
Compiler construction
Lecture 5: Project extensions

Oskar Abrahamsson
Spring 2018

Chalmers University of Technology — Gothenburg University

This lecture

Some project extensions:

• Arrays
• Pointers and structures
• Object-oriented languages
• Module system (extension proposal)

Warm-up: Boolean expressions and control �ow

Possible code generation for one-armed if stmt
cgStmt (Cond expr stmt) = do

then_ <- newLabel

k <- newLabel

cgBoolExpr then_ k expr

label then_

cgStmt stmt

branch k

label k

Possible code for conjunction in condition expression
cgBoolExpr then_ k (EAnd x y) = do

mid <- newLabel

cgBoolExpr mid k x

label mid

cgBoolExpr then_ k y

Warm-up: Boolean expressions and control �ow

Possible code generation for one-armed if stmt
cgStmt (Cond expr stmt) = do

then_ <- newLabel

k <- newLabel

cgBoolExpr then_ k expr

label then_

cgStmt stmt

branch k

label k

Possible code for conjunction in condition expression
cgBoolExpr then_ k (EAnd x y) = do

mid <- newLabel

cgBoolExpr mid k x

label mid

cgBoolExpr then_ k y

Warm-up: Boolean expressions and control �ow

Possible code generation for one-armed if stmt
cgStmt (Cond expr stmt) = do

then_ <- newLabel

k <- newLabel

cgBoolExpr then_ k expr

label then_

cgStmt stmt

branch k

label k

Possible code for conjunction in condition expression
cgBoolExpr then_ k (EAnd x y) = do

mid <- newLabel

cgBoolExpr mid k x

label mid

cgBoolExpr then_ k y

Arrays

Memory structure

JavaLette restrictions

• Only local variables and parameters – no global variables or
other non-local declarations

• Only simple data types (int, double, boolean) with �xed-size
values

• Only call-by-value parameter passing

As a consequence, all data at runtime can be stored in the
activation records on a stack.

More general language features
Global variables, nested procedures, linked structures and pointers,
classes, ..., have other requirements: a stack is not su�cient for
runtime memory management.

Memory organisation

Typical memory organisation

Static data

Addr. 0

Heap

Stack

Code area

Comments

• Static area for global
variables

• Stack and heap grow from
opposite ends to avoid
predetermined size decisions

• Stack managed by LLVM
• Management of heap much
more complicated than stack

Arrays in JavaLette

Java-like arrays
Arrays in the JavaLette extensions are similar to Java arrays:

• A variable of type e.g. int[] contains a reference to a block of
memory on the heap, where array elements are stored.

• Arrays must be explicitly created as in
int[] v = new int[20];

• Lower bound of array index is always 0
• Array elements are initialized to 0/0.0/false
• Arrays have a length attribute, with dot-notation
• Arrays can be both function arguments and results

Two extensions (each one credit)

First extension
One-dimensional arrays and ‘foreach’ statement, as in

int sum = 0;

for (int x : v)

sum = sum + x;

The ordinary for statement is not required.

Second extension
Multidimensional arrays:

• All indices must get upper bounds when an array is created
• For n > 1, an n-dimensional array is a one-dimensional array,
each of whose elements is an n− 1-dimensional array

Two extensions (each one credit)

First extension
One-dimensional arrays and ‘foreach’ statement, as in

int sum = 0;

for (int x : v)

sum = sum + x;

The ordinary for statement is not required.

Second extension
Multidimensional arrays:

• All indices must get upper bounds when an array is created
• For n > 1, an n-dimensional array is a one-dimensional array,
each of whose elements is an n− 1-dimensional array

Sample LLVM code

Indexing in two-dimensional array
%arr1 = type %struct1*

%arr2 = type %struct2*

%struct1 = type {i32, [0 x i32]}

%struct2 = type {i32, [0 x %arr1]}

define i32 @getElem (%arr2 %m, i32 %i, i32 %j) {

%p1 = getelementptr %struct2, %arr2 %m,

i32 0, i32 1, i32 %i

%p2 = load %arr1, %arr1* %p1

%p3 = getelementptr %struct1, %arr1 %p2,

i32 0, i32 1, i32 %j

%p4 = load i32, i32* %p3

ret i32 %p4

}

Your generated code may well look di�erent.

Hints for array extension

First extension

• LLVM type of array hinted at in previous slide, use size 0
• Use C function calloc to allocate 0-initialized memory
• New forms of expression: array indexing and new expression
• Indexed expressions also as L-values in assignments
• Not required to generate bounds-checking code

Second extension

• new expression with several indices involves generating code
with loops and repeated calloc’s

• Indexing requires several getelementptr instructions

Hints for array extension

First extension

• LLVM type of array hinted at in previous slide, use size 0
• Use C function calloc to allocate 0-initialized memory
• New forms of expression: array indexing and new expression
• Indexed expressions also as L-values in assignments
• Not required to generate bounds-checking code

Second extension

• new expression with several indices involves generating code
with loops and repeated calloc’s

• Indexing requires several getelementptr instructions

Structures and pointers

Structures and pointers extension

• In addition to function de�nitions, a
Javalette �le may contain de�nitions
of structures and pointer types

• Structure objects are allocated on
the heap, using new

• Pointer variable (on stack) may refer
to memory structure on the heap

Static data

Addr. 0
Code area

Structures and pointers examples

Code examples in JavaLette.

typedef struct Node *list;

struct Node {

int elem;

list next;

}

list cons(int x, list xs) {

list res;

res = new Node;

res->elem = x;

res->next = xs;

return res;

}

int length(list xs) {

if (xs == (list)null)

return 0;

else

return 1 + length(xs->next);

}

list fromTo(int m, int n) {

if (m > n)

return (list)null;

else

return cons(m, fromTo(m + 1, n));

}

Adding structures and pointers to JavaLette

New toplevel de�nitions

• Structure de�nitions, exampli�ed by Node
• Pointer type de�nitions, exampli�ed by list

New expression forms

• Heap object creation, exampli�ed by new Node

• Pointer dereferencing, exampli�ed by xs->next
• Null pointers, exampli�ed by (list)null

New statement forms

• Pointer dereferencing allowed in le� hand sides of
assignments, as in xs->elem = 3;

• In absense of garbage collection, you should have a free
statement

Adding structures and pointers to JavaLette

New toplevel de�nitions

• Structure de�nitions, exampli�ed by Node
• Pointer type de�nitions, exampli�ed by list

New expression forms

• Heap object creation, exampli�ed by new Node

• Pointer dereferencing, exampli�ed by xs->next
• Null pointers, exampli�ed by (list)null

New statement forms

• Pointer dereferencing allowed in le� hand sides of
assignments, as in xs->elem = 3;

• In absense of garbage collection, you should have a free
statement

Adding structures and pointers to JavaLette

New toplevel de�nitions

• Structure de�nitions, exampli�ed by Node
• Pointer type de�nitions, exampli�ed by list

New expression forms

• Heap object creation, exampli�ed by new Node

• Pointer dereferencing, exampli�ed by xs->next
• Null pointers, exampli�ed by (list)null

New statement forms

• Pointer dereferencing allowed in le� hand sides of
assignments, as in xs->elem = 3;

• In absense of garbage collection, you should have a free
statement

Implementing structures and pointers in LLVM backend

Some hints

• Structure and pointer type de�nitions translate to LLVM type
de�nitions

• Again, use calloc for allocating heap memory
• getelementptr and load will be used for pointer dereferencing
• Info about struct layout may be needed in the state of code
generator

From previous lecture: Computing the size of a type
We use the getelementptr instruction:

%p = getelementptr %T, %T* null, i32 1

%s = ptrtoint %T* %p to i32

Now, %s holds the size of %T.

Implementing structures and pointers in LLVM backend

Some hints

• Structure and pointer type de�nitions translate to LLVM type
de�nitions

• Again, use calloc for allocating heap memory
• getelementptr and load will be used for pointer dereferencing
• Info about struct layout may be needed in the state of code
generator

From previous lecture: Computing the size of a type
We use the getelementptr instruction:

%p = getelementptr %T, %T* null, i32 1

%s = ptrtoint %T* %p to i32

Now, %s holds the size of %T.

Other uses of pointers (not part of extension)

Code example (in C)
void swap (int *x, int *y) {

int tmp = *x;

*x = *y;

*y = tmp;

}

int main () {

int a = 1;

int b = 3;

swap(&a, &b);

printf("a=%d\n", a);

}

Parameter passing by reference

• To make it possible to return
results in parameters, one may
use pointer parameters

• Actual arguments are addresses
• Problem: makes code
optimization much more di�cult

a

...

...

swap
AR

main
AR

y
x

b

Other uses of pointers (not part of extension)

Code example (in C)
void swap (int *x, int *y) {

int tmp = *x;

*x = *y;

*y = tmp;

}

int main () {

int a = 1;

int b = 3;

swap(&a, &b);

printf("a=%d\n", a);

}

Parameter passing by reference

• To make it possible to return
results in parameters, one may
use pointer parameters

• Actual arguments are addresses
• Problem: makes code
optimization much more di�cult

a

...

...

swap
AR

main
AR

y
x

b

Call by reference and aliasing

Code examples
void swap (int *x, int *y) {

int tmp = *x;

*x = *y;

*y = tmp;

}

...

swap (x, x);

...

Comments

• With call by reference and
pointers, two di�erent variables
may refer to the same location;
aliasing

• Aliasing complicates code
optimization:
x := 2

y := 5

a := x + 3

Here we might want to replace
last instr by a := 5; but what if y
is an alias for x?

Call by reference and aliasing

Code examples
void swap (int *x, int *y) {

int tmp = *x;

*x = *y;

*y = tmp;

}

...

swap (x, x);

...

Comments

• With call by reference and
pointers, two di�erent variables
may refer to the same location;
aliasing

• Aliasing complicates code
optimization:
x := 2

y := 5

a := x + 3

Here we might want to replace
last instr by a := 5; but what if y
is an alias for x?

Deallocating heap memory

The problem
In contrast to stack memory, there is no simple way to say when
heap allocated memory is not needed anymore.

Two main approaches

1. Explicit deallocation
• Programmer deallocates memory when no longer needed (using
free)

• Potentially most e�cient
• Very easy to get wrong (memory leakage or premature returns)

2. Garbage collection
• Programmer does nothing; runtime system reclaims unneeded
memory

• Secure but runtime penalty
• Acceptable in most situations
• Used in Java, Haskell, C#, ...

Garbage collection

General approach
Runtime system keeps list(s) of free heap memory, malloc returns a
chunk from suitable free list.

Many variations. Some approaches:

1. Reference counting: each chunk keeps a reference count of
incoming pointers, when count becomes zero, chunk is returned
to free list; problem: cyclic structures

2. When free list is empty, collect in two phases:
Mark Follow pointers from global and local variables,

marking reachable chunks
Sweep Traverse heap and return unmarked chunks to

free list

Object-orientation

Object-oriented languages

Class-based languages
We consider only languages where objects are created as instances
of classes. A class describes:

• a collection of instance variables; each object gets its own copy
of this collection

• a collection of methods to access and update the instance
variables

Each object contains, in addition to the instance variables, a pointer
to a class descriptor. This descriptor contains addresses of the code
of methods.

Without inheritance, all this is straightforward; classes are just
structures. We propose a little bit more: single inheritance without
method override.

JavaLette classes, code example 1

class Counter {

int val;

void incr () {

val++;

return;

}

int value () {

return val;

}

}

int main () {

Counter c;

c = new Counter;

c.incr();

c.incr();

c.incr();

int x = c.value();

printInt(x);

return 0;

}

JavaLette classes, code example 2

class Point2 {

int x;

int y;

void move(int dx, int dy) {

x = x + dx;

y = y + dy;

}

int getX() { return x; }

int getY() { return y; }

}

class Point3 extends Point2 {

int z;

void moveZ(int dz) {

z = z + dz;

}

int getZ() { return z; }

}

int main() {

Point2 p;

Point3 q = new Point3;

q.move(2, 4);

q.moveZ(7);

p = q;

...

Adding classes to basic JavaLette (extension 1)

New toplevel de�nitions

• Class de�nitions, consisting of a number of instance variable
declarations and a number of method de�nitions

• Instance variables are only visible within methods of the class
• All methods are public
• All classes have one default constructor, which initializes
instance variables to default values (0, false, null)

• A class may extend another one, adding more instance
variables and methods, but without overriding

• Classes are types; variables can be declared to be references to
objects of a class

• We have subtyping; if S extends C, then S is a subtype of C;
whenever an object of type C is expected, we may supply an
object of type S.

Hints for object extension 1

New forms of expressions

• Object creation, exampli�ed by new Point2, which allocates a
new object on the heap with default values for instance
variables

• Method calls, exampli�ed by p.move(3,5)
• Null references, exampli�ed by (Point)null
• Self reference. Within a class, self refers to the current object;
all calls to sibling methods within a class must use method
calls to self

Implementation hints
Much of ideas (and code) from the pointers/structures extension
can be reused.

Method calls will be translated to function call with receiving object
as extra, �rst parameter.

Overriding / dynamic dispatch (extension 2)

Example with overriding
We consider the following classes:

class A {

int x;

void f (int z) {x = z;}

}

class B extends A {

int y;

int g() {return 0;}

}

class C extends B {

void f(int z) {x = z; y = 0;}

}

Objects at runtime

C objC = new C();

g
f

g
ff

code entry A_f code entry B_g code entry C_f

x x
y

x

y

A objA = new A(); B objB = new B();

Each object includes instance variables and pointer to class
descriptor.

Objects at runtime, variant

f
null

fg

C objC = new C();B objB = new B();A objA = new A();

y

x

y
xx

code entry A_f code entry B_g code entry C_f

Class descriptors linked into list. List searched at runtime.

Dynamic dispatch

Code example
A obj = objA;

...

obj.f(5);

...

obj = objC;

...

obj.f(3);

What code is run?

• The method to execute is determined
at runtime by following the link to the
class descriptor

• Static type checking guarantees that
there is a method with proper signature
in the descriptor

• There is an e�ciency penalty in
dynamic dispatch (so optimization tries
to remove it)

Dynamic dispatch

Code example
A obj = objA;

...

obj.f(5);

...

obj = objC;

...

obj.f(3);

What code is run?

• The method to execute is determined
at runtime by following the link to the
class descriptor

• Static type checking guarantees that
there is a method with proper signature
in the descriptor

• There is an e�ciency penalty in
dynamic dispatch (so optimization tries
to remove it)

Modules

Module systems

Programmer’s perspective: Modularity

• Reusability
• Information hiding
• Name space control

Compiler’s perspective: Separate compilation

• Smaller compilation units
• Recompilation only of changed units
• Library modules released as binaries

Module systems

Programmer’s perspective: Modularity

• Reusability
• Information hiding
• Name space control

Compiler’s perspective: Separate compilation

• Smaller compilation units
• Recompilation only of changed units
• Library modules released as binaries

Some approaches

Increasing levels of sophistication

• Inclusion mechanism: concatenate all �les before compilation
• Include with header �les: headers with type information
included for compilation and separate linking

• Import mechanism:
• Compilation requires interface info from imported �les
• Compilation generates interface and object �les
• O�en in OO languages, module = class

A possible module system for basic JavaLette

Extension proposal

• One module per �le
• All modules in same directory (further extension: de�ne search
path mechanism)

Observations

• Mainly system for name space control and libraries
• If you want to implement it, you may get credits
• Di�culty: not much support in LLVM

Import in JavaLette

New syntax
If M is a module name, then

• import M is a new form of declaration
• M.f(e1, ..., en) is a new form of expression

Unquali�ed use
A function in an imported module may be used without the module
quali�cation if the name is unique. Name clashes are resolved as
follows:

• If two imported modules de�ne a function f, we must use the
quali�ed form

• If the current module and an imported module both de�ne f,
the unquali�ed name refers to the local function

Import and dependency

Import
To use functions de�ned in M, another module must explicitly
import M.

Hence, import is not transitive, i.e, if M imports L and L imports K, it
does not follow that M imports K.

Dependency

• If M imports L, then M depends on L

• If M imports L and L depends on K, then M depends on K;
dependency is transitive

We assume that dependency is non-cyclic: if M depends on N, then N

may not depend on M.

Compiling a module, 1

Compiler’s tasks
When called by jlc M.jl, the compiler must

1. Read the import statements of M to get list of imported modules
2. Recursively, read the import statements of these modules (and
report an error if some module not found)

3. Build dependency graph of involved modules
4. Sort modules topologically (and report error if cyclic import
found)

5. Go through modules in topological order (M last) and check
timestamps to see if recompilation is necessary

Hint: It is OK to require that import statements are in the beginning
of the �le and with one import per line to avoid need of complete
parsing.

Compiling a module, 2

Symbol table
You need a symbol table with types of functions from all imported
modules. This info is readily available in LLVM �les, but needs to be
collected (and parsed).

Build the symbol table so that unquali�ed names will �nd the
correct type signature (i.e., you must check for name clashes).

Note 1 It is a good idea to replace unquali�ed names by
quali�ed (for code generation)

Note 2 Type declaration for all imported functions must be
added to LLVM �le

