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JML Moaodifiers

JML extends the JAvA modifiers by additional modifiers J

The most important ones are:
spec_public

pure

nullable

non_null

vVvyVvyyvyy

helper
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JML Modifiers: spec_public

In enterPIN example, pre/postconditions made heavy use of class fields
But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public
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JML Modifiers: spec_public

In enterPIN example, pre/postconditions made heavy use of class fields
But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public
» Keep visibility of JAVA fields private/protected

» |If needed, make them public only in specification by spec_public
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JML Modifiers: spec_public

In enterPIN example, pre/postconditions made heavy use of class fields
But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public
> Keep visibility of JAVA fields private/protected
» |If needed, make them public only in specification by spec_public

private /*@ spec_public @x/ BankCard insertedCard = null;

private /*@ spec_public @+*/ int wrongPINCounter = 0;

private /*@ spec_public ©@x/ boolean customerAuthenticated
= false;
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JML Modifiers: spec_public

In enterPIN example, pre/postconditions made heavy use of class fields
But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public
> Keep visibility of JAVA fields private/protected
» |If needed, make them public only in specification by spec_public

private /*@ spec_public @x/ BankCard insertedCard = null;

private /*@ spec_public @+*/ int wrongPINCounter = 0;

private /*@ spec_public ©@x/ boolean customerAuthenticated
= false;

(Different solution: use specification-only fields; not covered in this course, but see
Sect. 7.7 in [JML Tutorial], see Literature slide.)
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JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
ol.equals(02) li.contains(elem) lil.max() < 1i2.min()

But: specifications must not themselves change the state!
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JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
ol.equals(02) li.contains(elem) lil.max() < 1i2.min()

But: specifications must not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it always terminates and has no visible side effects
on existing objects.
A method is strictly pure if it is pure and does not create new objects.
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JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
ol.equals(02) li.contains(elem) lil.max() < 1i2.min()

But: specifications must not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it always terminates and has no visible side effects
on existing objects.
A method is strictly pure if it is pure and does not create new objects.

JML expressions may contain calls to (strictly) pure methods. J

Pure methods are annotated by pure or strictly_pure resp.

public /*@ pure @*/ int max() { ... }
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JML Modifiers: Purity Cont’d

v

pure puts obligation on implementor not to cause side effects
It is possible to formally verify that a method is pure

pure implies assignable \nothing;
(may create new objects)

assignable \strictly_nothing;
expresses that no new objects are created

Assignable clauses are local to a specification case

pure is global to the method
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JML Expressions # Java Expressions

boolean JML Expressions (to be completed)

» Each side-effect free boolean JAVA expression is a boolean JML
expression

» If a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
> ta (“nota”)
> a&b (“aandb”)
> allb (“aord’)
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JML Expressions # Java Expressions

boolean JML Expressions (to be completed)

» Each side-effect free boolean JAVA expression is a boolean JML
expression

» If a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
> ta (“nota”)
> a&b (“aandb”)
> allb (“aord’)
a ==>b (“aimpliesd”)
a <==> b (“ais equivalent to b")

VVVVYVYY
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Beyond boolean JAavA expressions

How to express the following?

» An array arr only holds values < 2.
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Beyond boolean JAavA expressions

How to express the following?

» An array arr only holds values < 2.

» The variable m holds the maximum entry of array arr.
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Beyond boolean JAavA expressions

How to express the following?

» An array arr only holds values < 2.
» The variable m holds the maximum entry of array arr.

> All Account objects in the array allAccounts are stored at the
index corresponding to their respective accountNumber field.

FMSD: Java Modeling Language CHALMERS/GU 181005 7/62



Beyond boolean JAavA expressions

How to express the following?

v

An array arr only holds values < 2.
The variable m holds the maximum entry of array arr.

All Account objects in the array allAccounts are stored at the
index corresponding to their respective accountNumber field.

All instances of class BankCard have different cardNumbers.
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First-order Logic in JML Expressions

JML boolean expressions extend JAVA boolean expressions by:

» implication

» equivalence
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First-order Logic in JML Expressions

JML boolean expressions extend JAVA boolean expressions by:

» implication
» equivalence

» quantification
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boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

» each side-effect free boolean JAVA expression is a boolean JML
expression

» if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
> !'a (“nota")
ak&b (“aandb”’)
all b ("aorb’)
a ==>b (“aimpliesb”)
a <==> b (“ais equivalent to b")
(\forall t x; a) (“for all x of type t, a holds")

| 4
>
>
>
>
> (\exists t x; a) (“there exists x of type t such that a")
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boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

» each side-effect free boolean JAVA expression is a boolean JML
expression

» if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
> !'a (“nota")

ak&b (“aandb”’)

all b ("aorb’)

a ==>b (“aimpliesb”)

a <==> b (“ais equivalent to b")

(\forall t x; a) (“for all x of type t, a holds")

(\exists t x; a) (‘“there exists x of type t such that a")

(\forall t x; a; b) (“for all x of type t fulfilling a, b holds")

(\exists t x; a; b) (“there exists an x of type t fulfilling a,
such that b")

VVVVVYVYVYY
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JML Quantifiers

in
(\forall t x; a; b)
(\exists t x; a; b)

a is called “range predicate”
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JML Quantifiers
in
(\forall t x; a; b)

(\exists t x; a; b)

a is called “range predicate”

those forms are redundant:

(\forall t x; a; b)
equivalent to
(\forall t x; a ==> b)

(\exists t x; a; b)
equivalent to
(\exists t x; a && b)
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Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:

a is used to restrict range of x further than t
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Pragmatics of Range Predicates
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Pragmatics of range predicate:
a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:
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Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:
a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j;
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Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:
a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; O0<=i && i<j && j<10;

FMSD: Java Modeling Language CHALMERS/GU 181005

11/62



Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:
a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])
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Using Quantified JML expressions

How to express:

» An array arr only holds values < 2.
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Using Quantified JML expressions

How to express:

» An array arr only holds values < 2.

(\forall int i;
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Using Quantified JML expressions

How to express:

» An array arr only holds values < 2.

(\forall int i; O <= i && i < arr.length;
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Using Quantified JML expressions

How to express:

» An array arr only holds values < 2.

(\forall int i; O <= i && i < arr.length; arr[i] <= 2)
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Using Quantified JML expressions

How to express:

» The variable m holds the maximum entry of array arr.
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Using Quantified JML expressions

How to express:

» The variable m holds the maximum entry of array arr.

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])
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Using Quantified JML expressions

How to express:

» The variable m holds the maximum entry of array arr.

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

is this enough?
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Using Quantified JML expressions

How to express:

» The variable m holds the maximum entry of array arr.

(\forall int i; 0 <= 1 && i < arr.length; m >

arr[i])

(\exists int i; 0 <= i && i < arr.length; m == arr[i])
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Using Quantified JML expressions

How to express:

» The variable m holds the maximum entry of array arr.

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])
arr.length > 0 ==
(\exists int i; 0 <= i && i < arr.length; m == arr[i])
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Using Quantified JML expressions

How to express:

» All Account objects in the array accountArray are stored at the
index corresponding to their respective accountNumber field.
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Using Quantified JML expressions

How to express:

» All Account objects in the array accountArray are stored at the
index corresponding to their respective accountNumber field.

(\forall int i; 0 <= i && i < maxAccountNumber;
accountArray[i] .accountNumber == i )
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Using Quantified JML expressions

How to express:

» All existing instances of class BankCard have different cardNumbers.
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Using Quantified JML expressions

How to express:

» All existing instances of class BankCard have different cardNumbers.

(\forall BankCard pl, p2;
pl !'= p2 ==> pl.cardNumber != p2.cardNumber)
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Generalized Quantifiers

JML offers also generalized quantifiers:
> \max
> \min
» \product
> \sum

returning the maximum, minimum, product, or sum of the values of a
given expressions (with variables in a given range)
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Generalized Quantifiers

JML offers also generalized quantifiers:
> \max
> \min
» \product
> \sum

returning the maximum, minimum, product, or sum of the values of a
given expressions (with variables in a given range)

Examples (with their value):

(\sum int i; 0 <= i && i < 5; i) =0+1+2+3+4

FMSD: Java Modeling Language CHALMERS/GU 181005 16 / 62



Generalized Quantifiers

JML offers also generalized quantifiers:

> \max
> \min
» \product
> \sum
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given expressions (with variables in a given range)

Examples (with their value):
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Generalized Quantifiers

JML offers also generalized quantifiers:
> \max
> \min
» \product
> \sum

returning the maximum, minimum, product, or sum of the values of a
given expressions (with variables in a given range)

Examples (with their value):
(\sum int i; 0 <= i && i < 5; i) =0+1+2+3+4
(\product int i; 0 < i && i < 5; (2*i)+1) =3%xb5%x7%9
(\max int i; 0 <= i && i < 5; i) =4
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Generalized Quantifiers

JML offers also generalized quantifiers:

> \max
> \min
» \product
> \sum

returning the maximum, minimum, product, or sum of the values of a

given expressions (with variables in a given range)
Examples

(\sum int i; 0 <= i && i < 5; i)

(\product int i; 0 < i && i < 5; (2*i)+1)

(\max int i; 0 <= i && i < 5; i)
(\min int i; 0 <= i && i < 5; i-1)

(with their value):

=04+1+2+3+4
=3%x5x7x%x9

=4

=-1
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Example: Specifying LimitedIntegerSet

public class LimitedIntegerSet {

public

final int limit;

private int arr([];
private int size = 0;

public

this.
this.

X
public

public

public

LimitedIntegerSet(int limit) {
limit = limit;

arr = new int[limit];

boolean add(int elem) {/*...*/}

void remove(int elem) {/*...x*/}

boolean contains(int elem) {/*...*/}

// other methods
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Prerequisites: Adding Specification Modifiers

public class LimitedIntegerSet {
public final int limit;
private /*@ spec_public @/ int arr[];
private /*@ spec_public @/ int size = 0;

public LimitedIntegerSet(int limit) {
this.limit = limit;
this.arr = new int[limit];
}
public boolean add(int elem) {/*...*/}
public void remove(int elem) {/*...*/}

public /*@ pure ©@*/ boolean contains(int elem) {/*...*/}

// other methods
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Specifying contains ()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}
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Specifying contains ()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains is pure: no effect on the state + terminates normally
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Specifying contains ()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains is pure: no effect on the state + terminates normally

How to specify result value?
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Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior
@ ensures \result ==
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Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior
@ ensures \result == (\exists int i;
Q
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Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;
Q 0 <=1 && i < size;
Q
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Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;

Q 0 <=1 && i < size;
@ arr[i] == elem);
©ex/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}
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SpECifyil’lg add() (spec-casel) — new element can be added

/*@ public normal_behavior
requires size < limit && !contains(elem);
ensures \result == true;
ensures contains(elem);
ensures (\forall int e;
e != elem;
contains(e) <==> \old(contains(e)));
ensures size == \old(size) + 1;

also

@ © © © © © 0 © 0 ©

<spec-case2>
@x/
public boolean add(int elem) {/*...*/}
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SpECifyil’lg add () (spec-case2) — new element cannot be added

/*@ public normal_behavior
<spec-casel>

also

requires (size == limit) || contains(elem);
ensures \result == false;
ensures (\forall int e;
contains(e) <==> \old(contains(e)));
ensures size == \old(size);
@x*/
public boolean add(int elem) {/*...*/}

e
@
e
@
@
@ public normal_behavior
@
@
@
@
@
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Specifying remove ()

/*@ public normal_behavior

@ ensures
ensures

c]

(¢l

(C]

@ ensures
(¢]

@ ensures
(¢]

ex/
public void

lcontains(elem) ;
(\forall int e;

e != elem;

contains(e) <==> \old(contains(e)));
\old(contains(elem))
==> gize == \old(size) - 1;
I\old(contains(elem))
==> gize == \old(size);

remove (int elem) {/*...*/}
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Specifying Data Constraints

So far:
JML used to specify method specifics.
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Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on class data?
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Specifying Data Constraints

So far:
JML used to specify method specifics.
How to specify constraints on class data, e.g.:
> consistency of redundant data representations (like indexing)

> restrictions for efficiency (like sortedness)
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Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on class data, e.g.:
> consistency of redundant data representations (like indexing)

> restrictions for efficiency (like sortedness)

Data constraints are global: all methods must preserve them
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Consider LimitedSorted IntegerSet

public class LimitedSortedIntegerSet {

public

final int limit;

private int arr([];
private int size = 0;

public

this.
this.

X
public

public

public

LimitedSortedIntegerSet (int limit) {
limit = limit;

arr = new int[limit];

boolean add(int elem) {/*...*/}

void remove(int elem) {/*...x*/}

boolean contains(int elem) {/*...*/}

// other methods
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Consequence of Sortedness for Implementer

method contains

» Can employ binary search (logarithmic complexity)
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Consequence of Sortedness for Implementer

method contains
» Can employ binary search (logarithmic complexity)
> Why is that sufficient?
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Consequence of Sortedness for Implementer
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method add

» Search first index with bigger element, insert just before that
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Consequence of Sortedness for Implementer

method contains
» Can employ binary search (logarithmic complexity)
> Why is that sufficient?

» We assume sortedness in prestate

method add
» Search first index with bigger element, insert just before that
» Thereby try to establish sortedness in poststate
> Why is that sufficient?

> We assume sortedness in prestate

method remove

» (accordingly)
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Specifying Sortedness with JML

Recall class fields:

public final int limit;
private int arr[];
private int size = 0;

Sortedness as JML expression:
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Specifying Sortedness with JML

Recall class fields:

public final int limit;
private int arr[];
private int size = 0;

Sortedness as JML expression:

(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[il)
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Specifying Sortedness with JML

Recall class fields:

public final int limit;
private int arr[];
private int size = 0;

Sortedness as JML expression:

(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[il)

(What's the value of this if size < 27)
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Specifying Sortedness with JML

Recall class fields:

public final int limit;
private int arr[];
private int size = 0;

Sortedness as JML expression:
(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[i])

(What's the value of this if size < 27)

But where in the specification does the red expression go?
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Specifying Sorted contains ()

Can assume sortedness of prestate
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Specifying Sorted contains ()

Can assume sortedness of prestate

/*@ public normal_behavior
@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[il]);
@ ensures \result == (\exists int i;

Q@ 0 <=1 && i < size;
@ arr[i] == elem);
ex/

public /*@ pure ©*/ boolean contains(int elem) {/*...*/}
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Specifying Sorted contains ()

Can assume sortedness of prestate

/*@ public normal_behavior
@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[il]);
@ ensures \result == (\exists int i;

Q@ 0 <=1 && i < size;
@ arr[i] == elem);
ex/

public /*@ pure ©*/ boolean contains(int elem) {/*...*/}

contains () is pure
= sortedness of poststate trivially ensured
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Specifying Sorted remove ()

Can assume sortedness of prestate
Must ensure sortedness of poststate

/*@ public normal_behavior

ensures

ensures

ensures

ensures

ensures

©@ 0 © 0 0 0 o o o o b ©

ex/
public void

requires (\forall int i; O < i && i < size;

arr[i-1] <= arr[il);
lcontains(elem) ;
(\forall int e;
e != elem;
contains(e) <==> \old(contains(e)))
\old(contains(elem))
==> size == \old(size) - 1;
'\old(contains(elem))
==> size == \old(size);
(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[i]);

remove (int elem) {/*...*/}

I

FMSD: Java Modeling Language CHALMERS/GU 181005

29 /62



Specifying Sorted add() (spec-casel) - can add

/*@ public normal_behavior
@ requires (\forall int i; 0 < i && i < size;
G] arr[i-1] <= arrl[il);
@ requires size < limit && !contains(elem);
@ ensures \result == true;
@ ensures contains(elem);
@ ensures (\forall int e;
Q e != elem;
@ contains(e) <==> \old(contains(e)))
@ ensures size == \old(size) + 1;
@ ensures (\forall int i; 0 < i && i < size;
Gl arr[i-1] <= arr[il);
Q
@ also <spec-case2>
ex/

public boolean add(int elem) {/*...*/}

3
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Specifying Sorted add() (spec-case2) — cannot add

/*@ public normal_behavior

Q

Q@ <spec-casel> also

Q

@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

Q arr[i-1] <= arrl[il);
@ requires (size == limit) || contains(elem);

@ ensures \result == false;

@ ensures (\forall int e;

@ contains(e) <==> \old(contains(e)));
@ ensures size == \old(size);

@ ensures (\forall int i; 0 < i && i < size;

G] arr[i-1] <= arr[il);
@x/

public boolean add(int elem) {/*...*/}
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Factor out Sortedness

So far: ‘sortedness’ has swamped our specification

FMSD: Java Modeling Language CHALMERS/GU 181005 32/62



Factor out Sortedness

So far: ‘sortedness’ has swamped our specification
We can do better, using

JML Class Invariant

construct for specifying data constraints centrally
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Factor out Sortedness

So far: ‘sortedness’ has swamped our specification
We can do better, using

JML Class Invariant

construct for specifying data constraints centrally

1. delete blue and red parts from previous slides

2. add ‘sortedness’ as JML class invariant instead
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JML Class Invariant

public class LimitedSortedIntegerSet {
public final int limit;

/*Q@ private invariant (\forall int i;

Q 0 < i && i < size;
@ arr[i-1] <= arr[il);
©x/

private /*Q@ spec_public O/ int arr[];
private /*@ spec_public @*/ int size = 0;

// constructor and methods,
// without sortedness in pre/postconditions
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JML Class Invariant

» JML class invariant can be placed anywhere in class
» (Contrast: method contract must be in front of its method)

» Custom to place class invariant in front of fields it talks about
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Instance vs. Static Invariants

instance invariants
Can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘this’, like ‘this.size’)
JML syntax: instance invariant
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Instance vs. Static Invariants

instance invariants
Can refer to instance fields of this object
(unqualified, like ‘size’, or qualified with ‘this’, like ‘this.size’)
JML syntax: instance invariant
static invariants

Cannot refer to instance fields of this object
JML syntax: static invariant
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Instance vs. Static Invariants

instance invariants
Can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘this’, like ‘this.size’)
JML syntax: instance invariant

static invariants
Cannot refer to instance fields of this object
JML syntax: static invariant

both

Can refer to

— static fields

— instance fields of objects other than this, like ‘o.size’
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Instance vs. Static Invariants

instance invariants
Can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘this’, like ‘this.size’)

JML syntax: instance invariant

static invariants
Cannot refer to instance fields of this object
JML syntax: static invariant

both

Can refer to

— static fields

— instance fields of objects other than this, like ‘o.size’

In classes, instance is default. In interfaces, static is default.
If instance or static is omitted for invariants
= instance invariant in classes, static invariant in interfaces
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Static JML Invariant Example

public class BankCard {
/*@ public static invariant
@ (\forall BankCard pl, p2;
¢ pl != p2 ==> pl.cardNumber != p2.cardNumber)
Qx/

private /*@ spec_public @x/ int cardNumber;

// rest of class follows
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Class Invariants: Intuition, Notions & Scope

Class invariants must be
P established by

> constructors (instance invariants)
> static initialisation (static invariants)
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Class Invariants: Intuition, Notions & Scope

Class invariants must be
P established by
> constructors (instance invariants)
> static initialisation (static invariants)
» preserved by all (non-helper) methods

> assumed in prestate (implicit preconditions)
> ensured in poststate (implicit postconditions)
» can be violated during method execution
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Class Invariants: Intuition, Notions & Scope

Class invariants must be
P established by

> constructors (instance invariants)
> static initialisation (static invariants)

» preserved by all (non-helper) methods

> assumed in prestate (implicit preconditions)
> ensured in poststate (implicit postconditions)
» can be violated during method execution

Scope of invariant
» not limmited to it's class/interface
» depends on visibility (private vs. public) of local state

= An invariant must not be violated by any code in any class
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The JML modifier: helper

JML helper methods

T /*@ helper ©*/ m(T pl, ..., T pn)

Neither assumes nor ensures any invariant by default.
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The JML modifier: helper

JML helper methods

T /*@ helper ©*/ m(T pl, ..., T pn)

Neither assumes nor ensures any invariant by default.

Pragmatics & Usage examples of helper methods
» Helper methods are usually private.

» Used for structuring implementation of public methods
(e.g. factoring out reoccurring steps)

» Used in constructors
(where invariants have not yet been established)
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The JML modifier: helper

JML helper methods

T /*@ helper ©*/ m(T pl, ..., T pn)
Neither assumes nor ensures any invariant by default.

Pragmatics & Usage examples of helper methods
» Helper methods are usually private.
» Used for structuring implementation of public methods
(e.g. factoring out reoccurring steps)
» Used in constructors
(where invariants have not yet been established)

Additional purpose in KeY context

Normal form, used when translating JML to Dynamic Logic.
(See later lecture)
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Referring to Invariants

Aim: refer to invariants of arbitrary objects in JML expressions. J
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Referring to Invariants

Aim: refer to invariants of arbitrary objects in JML expressions. J

» \invariant_for(o) is a boolean JML expression
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Referring to Invariants

Aim: refer to invariants of arbitrary objects in JML expressions. J

» \invariant_for(o) is a boolean JML expression

» \invariant_for (o) is true in a state where all invariants of o
are true, otherwise false
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Referring to Invariants

Aim: refer to invariants of arbitrary objects in JML expressions. J

» \invariant_for(o) is a boolean JML expression

» \invariant_for (o) is true in a state where all invariants of o
are true, otherwise false

Pragmatics:

» Use \invariant_for(this) when local invariant is intended
but not implicitly given, e.g., in specification of helper methods.
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Referring to Invariants

Aim: refer to invariants of arbitrary objects in JML expressions. J

» \invariant_for(o) is a boolean JML expression

» \invariant_for (o) is true in a state where all invariants of o
are true, otherwise false

Pragmatics:
» Use \invariant_for(this) when local invariant is intended
but not implicitly given, e.g., in specification of helper methods.
» Put \invariant_for (o), where o # this, into local

requires/ensures clause or invariant
to assume/guarantee or maintain invariant of o locally
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Examples of Referring to Invariants
public class Database {

/*@ public normal_behavior
0@ requires ...;
@ ensures ...;
Qx/
public void add (Set newItems) {
<rough adding at first> ...;
cleanUp();
}
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Examples of Referring to Invariants
public class Database {

/*@ public normal_behavior
0@ requires ...;
@ ensures ...;
Qx/
public void add (Set newItems) {
<rough adding at first> ...;
cleanUp();
}

/*@ private normal_behavior
@ ensures \invariant_for(this);
Qx/
private /*@ helper @*/ void cleanUp() { ... }
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Examples of Referring to Invariants

Example
If all (non-helper) methods of ATM shall maintain invariant of

object stored in insertedCard:

public class ATM {

/*Q@ private invariant
@ insertedCard !'= null ==> \invariant_for(insertedCard);

Qx/
private BankCard insertedCard;

181005 41/ 62
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Examples of Referring to Invariants

Alternatively more fine grained:
Example

If method withdraw of ATM relies on invariant of insertedCard:
public class ATM {

private BankCard insertedCard;

/*@ public normal_behavior
@ requires \invariant_for(insertedCard);
0@ requires <other preconditions>;
@ ensures <postcondition>;
@x/
public int withdraw (int amount) { ... }
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Notes on \invariant_for

» For non-helper methods, \invariant_for (this)
implicitly added to pre- and postconditions!
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Notes on \invariant_for

» For non-helper methods, \invariant_for (this)
implicitly added to pre- and postconditions!

» \invariant_for (expr) returns true iff expr satisfies the
invariant of its static type:

» Given <class B extends A
> After executing initialiser A o = new B();
\invariant_for (o) is true when o satisfies invariants of A
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Notes on \invariant_for

» For non-helper methods, \invariant_for (this)
implicitly added to pre- and postconditions!

» \invariant_for (expr) returns true iff expr satisfies the
invariant of its static type:

» Given <class B extends A
> After executing initialiser A o = new B();
\invariant_for (o) is true when o satisfies invariants of A ,

\invariant_for ((B)o) is true when o satisfies invariants of B.
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Notes on \invariant_for

» For non-helper methods, \invariant_for (this)
implicitly added to pre- and postconditions!

» \invariant_for (expr) returns true iff expr satisfies the
invariant of its static type:

> Given <class B extends A

> After executing initialiser A o = new B();
\invariant_for (o) is true when o satisfies invariants of A ,
\invariant_for ((B)o) is true when o satisfies invariants of B.

» If o and this have different types, \invariant_for (o) only covers
public invariants of o's type.
E.g., \invariant_for(insertedCard) refers to public invariants
of BankCard.
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Recall Specification of enterPIN()

private /*@ spec_public @/ BankCard insertedCard = null;

private /*@ spec_public ©@+*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated
= false;

/*Q@ <spec-casel> also <spec-case2> also <spec-case3>
Qx/
public void enterPIN (int pin) { ...
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Recall Specification of enterPIN()

private /*@ spec_public @/ BankCard insertedCard = null;

private /*@ spec_public ©@+*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated
= false;

/*Q@ <spec-casel> also <spec-case2> also <spec-case3>
Qx/
public void enterPIN (int pin) { ...

last lecture:
all 3 spec-cases were normal_behavior
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Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if prestate satisfies P
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Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if prestate satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if prestate satisfies P
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Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if prestate satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if prestate satisfies P

Keyword signals specifies poststate, depending on thrown exception
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Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if prestate satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if prestate satisfies P

Keyword signals specifies poststate, depending on thrown exception

Keyword signals_only limits types of thrown exception
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Completing Specification of enterPIN()

/*@ <spec-casel> also <spec-case2> also <spec-case3> also

¢
@ public exceptional_behavior
@ requires insertedCard==null;
@ signals_only ATMException;
@ signals (ATMException) !customerAuthenticated;
Qx/
public void enterPIN (int pin) { ...
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Completing Specification of enterPIN()

/*@ <spec-casel> also <spec-case2> also <spec-case3> also

¢
@ public exceptional_behavior
@ requires insertedCard==null;
@ signals_only ATMException;
@ signals (ATMException) !customerAuthenticated;
Qx/
public void enterPIN (int pin) { ...

In case insertedCard==null in prestate:
» enterPIN must throw an exception (‘exceptional_behavior')
» it can only be an ATMException (‘signals_only’)

» method must then ensure !customerAuthenticated in poststate
(‘signals’)
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signals_only Clause: General Case

An exceptional specification case can have one clause of the form
signals_only E;,...,E;;

where E4, ... ,E, are exception types
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signals_only Clause: General Case

An exceptional specification case can have one clause of the form
signals_only E;,...,E;;

where E4, ... ,E, are exception types
Meaning:

If an exception is thrown, it is of type E; or ... or Ey J
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signals Clause: General Case

An exceptional specification case can have several clauses of the form
signals (E) b;

where E is exception type, b is boolean expression
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signals Clause: General Case

An exceptional specification case can have several clauses of the form
signals (E) b;

where E is exception type, b is boolean expression
Meaning:

If an exception of type E is thrown, b holds afterwards J
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Allowing Non-Termination

By default, both:
» normal_behavior
> exceptional_behavior

specification cases enforce termination
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Allowing Non-Termination

By default, both:
» normal_behavior
> exceptional_behavior

specification cases enforce termination

In each specification case, non-termination can be permitted via the
clause

diverges true;
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Allowing Non-Termination

By default, both:
» normal_behavior
> exceptional_behavior

specification cases enforce termination
In each specification case, non-termination can be permitted via the
clause
diverges true;
Meaning:

Given the precondition of the specification case holds in prestate,
the method may or may not terminate
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Further Modifiers: non_null and nullable

JML extends the JavA modifiers by further modifiers:

P class fields
» method parameters

» method return types

can be declared as
» nullable: may or may not be null

» non_null: must not be null
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non_null: Examples

private /*@ spec_public non_null @/ String name;

Implicit invariant ‘public invariant name != null;’
added to class
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non_null: Examples

private /*@ spec_public non_null @/ String name;

Implicit invariant ‘public invariant name != null;’
added to class

public void insertCard(/*@ non_null @*/ BankCard card) {..

Implicit precondition ‘requires card != null;’
added to each specification case of insertCard
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non_null: Examples

private /*@ spec_public non_null @/ String name;

Implicit invariant ‘public invariant name != null;’
added to class

public void insertCard(/*@ non_null @*/ BankCard card) {..

Implicit precondition ‘requires card != null;’
added to each specification case of insertCard

public /*@ non_null @*/ String toString()

Implicit postcondition ‘ensures \result '= null;’
added to each specification case of toString
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non_null Default

non_null is default in JML!

= same effect even without explicit ‘non_null's J

private /*@ spec_public @/ String name;

Implicit invariant ‘public invariant name != null;’
added to class

public void insertCard(BankCard card) {..

Implicit precondition ‘requires card != null;’
added to each specification case of insertCard

public String toString()

Implicit postcondition ‘ensures \result !'= null;’
added to each specification case of toString
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nullable: Examples

To prevent such pre/postconditions and invariants: ‘nullable’ J

private /*@ spec_public nullable @/ String name;
No implicit invariant added

public void insertCard(/#@ nullable @/ BankCard card) {..
No implicit precondition added

public /*@ nullable @*/ String toString()

No implicit postcondition added to specification cases of toString
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LinkedList: non_null or nullable?

public class LinkedList {
private Object elem;
private LinkedlList next;

In JML this means:
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LinkedList: non_null or nullable?

public class LinkedList {
private Object elem;
private LinkedlList next;

In JML this means:

» All elements in the list are non_null
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LinkedList: non_null or nullable?

public class LinkedList {
private Object elem;
private LinkedlList next;

In JML this means:
» All elements in the list are non_null

» The list is cyclic, or infinite!
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LinkedList: non_null or nullable?

Repair:

public class LinkedList {
private Object elem;
private /*@ nullable @/ LinkedList next;

= Now, the list is allowed to end somewhere!

FMSD: Java Modeling Language CHALMERS/GU 181005 55 /62



Final Remarks on non_null and nullable

non_null as default in JML only since some years.

= Older JML tutorial or articles may not use the non_null by default
semantics.
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Final Remarks on non_null and nullable

non_null as default in JML only since some years.

= Older JML tutorial or articles may not use the non_null by default
semantics.

Pitfall! J
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Final Remarks on non_null and nullable

non_null as default in JML only since some years.

= Older JML tutorial or articles may not use the non_null by default
semantics.

Pitfall! )

/*@ non_null @*/ Object[] a;
is not the same as:

/*@ nullable @*/ Object[] a; //@ invariant a != null;
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Final Remarks on non_null and nullable

non_null as default in JML only since some years.

= Older JML tutorial or articles may not use the non_null by default

semantics.

Pitfall!

/*@ non_null @*/ Object[] a;
is not the same as:

/*@ nullable @*/ Object[] a; //@ invariant a != null;

because the first one also implicitly adds
(\forall int i; i >= 0 && i < a.length; al[i] !'= null)

l.e. extends non_null also to the elements of the array!
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JML and Inheritance

All JML contracts, i.e.
» specification cases
» class invariants

are inherited down from superclasses to subclasses.

A class has to fulfill all contracts of its superclasses.

In addition, the subclass may add further specification cases,
Starting with also:
/*@ also
(C]
@ <subclass-specific-spec-cases>
@x/
public void method () { ...
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General Behaviour Specification Case

Complete Behavior Specification Case

behavior
forall T1 x1; ... forall Tn xn;
old Ul y1 = F1; ... old Uk yk =
requires P;
measured_by Mbe if Mbp;
diverges D;
when W;
accessible R;
assignable A;
callable p1(...), ..., pl(...);
captures Z;
ensures Q;
signals_only E1, ..., Eo;
signals (E e) S;
working_space Wse if Wsp;
duration De if Dp;

Fk;

gray not in this course

green in this course
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General Behaviour Specification Case

Meaning of a behavior specification case in JML

An implementation of a method m satisfying its behavior spec. case must
ensure: If property P holds in the method’s prestate, then one of the
following must hold

behavior

requires P;

diverges D;

assignable A;

ensures @;

signals_only
ELl... Eo;

signals (E e) S;
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General Behaviour Specification Case

Meaning of a behavior specification case in JML

An implementation of a method m satisfying its behavior spec. case must
ensure: If property P holds in the method’s prestate, then one of the
following must hold

behavior
requires P;

diverges D; » D holds in the prestate and method m does

not terminate (default: D=false)
> ..

assignable A;

ensures @;

signals_only
[ELL. . ../[E@¢

signals (E e) Se
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General Behaviour Specification Case

Meaning of a behavior specification case in JML

An implementation of a method m satisfying its behavior spec. case must
ensure: If property P holds in the method’s prestate, then one of the
following must hold

behavior > .
réquires P » in the reached (normal or abrupt)
diverges D; poststate: All of the following items must
assignable A; hold
ensures @; > only heap locations (static/instance fields,
signals_only array elements) that did not exist in the

El...,Eo; prestate or are listed in A (assignable)

signals (E e) S; may have been changed
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General Behaviour Specification Case

Meaning of a behavior specification case in JML

An implementation of a method m satisfying its behavior spec. case must
ensure: If property P holds in the method’s prestate, then one of the
following must hold

behavior > .
réquires P » in the reached (normal or abrupt)
diverges D; poststate: All of the following items must
assignable A; hold
ensures Q; > only heap locations ...
signals_only > if m terminates normally, then in its
El... Eo; poststate property Q holds (default:

signals (E e)‘ S; Q=true)
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General Behaviour Specification Case

Meaning of a behavior specification case in JML
An implementation of a method m satisfying its behavior spec. case must
ensure: If property P holds in the method’s prestate, then one of the
following must hold
> ..
) » in the reached (normal or abrupt)
behavior poststate: All of the following items must
requires P; hold
diverges D; > only heap locations ...
assignable A; > if m terminates normally then ...
ensures Q; > if m terminates abruptly then
signals_only > with an exception listed in _
signals_only (default: all exceptions
El... Eo; , .
) of m's throws declaration +
signals (E e) S; RuntimeException and Error) and
» for matching signals clause, the
exceptional postcondition S holds
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General Behaviour Specification Case

Meaning of a behavior specification case in JML

An implementation of a method m satisfying its behavior spec. case must
ensure: If property P holds in the method’s prestate, then one of the
following must hold

behavior >
wsgpakes > in the reached (normal or abrupt)
diverges D; poststate: All of the following items must
assignable A; hold
ensures Q; >
signals_only > \invariant_for(this) must be
El... Eo; maintained (in normal or abrupt

signals (E e)‘ S; termination) by non-helper methods
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Desugaring:
Normal Behavior and Exceptional Behavior

Both normal_behavior and exceptional_behavior cases are
expressible as general behavior cases:

Normal Behavior Case
> defaults to ‘signals (Throwable e) false;’

> forbids overwriting of signals and signals_only
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Desugaring:
Normal Behavior and Exceptional Behavior

Both normal_behavior and exceptional_behavior cases are
expressible as general behavior cases:

Normal Behavior Case
> defaults to ‘signals (Throwable e) false;’

> forbids overwriting of signals and signals_only

Exceptional Behavior Case
» defaults to ‘ensures false’

» forbids overwriting of ensures
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Desugaring:
Normal Behavior and Exceptional Behavior

Both normal_behavior and exceptional_behavior cases are
expressible as general behavior cases:

Normal Behavior Case
> defaults to ‘signals (Throwable e) false;’

> forbids overwriting of signals and signals_only

Exceptional Behavior Case
» defaults to ‘ensures false’

» forbids overwriting of ensures

Both default to ‘diverge false’, but allow it to be overwritten.
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Tools

Several tools support JML
(see www.eecs.ucf.edu/~leavens/JML//index.shtml).

On the course website:
web interface, implemented by Bart van Delft, to OpenJML.

Many thanks to Bart!
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Literature for this Lecture

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hahnle, P. Schmitt,
M. Ulbrich, editors.
Deductive Software Verification - The KeY Book
Vol 10001 of LNCS, Springer, 2016
(E-book at 1ink.springer.com)

Essential reading:

JML Tutorial M. Huisman, W. Ahrendt, D. Grahl, M. Hentschel.
Formal Specification with the Java Modeling Language
Chapter 7 in [KeYbook]

Further reading available at
www.eecs.ucf.edu/~leavens/JML//index.shtml

FMSD: Java Modeling Language CHALMERS/GU 181005 62 /62


link.springer.com
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
www.eecs.ucf.edu/~leavens/JML//index.shtml

	JML Modifiers
	JML Expressions
	First-Order in Specifications
	Result Values
	Data Constraints
	JML Invariants
	Exceptional Method Behavior
	Allowing Non-Termination
	JML Modifiers II
	Inheritance
	Tools
	Literature

