Formal Methods for Software Development
Java Modeling Language, Part Il

Wolfgang Ahrendt

05 October 2018

FMSD: Java Modeling Language CHALMERS/GU 181005

1/62

JML Moaodifiers

JML extends the JAvA modifiers by additional modifiers J

The most important ones are:
spec_public

pure

nullable

non_null

vVvyVvyyvyy

helper

FMSD: Java Modeling Language CHALMERS/GU 181005 2/62

JML Modifiers: spec_public

In enterPIN example, pre/postconditions made heavy use of class fields
But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

FMSD: Java Modeling Language CHALMERS/GU 181005 3/62

JML Modifiers: spec_public

In enterPIN example, pre/postconditions made heavy use of class fields
But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public
» Keep visibility of JAVA fields private/protected

» |If needed, make them public only in specification by spec_public

FMSD: Java Modeling Language CHALMERS/GU 181005 3/62

JML Modifiers: spec_public

In enterPIN example, pre/postconditions made heavy use of class fields
But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public
> Keep visibility of JAVA fields private/protected
» |If needed, make them public only in specification by spec_public

private /*@ spec_public @x/ BankCard insertedCard = null;

private /*@ spec_public @+*/ int wrongPINCounter = 0;

private /*@ spec_public ©@x/ boolean customerAuthenticated
= false;

FMSD: Java Modeling Language CHALMERS/GU 181005 3/62

JML Modifiers: spec_public

In enterPIN example, pre/postconditions made heavy use of class fields
But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public
> Keep visibility of JAVA fields private/protected
» |If needed, make them public only in specification by spec_public

private /*@ spec_public @x/ BankCard insertedCard = null;

private /*@ spec_public @+*/ int wrongPINCounter = 0;

private /*@ spec_public ©@x/ boolean customerAuthenticated
= false;

(Different solution: use specification-only fields; not covered in this course, but see
Sect. 7.7 in [JML Tutorial], see Literature slide.)

FMSD: Java Modeling Language CHALMERS/GU 181005 3/62

JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
ol.equals(02) li.contains(elem) lil.max() < 1i2.min()

But: specifications must not themselves change the state!

FMSD: Java Modeling Language CHALMERS/GU 181005 4/62

JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
ol.equals(02) li.contains(elem) lil.max() < 1i2.min()

But: specifications must not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it always terminates and has no visible side effects
on existing objects.
A method is strictly pure if it is pure and does not create new objects.

FMSD: Java Modeling Language CHALMERS/GU 181005 4/62

JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
ol.equals(02) li.contains(elem) lil.max() < 1i2.min()

But: specifications must not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it always terminates and has no visible side effects
on existing objects.
A method is strictly pure if it is pure and does not create new objects.

JML expressions may contain calls to (strictly) pure methods. J

FMSD: Java Modeling Language CHALMERS/GU 181005 4/62

JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
ol.equals(02) li.contains(elem) lil.max() < 1i2.min()

But: specifications must not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it always terminates and has no visible side effects
on existing objects.
A method is strictly pure if it is pure and does not create new objects.

JML expressions may contain calls to (strictly) pure methods. J

Pure methods are annotated by pure or strictly_pure resp.

public /*@ pure @*/ int max() { ... }

FMSD: Java Modeling Language CHALMERS/GU 181005 4/62

JML Modifiers: Purity Cont’d

v

pure puts obligation on implementor not to cause side effects
It is possible to formally verify that a method is pure

pure implies assignable \nothing;
(may create new objects)

assignable \strictly_nothing;
expresses that no new objects are created

Assignable clauses are local to a specification case

pure is global to the method

FMSD:

Java Modeling Language CHALMERS/GU 181005

5/62

JML Expressions # Java Expressions

boolean JML Expressions (to be completed)

» Each side-effect free boolean JAVA expression is a boolean JML
expression

» If a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
> ta (“nota”)
> a&b (“aandb”)
> allb (“aord’)

FMSD: Java Modeling Language CHALMERS/GU 181005 6 /62

JML Expressions # Java Expressions

boolean JML Expressions (to be completed)

» Each side-effect free boolean JAVA expression is a boolean JML
expression

» If a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
> ta (“nota”)
> a&b (“aandb”)
> allb (“aord’)
a ==>b (“aimpliesd”)
a <==> b (“ais equivalent to b")

VVVVYVYY

FMSD: Java Modeling Language CHALMERS/GU 181005 6 /62

Beyond boolean JAavA expressions

How to express the following?

» An array arr only holds values < 2.

FMSD: Java Modeling Language CHALMERS/GU 181005 7/62

Beyond boolean JAavA expressions

How to express the following?

» An array arr only holds values < 2.

» The variable m holds the maximum entry of array arr.

FMSD: Java Modeling Language CHALMERS/GU 181005

7762

Beyond boolean JAavA expressions

How to express the following?

» An array arr only holds values < 2.
» The variable m holds the maximum entry of array arr.

> All Account objects in the array allAccounts are stored at the
index corresponding to their respective accountNumber field.

FMSD: Java Modeling Language CHALMERS/GU 181005 7/62

Beyond boolean JAavA expressions

How to express the following?

v

An array arr only holds values < 2.
The variable m holds the maximum entry of array arr.

All Account objects in the array allAccounts are stored at the
index corresponding to their respective accountNumber field.

All instances of class BankCard have different cardNumbers.

FMSD:

Java Modeling Language CHALMERS/GU 181005

7762

First-order Logic in JML Expressions

JML boolean expressions extend JAVA boolean expressions by:

» implication

» equivalence

FMSD: Java Modeling Language CHALMERS/GU 181005 8 /62

First-order Logic in JML Expressions

JML boolean expressions extend JAVA boolean expressions by:

» implication
» equivalence

» quantification

FMSD: Java Modeling Language

CHALMERS/GU

181005

5/ 62

boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

» each side-effect free boolean JAVA expression is a boolean JML
expression

» if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
> !'a (“nota")
ak&b (“aandb”’)
all b ("aorb’)
a ==>b (“aimpliesb”)
a <==> b (“ais equivalent to b")
(\forall t x; a) (“for all x of type t, a holds")

| 4
>
>
>
>
> (\exists t x; a) (“there exists x of type t such that a")

FMSD: Java Modeling Language CHALMERS/GU 181005 9 /62

boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

» each side-effect free boolean JAVA expression is a boolean JML
expression

» if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
> !'a (“nota")

ak&b (“aandb”’)

all b ("aorb’)

a ==>b (“aimpliesb”)

a <==> b (“ais equivalent to b")

(\forall t x; a) (“for all x of type t, a holds")

(\exists t x; a) (‘“there exists x of type t such that a")

(\forall t x; a; b) (“for all x of type t fulfilling a, b holds")

(\exists t x; a; b) (“there exists an x of type t fulfilling a,
such that b")

VVVVVYVYVYY

FMSD: Java Modeling Language CHALMERS/GU 181005 9 /62

JML Quantifiers

in
(\forall t x; a; b)
(\exists t x; a; b)

a is called “range predicate”

FMSD: Java Modeling Language CHALMERS/GU

181005

10/ 62

JML Quantifiers
in
(\forall t x; a; b)

(\exists t x; a; b)

a is called “range predicate”

those forms are redundant:

(\forall t x; a; b)
equivalent to
(\forall t x; a ==> b)

(\exists t x; a; b)
equivalent to
(\exists t x; a && b)

FMSD: Java Modeling Language CHALMERS/GU 181005

10/62

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:

a is used to restrict range of x further than t

FMSD: Java Modeling Language CHALMERS/GU 181005 11 /62

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:
a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

FMSD: Java Modeling Language CHALMERS/GU 181005

11/62

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:
a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j;

FMSD: Java Modeling Language CHALMERS/GU 181005

11/62

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:
a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; O0<=i && i<j && j<10;

FMSD: Java Modeling Language CHALMERS/GU 181005

11/62

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:
a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

FMSD: Java Modeling Language CHALMERS/GU 181005 11 /62

Using Quantified JML expressions

How to express:

» An array arr only holds values < 2.

FMSD: Java Modeling Language CHALMERS/GU 181005 12 /62

Using Quantified JML expressions

How to express:

» An array arr only holds values < 2.

(\forall int i;

FMSD: Java Modeling Language CHALMERS/GU

181005

12/62

Using Quantified JML expressions

How to express:

» An array arr only holds values < 2.

(\forall int i; O <= i && i < arr.length;

FMSD: Java Modeling Language CHALMERS/GU 181005 12 /62

Using Quantified JML expressions

How to express:

» An array arr only holds values < 2.

(\forall int i; O <= i && i < arr.length; arr[i] <= 2)

FMSD: Java Modeling Language CHALMERS/GU 181005 12 /62

Using Quantified JML expressions

How to express:

» The variable m holds the maximum entry of array arr.

FMSD: Java Modeling Language CHALMERS/GU 181005 13 /62

Using Quantified JML expressions

How to express:

» The variable m holds the maximum entry of array arr.

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

FMSD: Java Modeling Language CHALMERS/GU 181005 13 /62

Using Quantified JML expressions

How to express:

» The variable m holds the maximum entry of array arr.

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

is this enough?

FMSD: Java Modeling Language CHALMERS/GU 181005 13 /62

Using Quantified JML expressions

How to express:

» The variable m holds the maximum entry of array arr.

(\forall int i; 0 <= 1 && i < arr.length; m >

arr[i])

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

FMSD: Java Modeling Language CHALMERS/GU 181005 13 /62

Using Quantified JML expressions

How to express:

» The variable m holds the maximum entry of array arr.

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])
arr.length > 0 ==
(\exists int i; 0 <= i && i < arr.length; m == arr[i])

FMSD: Java Modeling Language CHALMERS/GU 181005 13 /62

Using Quantified JML expressions

How to express:

» All Account objects in the array accountArray are stored at the
index corresponding to their respective accountNumber field.

FMSD: Java Modeling Language CHALMERS/GU 181005 14 / 62

Using Quantified JML expressions

How to express:

» All Account objects in the array accountArray are stored at the
index corresponding to their respective accountNumber field.

(\forall int i; 0 <= i && i < maxAccountNumber;
accountArray[i] .accountNumber == i)

FMSD: Java Modeling Language CHALMERS/GU 181005 14 /62

Using Quantified JML expressions

How to express:

» All existing instances of class BankCard have different cardNumbers.

FMSD: Java Modeling Language CHALMERS/GU 181005 15 /62

Using Quantified JML expressions

How to express:

» All existing instances of class BankCard have different cardNumbers.

(\forall BankCard pl, p2;
pl !'= p2 ==> pl.cardNumber != p2.cardNumber)

FMSD: Java Modeling Language CHALMERS/GU 181005 15 / 62

Generalized Quantifiers

JML offers also generalized quantifiers:
> \max
> \min
» \product
> \sum

returning the maximum, minimum, product, or sum of the values of a
given expressions (with variables in a given range)

FMSD: Java Modeling Language CHALMERS/GU 181005 16 / 62

Generalized Quantifiers

JML offers also generalized quantifiers:
> \max
> \min
» \product
> \sum

returning the maximum, minimum, product, or sum of the values of a
given expressions (with variables in a given range)

Examples (with their value):

(\sum int i; 0 <= i && i < 5; i) =0+1+2+3+4

FMSD: Java Modeling Language CHALMERS/GU 181005 16 / 62

Generalized Quantifiers

JML offers also generalized quantifiers:

> \max
> \min
» \product
> \sum

returning the maximum, minimum, product, or sum of the values of a
given expressions (with variables in a given range)

Examples (with their value):
(\sum int i; 0 <= i && i < 5; i) =0+1+2+3+4
(\product int i; 0 < i && i < 5; (2*i)+1) =3%xb5%x7%9

FMSD: Java Modeling Language CHALMERS/GU 181005 16 / 62

Generalized Quantifiers

JML offers also generalized quantifiers:
> \max
> \min
» \product
> \sum

returning the maximum, minimum, product, or sum of the values of a
given expressions (with variables in a given range)

Examples (with their value):
(\sum int i; 0 <= i && i < 5; i) =0+1+2+3+4
(\product int i; 0 < i && i < 5; (2*i)+1) =3%xb5%x7%9
(\max int i; 0 <= i && i < 5; i) =4

FMSD: Java Modeling Language CHALMERS/GU 181005 16 / 62

Generalized Quantifiers

JML offers also generalized quantifiers:

> \max
> \min
» \product
> \sum

returning the maximum, minimum, product, or sum of the values of a

given expressions (with variables in a given range)
Examples

(\sum int i; 0 <= i && i < 5; i)

(\product int i; 0 < i && i < 5; (2*i)+1)

(\max int i; 0 <= i && i < 5; i)
(\min int i; 0 <= i && i < 5; i-1)

(with their value):

=04+1+2+3+4
=3%x5x7x%x9

=4

=-1

FMSD: Java Modeling Language CHALMERS/GU

181005

16 / 62

Example: Specifying LimitedIntegerSet

public class LimitedIntegerSet {

public

final int limit;

private int arr([];
private int size = 0;

public

this.
this.

X
public

public

public

LimitedIntegerSet(int limit) {
limit = limit;

arr = new int[limit];

boolean add(int elem) {/*...*/}

void remove(int elem) {/*...x*/}

boolean contains(int elem) {/*...*/}

// other methods

FMSD: Java Modeling Language CHALMERS/GU 181005

17762

Prerequisites: Adding Specification Modifiers

public class LimitedIntegerSet {
public final int limit;
private /*@ spec_public @/ int arr[];
private /*@ spec_public @/ int size = 0;

public LimitedIntegerSet(int limit) {
this.limit = limit;
this.arr = new int[limit];
}
public boolean add(int elem) {/*...*/}
public void remove(int elem) {/*...*/}

public /*@ pure ©@*/ boolean contains(int elem) {/*...*/}

// other methods

FMSD: Java Modeling Language CHALMERS/GU 181005 18 / 62

Specifying contains ()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

FMSD: Java Modeling Language CHALMERS/GU 181005 19 / 62

Specifying contains ()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains is pure: no effect on the state + terminates normally

FMSD: Java Modeling Language CHALMERS/GU 181005 19 / 62

Specifying contains ()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains is pure: no effect on the state + terminates normally

How to specify result value?

FMSD: Java Modeling Language CHALMERS/GU 181005 19 / 62

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior
@ ensures \result ==

FMSD: Java Modeling Language CHALMERS/GU 181005 20 /62

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior
@ ensures \result == (\exists int i;
Q

FMSD: Java Modeling Language CHALMERS/GU 181005 20 /62

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;
Q 0 <=1 && i < size;
Q

FMSD: Java Modeling Language CHALMERS/GU 181005 20 /62

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;

Q 0 <=1 && i < size;
@ arr[i] == elem);
©ex/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

FMSD: Java Modeling Language CHALMERS/GU 181005 20 /62

SpECifyil’lg add() (spec-casel) — new element can be added

/*@ public normal_behavior
requires size < limit && !contains(elem);
ensures \result == true;
ensures contains(elem);
ensures (\forall int e;
e != elem;
contains(e) <==> \old(contains(e)));
ensures size == \old(size) + 1;

also

@ © © © © © 0 © 0 ©

<spec-case2>
@x/
public boolean add(int elem) {/*...*/}

FMSD: Java Modeling Language CHALMERS/GU 181005 21 /62

SpECifyil’lg add () (spec-case2) — new element cannot be added

/*@ public normal_behavior
<spec-casel>

also

requires (size == limit) || contains(elem);
ensures \result == false;
ensures (\forall int e;
contains(e) <==> \old(contains(e)));
ensures size == \old(size);
@x*/
public boolean add(int elem) {/*...*/}

e
@
e
@
@
@ public normal_behavior
@
@
@
@
@

FMSD: Java Modeling Language CHALMERS/GU 181005 22 /62

Specifying remove ()

/*@ public normal_behavior

@ ensures
ensures

c]

(¢l

(C]

@ ensures
(¢]

@ ensures
(¢]

ex/
public void

lcontains(elem) ;
(\forall int e;

e != elem;

contains(e) <==> \old(contains(e)));
\old(contains(elem))
==> gize == \old(size) - 1;
I\old(contains(elem))
==> gize == \old(size);

remove (int elem) {/*...*/}

FMSD: Java Modeling Language CHALMERS/GU 181005 23 /62

Specifying Data Constraints

So far:
JML used to specify method specifics.

FMSD: Java Modeling Language CHALMERS/GU 181005 24 /62

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on class data?

FMSD: Java Modeling Language CHALMERS/GU 181005 24 /62

Specifying Data Constraints

So far:
JML used to specify method specifics.
How to specify constraints on class data, e.g.:
> consistency of redundant data representations (like indexing)

> restrictions for efficiency (like sortedness)

FMSD: Java Modeling Language CHALMERS/GU 181005 24 /62

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on class data, e.g.:
> consistency of redundant data representations (like indexing)

> restrictions for efficiency (like sortedness)

Data constraints are global: all methods must preserve them

FMSD: Java Modeling Language CHALMERS/GU 181005 24 /62

Consider LimitedSorted IntegerSet

public class LimitedSortedIntegerSet {

public

final int limit;

private int arr([];
private int size = 0;

public

this.
this.

X
public

public

public

LimitedSortedIntegerSet (int limit) {
limit = limit;

arr = new int[limit];

boolean add(int elem) {/*...*/}

void remove(int elem) {/*...x*/}

boolean contains(int elem) {/*...*/}

// other methods

FMSD: Java Modeling Language CHALMERS/GU 181005

25 /62

Consequence of Sortedness for Implementer

method contains

» Can employ binary search (logarithmic complexity)

FMSD: Java Modeling Language CHALMERS/GU 181005 26 /62

Consequence of Sortedness for Implementer

method contains
» Can employ binary search (logarithmic complexity)
> Why is that sufficient?

FMSD: Java Modeling Language CHALMERS/GU 181005 26 /62

Consequence of Sortedness for Implementer

method contains
» Can employ binary search (logarithmic complexity)
> Why is that sufficient?

» We assume sortedness in prestate

FMSD: Java Modeling Language CHALMERS/GU 181005 26 /62

Consequence of Sortedness for Implementer

method contains
» Can employ binary search (logarithmic complexity)
> Why is that sufficient?

» We assume sortedness in prestate

method add

» Search first index with bigger element, insert just before that

FMSD: Java Modeling Language CHALMERS/GU 181005

26 / 62

Consequence of Sortedness for Implementer

method contains
» Can employ binary search (logarithmic complexity)
> Why is that sufficient?

» We assume sortedness in prestate

method add
» Search first index with bigger element, insert just before that

» Thereby try to establish sortedness in poststate

FMSD: Java Modeling Language CHALMERS/GU 181005

26 / 62

Consequence of Sortedness for Implementer

method contains
» Can employ binary search (logarithmic complexity)
> Why is that sufficient?

» We assume sortedness in prestate

method add
» Search first index with bigger element, insert just before that
» Thereby try to establish sortedness in poststate
> Why is that sufficient?

FMSD: Java Modeling Language CHALMERS/GU 181005

26 / 62

Consequence of Sortedness for Implementer

method contains
» Can employ binary search (logarithmic complexity)
> Why is that sufficient?

» We assume sortedness in prestate

method add
» Search first index with bigger element, insert just before that
» Thereby try to establish sortedness in poststate
> Why is that sufficient?

> We assume sortedness in prestate

FMSD: Java Modeling Language CHALMERS/GU 181005

26 / 62

Consequence of Sortedness for Implementer

method contains
» Can employ binary search (logarithmic complexity)
> Why is that sufficient?

» We assume sortedness in prestate

method add
» Search first index with bigger element, insert just before that
» Thereby try to establish sortedness in poststate
> Why is that sufficient?

> We assume sortedness in prestate

method remove

» (accordingly)

FMSD: Java Modeling Language CHALMERS/GU 181005

26 / 62

Specifying Sortedness with JML

Recall class fields:

public final int limit;
private int arr[];
private int size = 0;

Sortedness as JML expression:

FMSD: Java Modeling Language CHALMERS/GU 181005 27 /62

Specifying Sortedness with JML

Recall class fields:

public final int limit;
private int arr[];
private int size = 0;

Sortedness as JML expression:

(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[il)

FMSD: Java Modeling Language CHALMERS/GU 181005

2762

Specifying Sortedness with JML

Recall class fields:

public final int limit;
private int arr[];
private int size = 0;

Sortedness as JML expression:

(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[il)

(What's the value of this if size < 27)

FMSD: Java Modeling Language CHALMERS/GU 181005 27 /62

Specifying Sortedness with JML

Recall class fields:

public final int limit;
private int arr[];
private int size = 0;

Sortedness as JML expression:
(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[i])

(What's the value of this if size < 27)

But where in the specification does the red expression go?

FMSD: Java Modeling Language CHALMERS/GU 181005 27 /62

Specifying Sorted contains ()

Can assume sortedness of prestate

FMSD: Java Modeling Language CHALMERS/GU 181005 28 /62

Specifying Sorted contains ()

Can assume sortedness of prestate

/*@ public normal_behavior
@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[il]);
@ ensures \result == (\exists int i;

Q@ 0 <=1 && i < size;
@ arr[i] == elem);
ex/

public /*@ pure ©*/ boolean contains(int elem) {/*...*/}

FMSD: Java Modeling Language CHALMERS/GU 181005 28 /62

Specifying Sorted contains ()

Can assume sortedness of prestate

/*@ public normal_behavior
@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[il]);
@ ensures \result == (\exists int i;

Q@ 0 <=1 && i < size;
@ arr[i] == elem);
ex/

public /*@ pure ©*/ boolean contains(int elem) {/*...*/}

contains () is pure
= sortedness of poststate trivially ensured

FMSD: Java Modeling Language CHALMERS/GU 181005 28 /62

Specifying Sorted remove ()

Can assume sortedness of prestate
Must ensure sortedness of poststate

/*@ public normal_behavior

ensures

ensures

ensures

ensures

ensures

©@ 0 © 0 0 0 o o o o b ©

ex/
public void

requires (\forall int i; O < i && i < size;

arr[i-1] <= arr[il);
lcontains(elem) ;
(\forall int e;
e != elem;
contains(e) <==> \old(contains(e)))
\old(contains(elem))
==> size == \old(size) - 1;
'\old(contains(elem))
==> size == \old(size);
(\forall int i; 0 < i && i < size;
arr[i-1] <= arr[i]);

remove (int elem) {/*...*/}

I

FMSD: Java Modeling Language CHALMERS/GU 181005

29 /62

Specifying Sorted add() (spec-casel) - can add

/*@ public normal_behavior
@ requires (\forall int i; 0 < i && i < size;
G] arr[i-1] <= arrl[il);
@ requires size < limit && !contains(elem);
@ ensures \result == true;
@ ensures contains(elem);
@ ensures (\forall int e;
Q e != elem;
@ contains(e) <==> \old(contains(e)))
@ ensures size == \old(size) + 1;
@ ensures (\forall int i; 0 < i && i < size;
Gl arr[i-1] <= arr[il);
Q
@ also <spec-case2>
ex/

public boolean add(int elem) {/*...*/}

3

FMSD: Java Modeling Language CHALMERS/GU 181005

30/ 62

Specifying Sorted add() (spec-case2) — cannot add

/*@ public normal_behavior

Q

Q@ <spec-casel> also

Q

@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

Q arr[i-1] <= arrl[il);
@ requires (size == limit) || contains(elem);

@ ensures \result == false;

@ ensures (\forall int e;

@ contains(e) <==> \old(contains(e)));
@ ensures size == \old(size);

@ ensures (\forall int i; 0 < i && i < size;

G] arr[i-1] <= arr[il);
@x/

public boolean add(int elem) {/*...*/}

FMSD: Java Modeling Language CHALMERS/GU 181005 31/62

Factor out Sortedness

So far: ‘sortedness’ has swamped our specification

FMSD: Java Modeling Language CHALMERS/GU 181005 32/62

Factor out Sortedness

So far: ‘sortedness’ has swamped our specification
We can do better, using

JML Class Invariant

construct for specifying data constraints centrally

FMSD: Java Modeling Language CHALMERS/GU 181005

32/62

Factor out Sortedness

So far: ‘sortedness’ has swamped our specification
We can do better, using

JML Class Invariant

construct for specifying data constraints centrally

1. delete blue and red parts from previous slides

2. add ‘sortedness’ as JML class invariant instead

FMSD: Java Modeling Language CHALMERS/GU 181005

32/62

JML Class Invariant

public class LimitedSortedIntegerSet {
public final int limit;

/*Q@ private invariant (\forall int i;

Q 0 < i && i < size;
@ arr[i-1] <= arr[il);
©x/

private /*Q@ spec_public O/ int arr[];
private /*@ spec_public @*/ int size = 0;

// constructor and methods,
// without sortedness in pre/postconditions

FMSD: Java Modeling Language CHALMERS/GU 181005

33/62

JML Class Invariant

» JML class invariant can be placed anywhere in class
» (Contrast: method contract must be in front of its method)

» Custom to place class invariant in front of fields it talks about

FMSD: Java Modeling Language CHALMERS/GU 181005 34 /62

Instance vs. Static Invariants

instance invariants
Can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘this’, like ‘this.size’)
JML syntax: instance invariant

FMSD: Java Modeling Language CHALMERS/GU 181005 35 /62

Instance vs. Static Invariants

instance invariants
Can refer to instance fields of this object
(unqualified, like ‘size’, or qualified with ‘this’, like ‘this.size’)
JML syntax: instance invariant
static invariants

Cannot refer to instance fields of this object
JML syntax: static invariant

FMSD: Java Modeling Language CHALMERS/GU 181005 35 /62

Instance vs. Static Invariants

instance invariants
Can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘this’, like ‘this.size’)
JML syntax: instance invariant

static invariants
Cannot refer to instance fields of this object
JML syntax: static invariant

both

Can refer to

— static fields

— instance fields of objects other than this, like ‘o.size’

FMSD: Java Modeling Language CHALMERS/GU 181005 35 /62

Instance vs. Static Invariants

instance invariants
Can refer to instance fields of this object

(unqualified, like ‘size’, or qualified with ‘this’, like ‘this.size’)

JML syntax: instance invariant

static invariants
Cannot refer to instance fields of this object
JML syntax: static invariant

both

Can refer to

— static fields

— instance fields of objects other than this, like ‘o.size’

In classes, instance is default. In interfaces, static is default.
If instance or static is omitted for invariants
= instance invariant in classes, static invariant in interfaces

FMSD: Java Modeling Language CHALMERS/GU 181005

35/ 62

Static JML Invariant Example

public class BankCard {
/*@ public static invariant
@ (\forall BankCard pl, p2;
¢ pl != p2 ==> pl.cardNumber != p2.cardNumber)
Qx/

private /*@ spec_public @x/ int cardNumber;

// rest of class follows

FMSD: Java Modeling Language CHALMERS/GU 181005

36/ 62

Class Invariants: Intuition, Notions & Scope

Class invariants must be
P established by

> constructors (instance invariants)
> static initialisation (static invariants)

FMSD: Java Modeling Language CHALMERS/GU 181005 37/62

Class Invariants: Intuition, Notions & Scope

Class invariants must be
P established by
> constructors (instance invariants)
> static initialisation (static invariants)
» preserved by all (non-helper) methods

> assumed in prestate (implicit preconditions)
> ensured in poststate (implicit postconditions)
» can be violated during method execution

FMSD: Java Modeling Language CHALMERS/GU 181005

37762

Class Invariants: Intuition, Notions & Scope

Class invariants must be
P established by

> constructors (instance invariants)
> static initialisation (static invariants)

» preserved by all (non-helper) methods

> assumed in prestate (implicit preconditions)
> ensured in poststate (implicit postconditions)
» can be violated during method execution

Scope of invariant
» not limmited to it's class/interface
» depends on visibility (private vs. public) of local state

= An invariant must not be violated by any code in any class

FMSD: Java Modeling Language CHALMERS/GU 181005

37762

The JML modifier: helper

JML helper methods

T /*@ helper ©*/ m(T pl, ..., T pn)

Neither assumes nor ensures any invariant by default.

FMSD: Java Modeling Language CHALMERS/GU 181005 38 /62

The JML modifier: helper

JML helper methods

T /*@ helper ©*/ m(T pl, ..., T pn)

Neither assumes nor ensures any invariant by default.

Pragmatics & Usage examples of helper methods
» Helper methods are usually private.

» Used for structuring implementation of public methods
(e.g. factoring out reoccurring steps)

» Used in constructors
(where invariants have not yet been established)

FMSD: Java Modeling Language CHALMERS/GU 181005

38/ 62

The JML modifier: helper

JML helper methods

T /*@ helper ©*/ m(T pl, ..., T pn)
Neither assumes nor ensures any invariant by default.

Pragmatics & Usage examples of helper methods
» Helper methods are usually private.
» Used for structuring implementation of public methods
(e.g. factoring out reoccurring steps)
» Used in constructors
(where invariants have not yet been established)

Additional purpose in KeY context

Normal form, used when translating JML to Dynamic Logic.
(See later lecture)

FMSD: Java Modeling Language CHALMERS/GU 181005

38 /62

Referring to Invariants

Aim: refer to invariants of arbitrary objects in JML expressions. J

FMSD: Java Modeling Language CHALMERS/GU 181005 39 /62

Referring to Invariants

Aim: refer to invariants of arbitrary objects in JML expressions. J

» \invariant_for(o) is a boolean JML expression

FMSD: Java Modeling Language CHALMERS/GU 181005 39 /62

Referring to Invariants

Aim: refer to invariants of arbitrary objects in JML expressions. J

» \invariant_for(o) is a boolean JML expression

» \invariant_for (o) is true in a state where all invariants of o
are true, otherwise false

FMSD: Java Modeling Language CHALMERS/GU 181005 39 /62

Referring to Invariants

Aim: refer to invariants of arbitrary objects in JML expressions. J

» \invariant_for(o) is a boolean JML expression

» \invariant_for (o) is true in a state where all invariants of o
are true, otherwise false

Pragmatics:

» Use \invariant_for(this) when local invariant is intended
but not implicitly given, e.g., in specification of helper methods.

FMSD: Java Modeling Language CHALMERS/GU 181005 39 /62

Referring to Invariants

Aim: refer to invariants of arbitrary objects in JML expressions. J

» \invariant_for(o) is a boolean JML expression

» \invariant_for (o) is true in a state where all invariants of o
are true, otherwise false

Pragmatics:
» Use \invariant_for(this) when local invariant is intended
but not implicitly given, e.g., in specification of helper methods.
» Put \invariant_for (o), where o # this, into local

requires/ensures clause or invariant
to assume/guarantee or maintain invariant of o locally

FMSD: Java Modeling Language CHALMERS/GU 181005 39 /62

Examples of Referring to Invariants
public class Database {

/*@ public normal_behavior
0@ requires ...;
@ ensures ...;
Qx/
public void add (Set newItems) {
<rough adding at first> ...;
cleanUp();
}

FMSD: Java Modeling Language CHALMERS/GU 181005

40 /62

Examples of Referring to Invariants
public class Database {

/*@ public normal_behavior
0@ requires ...;
@ ensures ...;
Qx/
public void add (Set newItems) {
<rough adding at first> ...;
cleanUp();
}

/*@ private normal_behavior
@ ensures \invariant_for(this);
Qx/
private /*@ helper @*/ void cleanUp() { ... }

FMSD: Java Modeling Language CHALMERS/GU 181005

40 /62

Examples of Referring to Invariants

Example
If all (non-helper) methods of ATM shall maintain invariant of

object stored in insertedCard:

public class ATM {

/*Q@ private invariant
@ insertedCard !'= null ==> \invariant_for(insertedCard);

Qx/
private BankCard insertedCard;

181005 41/ 62

FMSD: Java Modeling Language CHALMERS/GU

Examples of Referring to Invariants

Alternatively more fine grained:
Example

If method withdraw of ATM relies on invariant of insertedCard:
public class ATM {

private BankCard insertedCard;

/*@ public normal_behavior
@ requires \invariant_for(insertedCard);
0@ requires <other preconditions>;
@ ensures <postcondition>;
@x/
public int withdraw (int amount) { ... }

FMSD: Java Modeling Language CHALMERS/GU 181005

2762

Notes on \invariant_for

» For non-helper methods, \invariant_for (this)
implicitly added to pre- and postconditions!

FMSD: Java Modeling Language CHALMERS/GU 181005 43 /62

Notes on \invariant_for

» For non-helper methods, \invariant_for (this)
implicitly added to pre- and postconditions!

» \invariant_for (expr) returns true iff expr satisfies the
invariant of its static type:

» Given <class B extends A
> After executing initialiser A o = new B();
\invariant_for (o) is true when o satisfies invariants of A

FMSD: Java Modeling Language CHALMERS/GU 181005

43762

Notes on \invariant_for

» For non-helper methods, \invariant_for (this)
implicitly added to pre- and postconditions!

» \invariant_for (expr) returns true iff expr satisfies the
invariant of its static type:

» Given <class B extends A
> After executing initialiser A o = new B();
\invariant_for (o) is true when o satisfies invariants of A ,

\invariant_for ((B)o) is true when o satisfies invariants of B.

FMSD: Java Modeling Language CHALMERS/GU 181005

43762

Notes on \invariant_for

» For non-helper methods, \invariant_for (this)
implicitly added to pre- and postconditions!

» \invariant_for (expr) returns true iff expr satisfies the
invariant of its static type:

> Given <class B extends A

> After executing initialiser A o = new B();
\invariant_for (o) is true when o satisfies invariants of A ,
\invariant_for ((B)o) is true when o satisfies invariants of B.

» If o and this have different types, \invariant_for (o) only covers
public invariants of o's type.
E.g., \invariant_for(insertedCard) refers to public invariants
of BankCard.

FMSD: Java Modeling Language CHALMERS/GU 181005 43 /62

Recall Specification of enterPIN()

private /*@ spec_public @/ BankCard insertedCard = null;

private /*@ spec_public ©@+*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated
= false;

/*Q@ <spec-casel> also <spec-case2> also <spec-case3>
Qx/
public void enterPIN (int pin) { ...

FMSD: Java Modeling Language CHALMERS/GU 181005 44 /62

Recall Specification of enterPIN()

private /*@ spec_public @/ BankCard insertedCard = null;

private /*@ spec_public ©@+*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated
= false;

/*Q@ <spec-casel> also <spec-case2> also <spec-case3>
Qx/
public void enterPIN (int pin) { ...

last lecture:
all 3 spec-cases were normal_behavior

FMSD: Java Modeling Language CHALMERS/GU 181005 44 /62

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if prestate satisfies P

FMSD: Java Modeling Language CHALMERS/GU 181005 45 /62

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if prestate satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if prestate satisfies P

FMSD: Java Modeling Language CHALMERS/GU 181005 45 /62

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if prestate satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if prestate satisfies P

Keyword signals specifies poststate, depending on thrown exception

FMSD: Java Modeling Language CHALMERS/GU 181005 45 /62

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if prestate satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if prestate satisfies P

Keyword signals specifies poststate, depending on thrown exception

Keyword signals_only limits types of thrown exception

FMSD: Java Modeling Language CHALMERS/GU 181005 45 /62

Completing Specification of enterPIN()

/*@ <spec-casel> also <spec-case2> also <spec-case3> also

¢
@ public exceptional_behavior
@ requires insertedCard==null;
@ signals_only ATMException;
@ signals (ATMException) !customerAuthenticated;
Qx/
public void enterPIN (int pin) { ...

FMSD: Java Modeling Language CHALMERS/GU 181005 46 / 62

Completing Specification of enterPIN()

/*@ <spec-casel> also <spec-case2> also <spec-case3> also

¢
@ public exceptional_behavior
@ requires insertedCard==null;
@ signals_only ATMException;
@ signals (ATMException) !customerAuthenticated;
Qx/
public void enterPIN (int pin) { ...

In case insertedCard==null in prestate:
» enterPIN must throw an exception (‘exceptional_behavior')
» it can only be an ATMException (‘signals_only’)

» method must then ensure !customerAuthenticated in poststate
(‘signals’)

FMSD: Java Modeling Language CHALMERS/GU 181005 46 / 62

signals_only Clause: General Case

An exceptional specification case can have one clause of the form
signals_only E;,...,E;;

where E4, ... ,E, are exception types

FMSD: Java Modeling Language CHALMERS/GU 181005

47/ 62

signals_only Clause: General Case

An exceptional specification case can have one clause of the form
signals_only E;,...,E;;

where E4, ... ,E, are exception types
Meaning:

If an exception is thrown, it is of type E; or ... or Ey J

FMSD: Java Modeling Language CHALMERS/GU 181005 47 /62

signals Clause: General Case

An exceptional specification case can have several clauses of the form
signals (E) b;

where E is exception type, b is boolean expression

FMSD: Java Modeling Language CHALMERS/GU 181005 48 /62

signals Clause: General Case

An exceptional specification case can have several clauses of the form
signals (E) b;

where E is exception type, b is boolean expression
Meaning:

If an exception of type E is thrown, b holds afterwards J

FMSD: Java Modeling Language CHALMERS/GU 181005 48 /62

Allowing Non-Termination

By default, both:
» normal_behavior
> exceptional_behavior

specification cases enforce termination

FMSD: Java Modeling Language CHALMERS/GU

181005

49762

Allowing Non-Termination

By default, both:
» normal_behavior
> exceptional_behavior

specification cases enforce termination

In each specification case, non-termination can be permitted via the
clause

diverges true;

FMSD: Java Modeling Language CHALMERS/GU 181005 49 /62

Allowing Non-Termination

By default, both:
» normal_behavior
> exceptional_behavior

specification cases enforce termination
In each specification case, non-termination can be permitted via the
clause
diverges true;
Meaning:

Given the precondition of the specification case holds in prestate,
the method may or may not terminate

FMSD: Java Modeling Language CHALMERS/GU 181005 49 /62

Further Modifiers: non_null and nullable

JML extends the JavA modifiers by further modifiers:

P class fields
» method parameters

» method return types

can be declared as
» nullable: may or may not be null

» non_null: must not be null

FMSD: Java Modeling Language CHALMERS/GU 181005

50 / 62

non_null: Examples

private /*@ spec_public non_null @/ String name;

Implicit invariant ‘public invariant name != null;’
added to class

FMSD: Java Modeling Language CHALMERS/GU 181005 51 /62

non_null: Examples

private /*@ spec_public non_null @/ String name;

Implicit invariant ‘public invariant name != null;’
added to class

public void insertCard(/*@ non_null @*/ BankCard card) {..

Implicit precondition ‘requires card != null;’
added to each specification case of insertCard

FMSD: Java Modeling Language CHALMERS/GU 181005 51 /62

non_null: Examples

private /*@ spec_public non_null @/ String name;

Implicit invariant ‘public invariant name != null;’
added to class

public void insertCard(/*@ non_null @*/ BankCard card) {..

Implicit precondition ‘requires card != null;’
added to each specification case of insertCard

public /*@ non_null @*/ String toString()

Implicit postcondition ‘ensures \result '= null;’
added to each specification case of toString

FMSD: Java Modeling Language CHALMERS/GU 181005 51 /62

non_null Default

non_null is default in JML!

= same effect even without explicit ‘non_null's J

private /*@ spec_public @/ String name;

Implicit invariant ‘public invariant name != null;’
added to class

public void insertCard(BankCard card) {..

Implicit precondition ‘requires card != null;’
added to each specification case of insertCard

public String toString()

Implicit postcondition ‘ensures \result !'= null;’
added to each specification case of toString

FMSD: Java Modeling Language CHALMERS/GU 181005 52 /62

nullable: Examples

To prevent such pre/postconditions and invariants: ‘nullable’ J

private /*@ spec_public nullable @/ String name;
No implicit invariant added

public void insertCard(/#@ nullable @/ BankCard card) {..
No implicit precondition added

public /*@ nullable @*/ String toString()

No implicit postcondition added to specification cases of toString

FMSD: Java Modeling Language CHALMERS/GU 181005 53 /62

LinkedList: non_null or nullable?

public class LinkedList {
private Object elem;
private LinkedlList next;

In JML this means:

FMSD: Java Modeling Language CHALMERS/GU 181005

54/ 62

LinkedList: non_null or nullable?

public class LinkedList {
private Object elem;
private LinkedlList next;

In JML this means:

» All elements in the list are non_null

FMSD: Java Modeling Language CHALMERS/GU 181005

54/ 62

LinkedList: non_null or nullable?

public class LinkedList {
private Object elem;
private LinkedlList next;

In JML this means:
» All elements in the list are non_null

» The list is cyclic, or infinite!

FMSD: Java Modeling Language CHALMERS/GU 181005

54/ 62

LinkedList: non_null or nullable?

Repair:

public class LinkedList {
private Object elem;
private /*@ nullable @/ LinkedList next;

= Now, the list is allowed to end somewhere!

FMSD: Java Modeling Language CHALMERS/GU 181005 55 /62

Final Remarks on non_null and nullable

non_null as default in JML only since some years.

= Older JML tutorial or articles may not use the non_null by default
semantics.

FMSD: Java Modeling Language CHALMERS/GU 181005 56 / 62

Final Remarks on non_null and nullable

non_null as default in JML only since some years.

= Older JML tutorial or articles may not use the non_null by default
semantics.

Pitfall! J

FMSD: Java Modeling Language CHALMERS/GU 181005 56 / 62

Final Remarks on non_null and nullable

non_null as default in JML only since some years.

= Older JML tutorial or articles may not use the non_null by default
semantics.

Pitfall!)

/*@ non_null @*/ Object[] a;
is not the same as:

/*@ nullable @*/ Object[] a; //@ invariant a != null;

FMSD: Java Modeling Language CHALMERS/GU 181005 56 / 62

Final Remarks on non_null and nullable

non_null as default in JML only since some years.

= Older JML tutorial or articles may not use the non_null by default

semantics.

Pitfall!

/*@ non_null @*/ Object[] a;
is not the same as:

/*@ nullable @*/ Object[] a; //@ invariant a != null;

because the first one also implicitly adds
(\forall int i; i >= 0 && i < a.length; al[i] !'= null)

l.e. extends non_null also to the elements of the array!

FMSD: Java Modeling Language CHALMERS/GU 181005

56 / 62

JML and Inheritance

All JML contracts, i.e.
» specification cases
» class invariants

are inherited down from superclasses to subclasses.

A class has to fulfill all contracts of its superclasses.

In addition, the subclass may add further specification cases,
Starting with also:
/*@ also
(C]
@ <subclass-specific-spec-cases>
@x/
public void method () { ...

FMSD: Java Modeling Language CHALMERS/GU 181005

57 /62

General Behaviour Specification Case

Complete Behavior Specification Case

behavior
forall T1 x1; ... forall Tn xn;
old Ul y1 = F1; ... old Uk yk =
requires P;
measured_by Mbe if Mbp;
diverges D;
when W;
accessible R;
assignable A;
callable p1(...), ..., pl(...);
captures Z;
ensures Q;
signals_only E1, ..., Eo;
signals (E e) S;
working_space Wse if Wsp;
duration De if Dp;

Fk;

gray not in this course

green in this course

FMSD: Java Modeling Language

CHALMERS/GU

181005

58 / 62

General Behaviour Specification Case

Meaning of a behavior specification case in JML

An implementation of a method m satisfying its behavior spec. case must
ensure: If property P holds in the method’s prestate, then one of the
following must hold

behavior

requires P;

diverges D;

assignable A;

ensures @;

signals_only
ELl... Eo;

signals (E e) S;

FMSD: Java Modeling Language CHALMERS/GU 181005 59 /62

General Behaviour Specification Case

Meaning of a behavior specification case in JML

An implementation of a method m satisfying its behavior spec. case must
ensure: If property P holds in the method’s prestate, then one of the
following must hold

behavior
requires P;

diverges D; » D holds in the prestate and method m does

not terminate (default: D=false)
> ..

assignable A;

ensures @;

signals_only
[ELL. . ../[E@¢

signals (E e) Se

FMSD: Java Modeling Language CHALMERS/GU 181005 59 /62

General Behaviour Specification Case

Meaning of a behavior specification case in JML

An implementation of a method m satisfying its behavior spec. case must
ensure: If property P holds in the method’s prestate, then one of the
following must hold

behavior > .
réquires P » in the reached (normal or abrupt)
diverges D; poststate: All of the following items must
assignable A; hold
ensures @; > only heap locations (static/instance fields,
signals_only array elements) that did not exist in the

El...,Eo; prestate or are listed in A (assignable)

signals (E e) S; may have been changed

FMSD: Java Modeling Language CHALMERS/GU 181005 59 /62

General Behaviour Specification Case

Meaning of a behavior specification case in JML

An implementation of a method m satisfying its behavior spec. case must
ensure: If property P holds in the method’s prestate, then one of the
following must hold

behavior > .
réquires P » in the reached (normal or abrupt)
diverges D; poststate: All of the following items must
assignable A; hold
ensures Q; > only heap locations ...
signals_only > if m terminates normally, then in its
El... Eo; poststate property Q holds (default:

signals (E e)‘ S; Q=true)

FMSD: Java Modeling Language CHALMERS/GU 181005 59 /62

General Behaviour Specification Case

Meaning of a behavior specification case in JML
An implementation of a method m satisfying its behavior spec. case must
ensure: If property P holds in the method’s prestate, then one of the
following must hold
> ..
) » in the reached (normal or abrupt)
behavior poststate: All of the following items must
requires P; hold
diverges D; > only heap locations ...
assignable A; > if m terminates normally then ...
ensures Q; > if m terminates abruptly then
signals_only > with an exception listed in _
signals_only (default: all exceptions
El... Eo; , .
) of m's throws declaration +
signals (E e) S; RuntimeException and Error) and
» for matching signals clause, the
exceptional postcondition S holds

FMSD: Java Modeling Language CHALMERS/GU 181005 59 /62

General Behaviour Specification Case

Meaning of a behavior specification case in JML

An implementation of a method m satisfying its behavior spec. case must
ensure: If property P holds in the method’s prestate, then one of the
following must hold

behavior >
wsgpakes > in the reached (normal or abrupt)
diverges D; poststate: All of the following items must
assignable A; hold
ensures Q; >
signals_only > \invariant_for(this) must be
El... Eo; maintained (in normal or abrupt

signals (E e)‘ S; termination) by non-helper methods

FMSD: Java Modeling Language CHALMERS/GU 181005 59 /62

Desugaring:
Normal Behavior and Exceptional Behavior

Both normal_behavior and exceptional_behavior cases are
expressible as general behavior cases:

Normal Behavior Case
> defaults to ‘signals (Throwable e) false;’

> forbids overwriting of signals and signals_only

FMSD: Java Modeling Language CHALMERS/GU 181005 60 / 62

Desugaring:
Normal Behavior and Exceptional Behavior

Both normal_behavior and exceptional_behavior cases are
expressible as general behavior cases:

Normal Behavior Case
> defaults to ‘signals (Throwable e) false;’

> forbids overwriting of signals and signals_only

Exceptional Behavior Case
» defaults to ‘ensures false’

» forbids overwriting of ensures

FMSD: Java Modeling Language CHALMERS/GU 181005

60 / 62

Desugaring:
Normal Behavior and Exceptional Behavior

Both normal_behavior and exceptional_behavior cases are
expressible as general behavior cases:

Normal Behavior Case
> defaults to ‘signals (Throwable e) false;’

> forbids overwriting of signals and signals_only

Exceptional Behavior Case
» defaults to ‘ensures false’

» forbids overwriting of ensures

Both default to ‘diverge false’, but allow it to be overwritten.

FMSD: Java Modeling Language CHALMERS/GU 181005 60 / 62

Tools

Several tools support JML
(see www.eecs.ucf.edu/~leavens/JML//index.shtml).

On the course website:
web interface, implemented by Bart van Delft, to OpenJML.

Many thanks to Bart!

FMSD: Java Modeling Language CHALMERS/GU 181005 61 /62

http://www.eecs.ucf.edu/~leavens/JML//index.shtml
www.eecs.ucf.edu/~leavens/JML//index.shtml

Literature for this Lecture

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hahnle, P. Schmitt,
M. Ulbrich, editors.
Deductive Software Verification - The KeY Book
Vol 10001 of LNCS, Springer, 2016
(E-book at 1ink.springer.com)

Essential reading:

JML Tutorial M. Huisman, W. Ahrendt, D. Grahl, M. Hentschel.
Formal Specification with the Java Modeling Language
Chapter 7 in [KeYbook]

Further reading available at
www.eecs.ucf.edu/~leavens/JML//index.shtml

FMSD: Java Modeling Language CHALMERS/GU 181005 62 /62

link.springer.com
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
www.eecs.ucf.edu/~leavens/JML//index.shtml

	JML Modifiers
	JML Expressions
	First-Order in Specifications
	Result Values
	Data Constraints
	JML Invariants
	Exceptional Method Behavior
	Allowing Non-Termination
	JML Modifiers II
	Inheritance
	Tools
	Literature

