
Compiler construction
Lecture 8: Control �ow graphs and data �ow analysis

Magnus Myreen
Spring 2018

Chalmers University of Technology — Gothenburg University

This lecture

Control-�ow graphs

Liveness analysis

Register Allocation

Constant propagation

Loop optimization

A larger example

Control-�ow graphs

Three-address code

Pseudo-code
To discuss code optimization we employ a (vaguely de�ned)
pseudo-IR called three-address code which uses virtual registers
but does not require SSA form.

Instructions

• x := y # z where x, y and z are
register names or literals and # is
an arithmetic operator

• goto L where L is a label
• if x # y then goto L where #
is a relational operator

• x := y

• return x

Example code

s := 0

i := 1

L1: if i > n goto L2

t := i * i

s := s + t

i := i + 1

goto L1

L2: return s

Control-�ow graph

Code as graph

• Each instruction is a node
• Edge from each node to its
possible successors

Example code

s := 0

i := 1

L1: if i > n goto L2

t := i * i

s := s + t

i := i + 1

goto L1

L2: return s

Example as graph

L1: if i > n goto L2

L2: return s

 goto L1

i := i + 1

s := s + t

t := i * i

s := 0

i := 1

Data�ow analysis

Static analysis

• General approach to code analysis
• Basis for many forms of compiler analysis – but in general we
don’t know if that path will ever be taken during execution

• Useful for many forms of optimization:
• Common subexpression elimination
• Constant propagation
• Dead code elimination
• ...

• Results are approximations – we must make sure to err on the
correct side

• Within a basic block, simpler methods o�en su�ce

Liveness analysis

Liveness of variables

De�nitions and uses
An instruction x := y # z de�nes x and uses y and z.

Liveness
A variable v is live at a point P in the control-�ow graph (CFG) if
there is a path from P to a use of v along which v is not (re)de�ned.

Uses of liveness information

• Register allocation: a non-live variable need not be kept in
register

• Useless-store elimination: a non-live variable need not be
stored to memory

• Detecting uninitialized variables: a local variable that is live on
function entry

Liveness of variables

De�nitions and uses
An instruction x := y # z de�nes x and uses y and z.

Liveness
A variable v is live at a point P in the control-�ow graph (CFG) if
there is a path from P to a use of v along which v is not (re)de�ned.

Uses of liveness information

• Register allocation: a non-live variable need not be kept in
register

• Useless-store elimination: a non-live variable need not be
stored to memory

• Detecting uninitialized variables: a local variable that is live on
function entry

Liveness of variables

De�nitions and uses
An instruction x := y # z de�nes x and uses y and z.

Liveness
A variable v is live at a point P in the control-�ow graph (CFG) if
there is a path from P to a use of v along which v is not (re)de�ned.

Uses of liveness information

• Register allocation: a non-live variable need not be kept in
register

• Useless-store elimination: a non-live variable need not be
stored to memory

• Detecting uninitialized variables: a local variable that is live on
function entry

Liveness analysis: concepts

Let n be a node (a single instruction in our example).

Def set
def (n) is the set of variables that are de�ned in n (a set with 0 or 1
elements)

Use set
use(n) is the set of variables that are used in n

Live-out set
liveout(n) is the set of variables that are live at an out-edge of n

Live-in set
livein(n) is the set of variables that are live at an in-edge of n

An example

First example revisited

L1: if i > n goto L2

L2: return s

 goto L1

i := i + 1

s := s + t

t := i * i

s := 0

i := 1

Live-in set

Instr # Set
1 { n }
2 { n, s}
3 {i, n, s}
4 {i, n, s }
5 {i, n, s, t}
6 {i, n, s}
7 {i, n, s}
8 { s }

How can these be computed?

An example

First example revisited

L1: if i > n goto L2

L2: return s

 goto L1

i := i + 1

s := s + t

t := i * i

s := 0

i := 1

Live-in set

Instr # Set
1 { n }
2 { n, s}
3 {i, n, s}
4 {i, n, s }
5 {i, n, s, t}
6 {i, n, s}
7 {i, n, s}
8 { s }

How can these be computed?

The data�ow equations

For every node n we have:

livein(n) = use(n) ∪ (liveout(n)− def (n))
liveout(n) = ∪s∈succs(n) livein(s)

where succs(n) denote the set of successor nodes to n.

Computation
Let livein, def , and use be arrays indexed by nodes.

foreach node n do livein[n] = ∅
repeat
foreach node n do
out = ∪s∈succs(n) livein[s]
livein[n] = use[n] ∪ (out− def [n])

until no changes in iteration

Solving the equations

Example revisited

Instr def use succs live-in
1 {s} {} {2} {}
2 {i} {} {3} {}
3 {} {i,n} {4,8} {}
4 {t} {i} {5} {}
5 {s} {s,t} {6} {}
6 {i} {i} {7} {}
7 {} {} {3} {}
8 {} {s} {} {}

• Initialization done above
• livein updated from top to bottom in each iteration

• But is there a better order?

Solving the equations

Example revisited

Instr def use succs live-in
1 {s} {} {2} {}
2 {i} {} {3} {}
3 {} {i,n} {4,8} {}
4 {t} {i} {5} {}
5 {s} {s,t} {6} {}
6 {i} {i} {7} {}
7 {} {} {3} {}
8 {} {s} {} {}

• Initialization done above
• livein updated from top to bottom in each iteration
• But is there a better order?

Liveness: a backwards problem

Fixpoint iteration

• We iterate until no live sets change during an iteration; we have
reached a �xpoint of the equations

• The number of iterations (and thus the amount of work)
depends on the order in which we use the equations within an
iteration

• Since liveness info propagates from successors to predecessors
in the CFG, we should start with the last instruction and work
backwards

Another node order

Working from bottom to top, we get

Instr def use succs livein0 livein1 livein2
1 {s} {} {2} {} {n} {n}
2 {i} {} {3} {} {n,s} {n,s}
3 {} {i,n} {4,8} {} {i,n,s} {i,n,s}
4 {t} {i} {5} {} {i,s} {i,n,s}
5 {s} {s,t} {6} {} {i,s,t} {i,n,s,t}
6 {i} {i} {7} {} {i} {i,n,s}
7 {} {} {3} {} {} {i,n,s}
8 {} {s} {} {} {s} {s}

Implementing data �ow analysis

Data structures

• Any standard data structure for graphs will work
• For sets of variables one may use bit arrays with one bit per
variable; then union is bit-wise or, intersection bit-wise and
complement bit-wise negation

Termination
The live sets grow monotonically in each iteration, so the number of
iterations is bounded by V · N, where N is number of nodes and V
the number of variables. In practice, for realistic code, the number
of iterations is much smaller.

Basic blocks

Motivations

• Control-graph with instructions as nodes become big
• Between jumps, the graph structure is trivial (straight-line
code)

De�nition

• A basic block starts at a labelled instruction or a�er a
conditional jump

• First basic block starts at beginning of function
• A basic block ends at a (conditional) jump

We ignore code where an unlabeled statement follows an
unconditional jump (such code is unreachable).

Basic blocks

Motivations

• Control-graph with instructions as nodes become big
• Between jumps, the graph structure is trivial (straight-line
code)

De�nition

• A basic block starts at a labelled instruction or a�er a
conditional jump

• First basic block starts at beginning of function
• A basic block ends at a (conditional) jump

We ignore code where an unlabeled statement follows an
unconditional jump (such code is unreachable).

Example

Testing if n is prime

p := 0

B6

B5

B4

B3

B2

B1
i := 2
p := 1

if n < 2 goto B5

s := i * i
if s > n goto B6

r := n % i
if r == 0 goto B5

i := i + 1
goto B2

Notes

• Edges correspond to
branches

• Jump destinations are now
blocks, not instructions

• We may insert empty blocks
• Analysis of control-�ow
graphs o�en done on graph
with basic blocks as nodes

Example

Testing if n is prime

p := 0

B6

B5

B4

B3

B2

B1
i := 2
p := 1

if n < 2 goto B5

s := i * i
if s > n goto B6

r := n % i
if r == 0 goto B5

i := i + 1
goto B2

Notes

• Edges correspond to
branches

• Jump destinations are now
blocks, not instructions

• We may insert empty blocks
• Analysis of control-�ow
graphs o�en done on graph
with basic blocks as nodes

Liveness analysis for CFGs of basic blocks

We can easily modify data �ow analysis to work on control �ow
graphs of basic blocks.

With knowledge of livein and liveout for basic blocks it is easy to �nd
the set of live variables at each instruction.

How do the basic concepts need to be modi�ed to apply to basic
blocks?

Modi�ed de�nitions for CFG of basic blocks

Let n be a node in a control-�ow graph representing a basic block.

Def set
def (n) is the set of variables that are de�ned in an instruction in n

Use set
use(n) is the set of variables that are used in an instruction in n
before a possible rede�nition of the variable

Live-out set
liveout(n) is the set of variables that are live at an out-edge of n

Live-in set
livein(n) is the set of variables that are live at an in-edge of n

Register Allocation

Register allocation

An important code transformation
When translating an IR with (in�nitely many) virtual registers to
code for a real machine, we must:

• assign virtual registers to physical registers
• write register values to memory (spill), at program points when
the number of live virtual registers exceeds the number of
available registers

Register allocation is very important; good allocation can make a
program run an order of magnitude faster (or more) as compared to
poor allocation.

The interference graph

Live sets and register usage

• A variable is live at a point in the CFG, if it may be used in the
remaining code without assignment in between

• If two variables are live at the same point in the CFG, they must
be in di�erent registers

• Conversely, two variables that are never live at the same time
can share a register

Interfering variables

• We say that variables x and y interfere if they are both live at
some point

• The register interference graph has variables as nodes and
edges between interfering variables

Which variables interfere?

void bubble_sort(int[] a) {

int i, j, t, n;

n = a.length;

for (i = 0; i < n; i++) {

for (j = 1; j < n - i; j++) {

if (a[j - 1] > a[j]) {

t = a[j - 1];

a[j - 1] = a[j];

a[j] = t;

}

}

}

}

An example

How many registers are needed?

a

fe

d

c

b

Answer: Two!
Use one register for a, c and d,
the other for b, e and f .

Reformulation
To assign K registers to variables
given an interference graph can
be seen as colouring the nodes of
the graph with K colours, with
adjacent nodes getting di�erent
colours.

An example

How many registers are needed?

a

fe

d

c

b Answer: Two!
Use one register for a, c and d,
the other for b, e and f .

Reformulation
To assign K registers to variables
given an interference graph can
be seen as colouring the nodes of
the graph with K colours, with
adjacent nodes getting di�erent
colours.

An example

How many registers are needed?

a

fe

d

c

b Answer: Two!
Use one register for a, c and d,
the other for b, e and f .

Reformulation
To assign K registers to variables
given an interference graph can
be seen as colouring the nodes of
the graph with K colours, with
adjacent nodes getting di�erent
colours.

Register allocation by graph colouring

The algorithm (K colours available)

1. Find a node n with less than K edges and remove n and its
edges from the graph and put it on a stack

2. Repeat with remaining graph until either
a. only K nodes remain or
b. all remaining nodes have at least K adjacent edges

Comments

2.a In the �rst case, give each remaining node a distinct colour and
pop nodes from the stack, inserting them back into the graph
with their edges and colouring them

2.b In the second case, we may need to spill a variable to memory.
Optimistic algorithm: choose one variable and push on the
stack. Later, when popping the stack, we may be lucky and �nd
that the neighbours use at most K − 1 colours.

Register allocation by graph colouring

The algorithm (K colours available)

1. Find a node n with less than K edges and remove n and its
edges from the graph and put it on a stack

2. Repeat with remaining graph until either
a. only K nodes remain or
b. all remaining nodes have at least K adjacent edges

Comments

2.a In the �rst case, give each remaining node a distinct colour and
pop nodes from the stack, inserting them back into the graph
with their edges and colouring them

2.b In the second case, we may need to spill a variable to memory.
Optimistic algorithm: choose one variable and push on the
stack. Later, when popping the stack, we may be lucky and �nd
that the neighbours use at most K − 1 colours.

Complexity

A hard problem

• The problem to decide whether a graph can be K-coloured is
NP-complete

• The simplify/select algorithm on the previous slide works well
in practice; its complexity is O(n2), where n is the number of
virtual registers used

• When optimistic algorithm fails, memory store and fetch
instructions must be added and algorithm restarted

• Heuristics to choose variable to spill:
• Little use+def within loop
• Interference with many other variables

Move instructions

An example

t := s

x := s + 1

y := t + 2

...

s and t interfere, but if t is not
later rede�ned, they may share a
register

Coalescing
Move instructions t := s can
sometimes be removed and the
nodes s and t merged in the
interference graph.

Conditions:

• No interference between s

and t for other reasons
• The graph must not become
harder to colour

Move instructions

An example

t := s

x := s + 1

y := t + 2

...

s and t interfere, but if t is not
later rede�ned, they may share a
register

Coalescing
Move instructions t := s can
sometimes be removed and the
nodes s and t merged in the
interference graph.

Conditions:

• No interference between s

and t for other reasons
• The graph must not become
harder to colour

Linear scan register allocation

Compilation time vs code quality

• Register allocation based on graph colouring produces good
code, but requires signi�cant compilation time

• For JIT compiling allocation time is a problem
• The Java HotSpot compiler uses a linear scan register allocator
• Much faster and in many cases only 10% slower code

The linear scan algorithm

Preliminaries

• Number all the instructions 1, 2, ..., in some way
• for now, think of numbering them from top to bottom
• Other instruction orderings improves the algorithm; a depth �rst
ordering is recommended

• Do a simpli�ed liveness analysis, assigning a live range to each
variable.

A live range is an interval of integers starting with the number
of the instruction where the variable is �rst de�ned and ending
with the number where it is last used.

• Sort live ranges in order of increasing start points into list L

The linear scan algorithm

The algorithm

• Maintain a list, called A, of live ranges that have been assigned
registers; A is sorted by increasing end points and initially
empty

• Traverse L and for each interval I:
• Traverse A and remove intervals with end points before start
point of I

• If length of A is smaller than number of registers, add I to A;
otherwise spill either I or an element of A

• In the latter case, the choice of interval to spill is usually to keep
interval with longest remaining range in A

Constant propagation

Simple constant propagation

A data�ow analysis based on SSA form

• Uses values from a lattice L with elements
• ⊥: unreachable, as far as the analysis can tell
• c1, c2, c3, . . .: the value is constant, as indicated
• >: yet unknown, may be constant
• Each variable v is assigned an initial value val(v) ∈ L:

• variables with de�nitions v := c get val(v) = c
• input variables/parameters v get val(v) = >
• and the rest get val(v) = ⊥

The lattice L

c1 c2 c3 c4 . . .

The lattice order
⊥ ≤ c ≤ > for all c
ci and cj not related

Propagation phase 1

Iteration

• Initially, place all names n with val(n) 6= > on a worklist
• Iterate by picking a name from the worklist, examining its uses
and computing val of the RHS’s, using rules as

0 · x = 0 (for any x)
x · ⊥ = ⊥
x · > = > (x 6= 0)

plus ordinary multiplication for constant operands
• For φ-functions, we take the join ∨ of the arguments, where
⊥ ∨ x = x for all x, > ∨ x = > for all x, and

ci ∨ cj =
{
>, if ci 6= cj
ci, otherwise

Propagation phase 2

Iteration, continued
Update val for the de�ned variables, putting variables that get a
new value back on the worklist.

Terminate when worklist is empty.

Termination
Values of variables on the worklist can only increase (in lattice
order) during iteration. Each value can only have its value increased
twice.

Loop optimization

Optimizations of loops

In computationally demanding applications, most of the time is
spent in executing (inner) loops.

Thus, an optimizing compiler should focus its e�orts in improving
loop code.

The �rst task is to identify loops in the code. In the source code,
loops are easily identi�ed, but how to recognize them in a low level
IR code?

A loop in a CFG is a subset of the nodes that

• has a header node, which dominates all nodes in the loop
• has a back edge from some node in the loop back to the header
A back edge is an edge where the head dominates the tail

Dominators

De�nition

• In a CFG, node n dominates node m if every path from the start
node to m passes through n

• Particular case: we consider each node to dominate itself
• Concept has many uses in compilation

Prime test CFG

B1

B6

B5B4

B3

B2

Moving loop-invariant code out of the loop

A simple example
for (i = 0; i < n; i++)

a[i] = b[i] + 3 * x;

should be replaced by

t = 3 * x;

for (i = 0; i < n; i++)

a[i] = b[i] + t;

We need to insert an extra
node (a pre-header) before
the header.

Not quite as simple
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

a[i][j] = b[i][j] + 10 * i

+ 3 * x;

should be replaced by

t = 3 * x;

for (i = 0; i < n; i++) {

u = 10 * i + t;

for (j = 0; j < n; j++)

a[i][j] = b[i][j] + u;

}

Moving loop-invariant code out of the loop

A simple example
for (i = 0; i < n; i++)

a[i] = b[i] + 3 * x;

should be replaced by

t = 3 * x;

for (i = 0; i < n; i++)

a[i] = b[i] + t;

We need to insert an extra
node (a pre-header) before
the header.

Not quite as simple
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

a[i][j] = b[i][j] + 10 * i

+ 3 * x;

should be replaced by

t = 3 * x;

for (i = 0; i < n; i++) {

u = 10 * i + t;

for (j = 0; j < n; j++)

a[i][j] = b[i][j] + u;

}

Moving loop-invariant code out of the loop

A simple example
for (i = 0; i < n; i++)

a[i] = b[i] + 3 * x;

should be replaced by

t = 3 * x;

for (i = 0; i < n; i++)

a[i] = b[i] + t;

We need to insert an extra
node (a pre-header) before
the header.

Not quite as simple
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

a[i][j] = b[i][j] + 10 * i

+ 3 * x;

should be replaced by

t = 3 * x;

for (i = 0; i < n; i++) {

u = 10 * i + t;

for (j = 0; j < n; j++)

a[i][j] = b[i][j] + u;

}

Induction variables

Basic
A basic induction variable is an (integer) variable which has a single
de�nition in the loop body, which increases its value with a �xed
(loop-invariant) amount. For example:

n = n + 3

A basic IV will assume values in arithmetic progression when the
loop executes.

Derived
Given a basic IV we can �nd a collection of derived IVs, each of
which has a single def of the form:

m = a * n + b;

where a and b are loop-invariant.

The def can be extended to allow RHS of the form a * k + b where
also k is an already established derived IV.

Strength reduction for IVs

• n is a basic IV (only def is to
increase by 1)

• k is derived IV

while (n < 100) {

k = 7 * n + 3;

a[k]++;

n++;

}

• Replace multiplication
involved in def of derived IV
by addition

• Could there be some problem
with this transformation?

k = 7 * n + 3;

while (n < 100) {

a[k]++;

n++;

k += 7;

}

Strength reduction for IVs

• n is a basic IV (only def is to
increase by 1)

• k is derived IV

while (n < 100) {

k = 7 * n + 3;

a[k]++;

n++;

}

• Replace multiplication
involved in def of derived IV
by addition

• Could there be some problem
with this transformation?

k = 7 * n + 3;

while (n < 100) {

a[k]++;

n++;

k += 7;

}

Strength reduction for IVs

• n is a basic IV (only def is to
increase by 1)

• k is derived IV

while (n < 100) {

k = 7 * n + 3;

a[k]++;

n++;

}

• Replace multiplication
involved in def of derived IV
by addition

• Could there be some problem
with this transformation?

k = 7 * n + 3;

while (n < 100) {

a[k]++;

n++;

k += 7;

}

Strength reduction for IVs, continued

• The loop might not execute
at all, in which case k would
not be evaluated

• Better to perform loop
inversion �rst

if (n < 100) {

k = 7 * n + 3;

do {

a[k]++;

n++;

k + =7;

} while (n < 100);

}

Strength reduction for IVs, continued

• The loop might not execute
at all, in which case k would
not be evaluated

• Better to perform loop
inversion �rst

if (n < 100) {

k = 7 * n + 3;

do {

a[k]++;

n++;

k + =7;

} while (n < 100);

}

• If n is not used a�er the loop,
it can be eliminated from the
loop

if (n < 100) {

k = 7 * n + 3;

do {

a[k]++;

k += 7;

} while (k < 703);

}

Loop unrolling

for (i = 0; i < 100; i++) for (i = 0; i < 100; i += 4) {

a[i] = a[i] + x[i]; a[i] = a[i] + x[i];

a[i+1] = a[i+1] + x[i+1];

a[i+2] = a[i+2] + x[i+2];

a[i+3] = a[i+3] + x[i+3];

}

• In which ways is this an improvement?
• What could be the disadvantages?

Loop unrolling

for (i = 0; i < 100; i++) for (i = 0; i < 100; i += 4) {

a[i] = a[i] + x[i]; a[i] = a[i] + x[i];

a[i+1] = a[i+1] + x[i+1];

a[i+2] = a[i+2] + x[i+2];

a[i+3] = a[i+3] + x[i+3];

}

• In which ways is this an improvement?
• What could be the disadvantages?

A larger example

An example of optimization in LLVM

int f () {

int i, j, k;

i = 8;

j = 1;

k = 1;

while (i != j) {

if (i == 8)

k = 0;

else

i++;

i = i + k;

j++;

}

return i;

}

Comments
Human reader sees, with some
e�ort, that the C/JavaLette
function f returns 8.

We follow how LLVM’s
optimizations will discover this
fact.

An example of optimization in LLVM

int f () {

int i, j, k;

i = 8;

j = 1;

k = 1;

while (i != j) {

if (i == 8)

k = 0;

else

i++;

i = i + k;

j++;

}

return i;

}

Comments
Human reader sees, with some
e�ort, that the C/JavaLette
function f returns 8.

We follow how LLVM’s
optimizations will discover this
fact.

Step 1: Naive translation to LLVM

define i32 @f() {

entry:

%i = alloca i32

%j = alloca i32

%k = alloca i32

store i32 8, i32* %i

store i32 1, i32* %j

store i32 1, i32* %k

br label %while.cond

while.cond:

%tmp = load i32* %i

%tmp1 = load i32* %j

%cmp = icmp ne i32 %tmp, %tmp1

br i1 %cmp, label %while.body,

label %while.end

while.body:

%tmp2 = load i32* %i

%cmp3 = icmp eq i32 %tmp2, 8

br i1 %cmp3, label %if.then,

label %if.else

if.then:

store i32 0, i32* %k

br label %if.end

if.else:

%tmp4 = load i32* %i

%inc = add i32 %tmp4, 1

store i32 %inc, i32* %i

br label %if.end

if.end:

%tmp5 = load i32* %i

%tmp6 = load i32* %k

%add = add i32 %tmp5, %tmp6

store i32 %add, i32* %i

%tmp7 = load i32* %j

%inc8 = add i32 %tmp7, 1

store i32 %inc8, i32* %j

br label %while.cond

while.end:

%tmp9 = load i32* %i

ret i32 %tmp9

}

Step 2: Translating to SSA form (opt -mem2reg)

define i32 @f() {

entry:

br label %while.cond

while.cond:

%k.1 = phi i32 [1, %entry],

[%k.0, %if.end]

%j.0 = phi i32 [1, %entry],

[%inc8, %if.end]

%i.1 = phi i32 [8, %entry],

[%add, %if.end]

%cmp = icmp ne i32 %i.1, %j.0

br i1 %cmp, label %while.body,

label %while.end

while.body:

%cmp3 = icmp eq i32 %i.1, 8

br i1 %cmp3, label %if.then,

label %if.else

if.then:

br label %if.end

if.else:

%inc = add i32 %i.1, 1

br label %if.end

if.end:

%k.0 = phi i32 [0, %if.then],

[%k.1, %if.else]

%i.0 = phi i32 [%i.1, %if.then],

[%inc, %if.else]

%add = add i32 %i.0, %k.0

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 %i.1

}

Step 3: Sparse Conditional Constant Propagation
(opt -sccp)

define i32 @f() {

entry:

br label %while.cond

while.cond:

%j.0 = phi i32 [1, %entry],

[%inc8, %if.end]

%k.1 = phi i32 [1, %entry],

[0, %if.end]

%cmp = icmp ne i32 8, %j.0

br i1 %cmp, label %while.body,

label %while.end

while.body:

br i1 true, label %if.then,

label %if.else

if.then:

br label %if.end

if.else:

br label %if.end

if.end:

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 8

}

Step 4: CFG Simpli�cation (opt -simplifycfg)
define i32 @f() {

entry:

br label %while.cond

while.cond:

%j.0 = phi i32 [1, %entry],

[%inc8, %if.end]

%k.1 = phi i32 [1, %entry],

[0, %if.end]

%cmp = icmp ne i32 8, %j.0

br i1 %cmp, label %if.end,

label %while.end

if.end:

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 8

}

Comments
If the function terminates, the
return value is 8.

opt has not yet detected that the
loop is certain to terminate.

Step 4: CFG Simpli�cation (opt -simplifycfg)
define i32 @f() {

entry:

br label %while.cond

while.cond:

%j.0 = phi i32 [1, %entry],

[%inc8, %if.end]

%k.1 = phi i32 [1, %entry],

[0, %if.end]

%cmp = icmp ne i32 8, %j.0

br i1 %cmp, label %if.end,

label %while.end

if.end:

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 8

}

Comments
If the function terminates, the
return value is 8.

opt has not yet detected that the
loop is certain to terminate.

Step 5: Dead Loop Deletion (opt -loop-deletion)

define i32 @f() {

entry:

br label %while.end

while.end:

ret i32 8

}

One more -simplifycfg step
yields �nally
define i32 @f() {

entry:

ret i32 8

}

For realistic code, dozens of passes are performed, some of them
repeatedly. Many heuristics are used to determine order.

Use opt -O3 for a default selection.

Step 5: Dead Loop Deletion (opt -loop-deletion)

define i32 @f() {

entry:

br label %while.end

while.end:

ret i32 8

}

One more -simplifycfg step
yields �nally
define i32 @f() {

entry:

ret i32 8

}

For realistic code, dozens of passes are performed, some of them
repeatedly. Many heuristics are used to determine order.

Use opt -O3 for a default selection.

Step 5: Dead Loop Deletion (opt -loop-deletion)

define i32 @f() {

entry:

br label %while.end

while.end:

ret i32 8

}

One more -simplifycfg step
yields �nally
define i32 @f() {

entry:

ret i32 8

}

For realistic code, dozens of passes are performed, some of them
repeatedly. Many heuristics are used to determine order.

Use opt -O3 for a default selection.

Summing up

On optimization

• We have only looked at a few of many, many techniques
• Modern optimization techniques use sophisticated algorithms
and clever data structures

• Frameworks such as LLVM make it possible to get the bene�ts
of state-of-the-art techniques in your own compiler project

