1.

Sample solutions for the examination of
Models of Computation
(DIT310/DIT311/TDA184)
from 2019-01-16

Nils Anders Danielsson

(a) A=0, B=N—N.

(b) It is not countable.
Note first that { 0 } — N is in bijective correspondence with N: the
functions Af. f0€ ({0} =>N)—=>Nand An.A_neN—= ({0} —=N)
are inverses of each other. Thus ({0} —N)— ({0} —N) is in bi-
jective correspondence with N — N, which is not countable. We can
conclude that ({0} = N) — ({0} — N) is not countable, because if
an uncountable set A is in bijective correspondence with a set B, then
B is also uncountable.

2. case zof { True(z) — z}.

3. No. This can be proved by reducing is-total, (which is not y-decidable,

see the following exercise) to is-totals.

If is-totaly is x-decidable, then there is a closed x expression is-totals
witnessing the computability of is-total;. This expression is also a witness
of the y-decidability of is-total,, because for any e € Fun we have

[is-total; " e™]

" is-totaly e

"if Vb, € Bool. 3by € Bool.[e" by '] ="by"
then true else false " =

"is-totaly e

(Note that Fun C CEzp, and that the encoding function for CEzp is used
also for Fun.)

. No. We can prove this by reducing the halting problem (which is not

x-decidable) to is-total,.

If is-total, is x-decidable, then there is a closed x expression is-total,
witnessing the computability of is-total,. We can use this expression to

construct a closed x expression halts (written using a mixture of concrete
syntax and meta-level notation):

-

halts = Ne.is-totaly " A . (A_."true’) e .
Now note that, for any e € CEzp, the closed expression A_. (A_. " true ') e
is an element of Fun, i.e. there is some f € Bool — Bool such that

Vb e Bool. [(A_.(A_."true) e)"b']="fb"
This holds for f defined by

fb=if[e] is defined then true else undefined,
because for any b € Bool we have

[A_.(A_"true™) e)"b7] =
[(A_"true™) e] =
if [e] is defined then " true ' else undefined =
" if [e] is defined then true else undefined ' =

b

Thus, by the assumption that is-total, witnesses the computability of
is-totaly, we get that

[is-totaly, " A _. (A_."true ") e '] = "is-totaly (A_. (A_."true ') e) .

Let us now verify that halts witnesses the decidability of the halting prob-
lem. For any e € CExp we have

[halts " e] =
[is-totaly " A _. (A_."true ") €] =
"is-totaly (A_. (A_."true ") e) " =
if V b, € Bool. 3by € Bool. [(A_.(A_."true) e) "b; '[="by"
then "true " else " false " =
if 30, € Bool. [(A_."true™) e] =" by "
then "true " else "false .

If [e] is defined, then

if 30, € Bool. [(A_."true) e] =" by, " then "true " else "false ' =
if 3b, € Bool ["true '] =" b, 'then "true " else " false
if 3 b, € Bool."true ' =" b, 'then "true " else "false " =
"true |

and if [e] is undefined, then

if 3b, € Bool.[(A_."true ") e] =" b, 'then "true ' else "false ' =
if 3b, € Bool." b, " is undefined then " true " else " false '
" false .

Thus we get
[halts" e'] =" if [e] is defined then true else false ",

i.e. halts witnesses the decidability of the halting problem.
5. (a) The value is 3:

[[p]] (ni|72) =
[comp suc (nil, proj 1)] (nil, [p] (nil, 1), 1)
[suc] ([nil, proj 1]* (nil, [p] (nil,1),1)) =
[suc] (nil, [proj 1] (nil, [p] (nil, 1), 1)) =
[suc] (nil, [p] (nil, 1)) =
1+ [p] (nil, 1) =
1 + Jcomp suc (nil, proj 1)] (nil, [p] (nil,0),0) =
1+ [suc] ([nil, proj 1]* (nil, [p] (nil,0),0)) =
1+ [suc] (nil, [proj 1] (nil, [p] (nil,0),0)) =
1+ [suc] (nil, [p] (nil,0)) =
2+ [p] (nil,0) =
2 + [comp suc (nil, zero)] nil
2 + [suc] ([nil, zero]* nil)

2 + [suc] (nil, [zero] nil)
3+ [zero] nil

3+0 =
3.

(b) The function takes n to 1+ n.
(¢) Let us prove by induction on n € N that [p] (nil,n) =1+ n.

e n = zero: We have

[p] (nil, n) =
[p] (nil, zero) =
[comp suc (nil, zero)] nil =
[suc] ([nil, zero]* nil) =
[suc] (nil, [zero] nil) =
1+ [zero] nil =
1 =
1+ zero =
1+n.

e n=sucn for some n” € N: The inductive hypothesis tells us
that [[p] (nil,n’) =1+ n’. We get

[p] (nil,n) =
[p] (nil,suc n’)
[comp suc (nil, proj 1)] (nil, [p] (nil,n"), n’) =

[suc] ([nil, proj 1] (nil, [p] (nil,n"),n")) =
[suc] (nil, [proj 1] (nil, [p] (nil, n"),n"))

[suc] (nil, [p] (nil, n"))
1+ [p] (nil, n")
1+(1+n) =
1+ n.

6. No. The total function that maps every natural number to zero cannot be
implemented. In particular, if the input is " 1" = 10, then it is impossible
to produce the output "0 =0, because the head cannot move to the
second square and write a blank.

