in ensures clause of method T m(...):

E(\result) = result

where result € PVar of type T does not occur in the program.

FMSD: Proof Obligations CHALMERS/GU 181019 20 /39

Translating \o1a Expressions

\old(e) evaluates e in the prestate of the method
Accesses to heap must be evaluated w.r.t. to the 'old" heap

FMSD: Proof Obligations CHALMERS/GU 181019 21 /39

Translating \o1a Expressions

\old(e) evaluates e in the prestate of the method
Accesses to heap must be evaluated w.r.t. to the 'old" heap

1. Introduce a global program variables heapAtPre of type Heap
(Intention: heapAtPre refers to heap in method's pre-state)
2. Define:
5(\old(e)) — gheapAtPre(e)

heap
(&Y (e) replaces all occurrences of x in £(e) by y)

FMSD: Proof Obligations CHALMERS/GU 181019

21739

Translating \o1a Expressions

\old(e) evaluates e in the prestate of the method
Accesses to heap must be evaluated w.r.t. to the 'old" heap

1. Introduce a global program variables heapAtPre of type Heap
(Intention: heapAtPre refers to heap in method's pre-state)
2. Define:
5(\old(e)) — gheapAtPre(e)

heap
(&Y (e) replaces all occurrences of x in £(e) by y)

Example
.7'—(o.f == \old(o.f)+ 1) =

FMSD: Proof Obligations CHALMERS/GU 181019

21739

Translating \o1a Expressions

\old(e) evaluates e in the prestate of the method
Accesses to heap must be evaluated w.r.t. to the 'old" heap

1. Introduce a global program variables heapAtPre of type Heap
(Intention: heapAtPre refers to heap in method's pre-state)
2. Define:
5(\old(e)) — gheapAtPre(e)

heap
(&Y (e) replaces all occurrences of x in £(e) by y)

Example

.7'—(o.f == \old(o.f)+ 1) =
E(o.£f) = E(\old(o.£)+ 1) =

FMSD: Proof Obligations CHALMERS/GU 181019 21/39

Translating \o1a Expressions

\old(e) evaluates e in the prestate of the method
Accesses to heap must be evaluated w.r.t. to the 'old" heap

1. Introduce a global program variables heapAtPre of type Heap
(Intention: heapAtPre refers to heap in method's pre-state)
2. Define:
5(\old(e)) _ gheapAtPre(e)

— “heap
(&Y (e) replaces all occurrences of x in £(e) by y)

Example

.7'—(o.f == \old(o.f)+ 1) =
E(o.£f) = E(\old(o.£)+ 1) =
E(o.f) =E(N\old(o.£)) + £(1) =

FMSD: Proof Obligations CHALMERS/GU 181019 21/39

Translating \o1a Expressions

\old(e) evaluates e in the prestate of the method
Accesses to heap must be evaluated w.r.t. to the 'old" heap

1. Introduce a global program variables heapAtPre of type Heap
(Intention: heapAtPre refers to heap in method's pre-state)
2. Define:
5(\old(e)) _ gheapAtPre(e)

— “heap
(&Y (e) replaces all occurrences of x in £(e) by y)

Example

F(o.f == \old(o.f)+ 1) =
E(o.£f) = E(\old(o.£)+ 1) =
E(o.f) =E&(N\old(o.£)) + £(1) =

£(0.1) = Epaab™™™(0.8) +1 =

FMSD: Proof Obligations CHALMERS/GU 181019 21/39

Translating \o1a Expressions

\old(e) evaluates e in the prestate of the method
Accesses to heap must be evaluated w.r.t. to the 'old" heap

1. Introduce a global program variables heapAtPre of type Heap
(Intention: heapAtPre refers to heap in method's pre-state)
2. Define:
5(\old(e)) — gheapAtPre(e)

heap
(&Y (e) replaces all occurrences of x in £(e) by y)

Example

F(o.f == \old(o.f)+ 1) =

E(o.£) = E(\old(o.£)+ 1) =

E(o.f) =E&(N\old(o.£)) + £(1) =

£(0.1) = Epaab™™™(0.8) +1 =

select (heap, o, f) = select(heapAtPre, o, f) + 1 =

FMSD: Proof Obligations CHALMERS/GU 181019

21739

Translating \o1a Expressions

\old(e) evaluates e in the prestate of the method
Accesses to heap must be evaluated w.r.t. to the 'old" heap

1. Introduce a global program variables heapAtPre of type Heap
(Intention: heapAtPre refers to heap in method's pre-state)
2. Define:
5(\old(e)) — gheapAtPre(e)

heap
(&Y (e) replaces all occurrences of x in £(e) by y)

Example

F(o.f == \old(o.f)+ 1) =
E(o.£) = E(\old(o.£)+ 1) =
E(o.f) =E&(N\old(o.£)) + £(1) =
E(o.£) = ESBAFe(6 £) + 1 =

heap
select (heap, o, f) = select(heapAtPre, o, f) + 1 =
o.f = 0.f@heapAtPre + 1 (by pretty printing)
FMSD: Proof Obligations CHALMERS/GU 181019 21 /39

Translation of Ensures and Signals Clauses

Given the normalised JML contract

/*Q@ public behavior
e ...
@ ensures E;
@ signals (Throwable exc) S;
e ...
@x/

FMSD: Proof Obligations CHALMERS/GU 181019 22 /39

Translation of Ensures and Signals Clauses

Given the normalised JML contract

/*Q@ public behavior
e ...
@ ensures E;
@ signals (Throwable exc) S;
e ...
@x/

Define
fensures = F(E)
}—signals =]:(S)

FMSD: Proof Obligations CHALMERS/GU 181019 22 /39

Translation of Ensures and Signals Clauses

Given the normalised JML contract
/*Q@ public behavior
e ...
@ ensures E;
@ signals (Throwable exc) S;
e ...
@x/

Define
fensures — F(E)
}—signals =]:(S)

Recall (p.16) that S is either false, or it has the form
(exc instanceof ExcTypel ==> ExcPostl) && ...;

In the following, assume exc is fresh program variable of type Throwable

FMSD: Proof Obligations CHALMERS/GU 181019 22 /39

Combining Ensures and Signals to post

The DL formula post is then defined as

(exc = null = Fensures) A (exc # null = Fiignals)

FMSD: Proof Obligations CHALMERS/GU 181019 23 /39

Combining Ensures and Signals to post

The DL formula post is then defined as

(exc = null = Fensures) A (exc # null = Fiignals)

Important special case:
Normalisation of normal_behavior contract gives

signals (Throwable exc) false;

FMSD: Proof Obligations CHALMERS/GU 181019

23739

Combining Ensures and Signals to post

The DL formula post is then defined as

(exc = null = Fensures) A (exc # null = Fiignals)

Important special case:

Normalisation of normal_behavior contract gives

signals (Throwable exc) false;

In that case, post is:

(eXC - null — fensures) /\ (eXC # null — Fsigna]s)
(exc = null = Fensures) A (exc # null — F(false))
(exc = null = Fensures) A (exc # null — false)

() A

exc = null = Fensures exc = null
& exc=null A fensures

=
=
=

FMSD: Proof Obligations CHALMERS/GU 181019 23 /39

Translating JML into Intermediate Format

Intermediate format for contract of method m
(pre, post, div, var, mod)
with
» a precondition DL formula pre ¢,
» a postcondition DL formula post ¢,

» a divergence indicator div € { TOTAL, PARTIAL},

» a3 variant term var ,

» a modifies set mod, either of type LocSet or \strictly_nothing

FMSD: Proof Obligations CHALMERS/GU 181019 24 /39

Translating JML into Intermediate Format

Intermediate format for contract of method m

(pre, post, div, var, mod)
with

» a precondition DL formula pre

» a postcondition DL formula post

a divergence indicator div € { TOTAL, PARTIAL},

>
» a variant term var
»

a modifies set mod, either of type LocSet or \strictly_nothing

The Divergence Indicator

div =
TOTAL if normalised JML contract contains clause diverges false;
PARTIAL if normalised JML contract contains clause diverges true;

FMSD: Proof Obligations CHALMERS/GU 181019 24 /39

Translating JML into Intermediate Format

Intermediate format for contract of method m
(pre, post, div, var, mod)
with
» a precondition DL formula pre ¢,
» a postcondition DL formula post ¢,

» a divergence indicator div € { TOTAL, PARTIAL},

» a3 variant term var ,

» a modifies set mod, either of type LocSet or \strictly_nothing

FMSD: Proof Obligations CHALMERS/GU 181019 24 /39

Translating JML into Intermediate Format

Intermediate format for contract of method m
(pre, post, div, var, mod)
with
» a precondition DL formula pre ¢,
» a postcondition DL formula post ¢,

» a divergence indicator div € { TOTAL, PARTIAL},

> a variant term var (postponed to later lecture),

» a modifies set mod, either of type LocSet or \strictly_nothing

FMSD: Proof Obligations CHALMERS/GU 181019 24 /39

Translating Assignable Clauses:
The DL Type LocSet

Assignable clauses are translated to

a term of type LocSet or the special value \strictly_nothing

FMSD: Proof Obligations CHALMERS/GU 181019 25 /39

Translating Assignable Clauses:
The DL Type LocSet

Assignable clauses are translated to

a term of type LocSet or the special value \strictly_nothing

Intention: A term of type LocSet represents a set of locations

Definition (Locations)
A location is a tuple (o, f) with o € DOJect f ¢ pField

FMSD: Proof Obligations CHALMERS/GU 181019 25 /39

The DL Type LocSet

Predefined type with D(LocSet) = 2Location
and the functions (all with result type LocSet):

empty
alllocs

singleton(Object,Field)
union(LocSet, LocSet)
intersect(LocSet,LocSet)
allFields(Object)
allObjects(Field)

arrayRange(Object, int, int)

empty set of locations: Z(empty) = ()
set of all locations, i.e., Z(allLocs) =
{(d, f)|f.a. d € DYIect £ ¢ pFisld)

singleton set

set of all locations for the given object
set of all locations for the given field;

e.g., {(d,f)|f.a. d € DOPiect}

set representing all array locations in

the specified range (both inclusive)

FMSD: Proof Obligations

CHALMERS/GU 181019

26 / 39

Translating Assignable Clauses—Example

Example

assignable \everything;

is translated into the DL term

FMSD: Proof Obligations

CHALMERS/GU

181019

277739

Translating Assignable Clauses—Example

Example

assignable \everything;

is translated into the DL term

alllocs

FMSD: Proof Obligations CHALMERS/GU 181019

277739

Translating Assignable Clauses—Example

Example

assignable \everything;

is translated into the DL term

alllocs

Example

assignable this.next, this.content[5..9];

is translated into the DL term

FMSD: Proof Obligations CHALMERS/GU 181019 27 /39

Translating Assignable Clauses—Example

Example

assignable \everything;

is translated into the DL term

alllocs

Example

assignable this.next, this.content[5..9];

is translated into the DL term

union(singleton(self,next),
arrayRange(self.content, 5, 9))

FMSD: Proof Obligations CHALMERS/GU 181019

277739

Translating JML into Intermediate Format

Intermediate format for contract of method m
(pre, post, div, var, mod)
with
» a precondition DL formula pre ¢,
» a postcondition DL formula post ¢,

» a divergence indicator div € { TOTAL, PARTIAL} ¢,

> a variant var a term of type any (postponed),

» a modifies set mod, either of type LocSet or \strictly_nothing

FMSD: Proof Obligations CHALMERS/GU 181019 28 /39

From JML Contracts via Intermediate Format
to Proof Obligations (PO)

public class A {
/*@ public normal_behavior
@ requires <Precondition>;
@ ensures <Postcondition>;
Q@ assignable <locations>;

Intermediate Format
(pre, post, div, var, mod)

Q@x/ o
public int m(params) {..} <$Op
¥ Ge,oe'
QO
Proof obligation as DL formula
pre —
(this.m(params) ;)

(post A frame)

FMSD: Proof Obligations CHALMERS/GU 181019 29 /39

Generating a PO from the Intermediate Format:
Idea

Given intermediate format of contract of m implemented in class C:

(pre, post, TOTAL, var, mod)

uonesdudn Od

pre — (self .m(args))(post A frame)

correctness of
assignable

FMSD: Proof Obligations CHALMERS/GU 181019 30/39

Generating a PO from the Intermediate Format:
Idea

Given intermediate format of contract of m implemented in class C:

(pre, post, TOTAL, var, mod)

uonesdudn Od

pre — (self .m(args))(post A frame)

correctness of
assignable

In case of div = PARTIAL, box modality is used

FMSD: Proof Obligations CHALMERS/GU 181019 30/39

Generating a PO from Intermediate Format:
Method Identification

pre — (self.m(args))(post A frame)

FMSD: Proof Obligations CHALMERS/GU 181019 31/39

Generating a PO from Intermediate Format:
Method Identification

pre — (self.m(args))(post A frame)

» Dynamic dispatch: self.m(...) causes split into all possible
implementations

FMSD: Proof Obligations CHALMERS/GU 181019

31739

Generating a PO from Intermediate Format:
Method ldentification

pre — (self.m(args))(post A frame)

» Dynamic dispatch: self.m(...) causes split into all possible
implementations

» Special statement Method Body Statement:
m(args)@C

Meaning: implementation of m in class C

FMSD: Proof Obligations CHALMERS/GU 181019

31739

Generating a PO from Intermediate Format:
Exceptions

pre — (self.m(args)@C)(post A frame)
Postcondition post states either

» that no exception is thrown or
P that in case of an exception the exceptional postcondition holds

but: (throw exc;)y is trivially false

FMSD: Proof Obligations CHALMERS/GU 181019 32/39

Generating a PO from Intermediate Format:
Exceptions

pre — (self.m(args)@C)(post A frame)
Postcondition post states either

» that no exception is thrown or
P that in case of an exception the exceptional postcondition holds

but: (throw exc;)y is trivially false

How to refer to an exception in post-state?

FMSD: Proof Obligations CHALMERS/GU 181019 32/39

Generating a PO from Intermediate Format:
Exceptions

pre — (self.m(args)@C)(post A frame)
Postcondition post states either
» that no exception is thrown or
P that in case of an exception the exceptional postcondition holds
but: (throw exc;)y is trivially false
How to refer to an exception in post-state?

pre —
exc = null;
try {
self.m(args)@C >(post A frame)

} catch (Throwable e){exc = e;}

Recall: generation of post (p.28) uses program variable exc

FMSD: Proof Obligations CHALMERS/GU 181019 32/39

The Generic Precondition genPre

pre — (exc=null; try {self.m(args)@C} catch ...)(post A frame)

is still not complete.

FMSD: Proof Obligations CHALMERS/GU 181019 33 /39

The Generic Precondition genPre

pre — (exc=null; try {self.m(args)@C} catch ...)(post A frame)
is still not complete.

Additional properties (known to hold in Java, but not in DL), e.g.,
» this is not null
> created objects can only point to created objects (no dangling
references)
> integer parameters have correct range

FMSD: Proof Obligations CHALMERS/GU 181019 33 /39

The Generic Precondition genPre

pre — (exc=null; try {self.m(args)@C} catch ...)(post A frame)
is still not complete.

Additional properties (known to hold in Java, but not in DL), e.g.,
» this is not null
> created objects can only point to created objects (no dangling
references)

P integer parameters have correct range
> ..

Need to make these assumption on initial state explicit in DL.

FMSD: Proof Obligations CHALMERS/GU 181019 33 /39

The Generic Precondition genPre

pre — (exc=null; try {self.m(args)@C} catch ...)(post A frame)
is still not complete.

Additional properties (known to hold in Java, but not in DL), e.g.,
» this is not null
> created objects can only point to created objects (no dangling
references)
> integer parameters have correct range

> ..
Need to make these assumption on initial state explicit in DL.
Idea: Formalise assumption as additional precondition genPre

(genPre N pre) —
(exc=null; try {self.m(args)@C} catch ...)(post A frame)

FMSD: Proof Obligations CHALMERS/GU 181019 33 /39

The Generic Precondition genPre (background info)

genPre := wellFormed(heap)
A self # null
N self. <created> = TRUE
A C :: exactInstance(self)

A paramsinRange

» wellFormed(h): predefined predicate;
true iff. h is regular Java heap

> C: exactInstance(o): predefined predicate;
true iff. o has exact type C (not just subtype of C)

» paramsinRange formula stating that method arguments are in range

FMSD: Proof Obligations CHALMERS/GU 181019 34 /39

The Generic Precondition genPre

(genPre N pre) —
(exc=null; try {self.m(args)@C} catch ...)(post A frame)

is still not complete.

» Need to refer to prestate in post, e.g. for old-expressions

FMSD: Proof Obligations CHALMERS/GU 181019 35 /39

The Generic Precondition genPre

(genPre N pre) —
(exc=null; try {self.m(args)@C} catch ...)(post A frame)

is still not complete.

» Need to refer to prestate in post, e.g. for old-expressions

(genPre N pre) — {heapAtPre := heap}
(exc=null; try {self.m(args)@C} catch ...)(post A frame)

Recall: heapAtPre was used in translation of \old, p.26

FMSD: Proof Obligations CHALMERS/GU 181019 35 /39

Generating a PO from Intermediate Format:
The frame DL Formula

(genPre N pre) — {heapAtPre := heap}
<exc=nu11; try {self.m(args)} catch ... >
(post A frame)

If mod = \strictly_nothing then frame is defined as:

Vo;Vf;(o.f = o.f@heapAtPre)

FMSD: Proof Obligations CHALMERS/GU 181019

36 /39

Generating a PO from Intermediate Format:
The frame DL Formula

(genPre N pre) — {heapAtPre := heap}
(exc=null; try {self.m(args)} catch ...)
(post A frame)

If mod is a location set, then frame is defined as:

Vo;Vf; ((o,f) € {heap := heapAtPre}mod
V o.<created>@heaptAtPre = FALSE
V o.f = 0.f@heapAtPre)

FMSD: Proof Obligations CHALMERS/GU 181019

37739

Generating a PO from Intermediate Format:
The frame DL Formula

(genPre N pre) — {heapAtPre := heap}
(exc=null; try {self.m(args)} catch ...)
(post A frame)

If mod is a location set, then frame is defined as:

Vo;Vf; ((o,f) € {heap := heapAtPre}mod
V o.<created>@heaptAtPre = FALSE
V o.f = 0.f@heapAtPre)

Says that every location (o, f) either
> belongs to the modifies set (evaluated in the pre-state), or
> was not (yet) created before the method invocation, or

» holds the same value before and after the method execution

FMSD: Proof Obligations CHALMERS/GU 181019

37739

Generating a PO from Intermediate Format:
Result Value

(genPre N pre) — {heapAtPre := heap}
(exc=null; try {self.m(args)} catch ...)
(post A frame)
is still not complete.

» For non-void methods, need to refer to result in post

FMSD: Proof Obligations CHALMERS/GU 181019

38739

Generating a PO from Intermediate Format:
Result Value

(genPre N pre) — {heapAtPre := heap}
(exc=null; try {self.m(args)} catch)
(post A frame)

is still not complete.
» For non-void methods, need to refer to result in post

)

(genPre N pre) — {heapAtPre := heap}
(exc=null; try {result = self.m(args)} catch .
(post A frame)

Recall: \result was translated to program variable result, see p.25
38 /39

181019

CHALMERS/GU

FMSD: Proof Obligations

FMSD: Proof Obligations CHALMERS/GU 181019 39 /39

	Proof Obligations
	From JML Contracts to Intermediate Format

