
Sample solutions for the examination of
Models of Computation

(DIT310/DIT311/TDA184)
from 2019-01-16

Nils Anders Danielsson

1. (a) A = ∅, B = ℕ → ℕ.
(b) It is not countable.

Note first that { 0 } → ℕ is in bijective correspondence with ℕ: the
functions 𝜆 f. f 0 ∈ ({ 0 } → ℕ) → ℕ and 𝜆n. 𝜆 . n ∈ ℕ → ({ 0 } → ℕ)
are inverses of each other. Thus ({ 0 } → ℕ) → ({ 0 } → ℕ) is in bi-
jective correspondence with ℕ → ℕ, which is not countable. We can
conclude that ({ 0 } → ℕ) → ({ 0 } → ℕ) is not countable, because if
an uncountable set A is in bijective correspondence with a set B, then
B is also uncountable.

2. case x of {True(x) → x}.

3. No. This can be proved by reducing is‐total4 (which is not 𝜒-decidable,
see the following exercise) to is‐total3.
If is‐total3 is 𝜒-decidable, then there is a closed 𝜒 expression is‐total3
witnessing the computability of is‐total3. This expression is also a witness
of the 𝜒-decidability of is‐total4, because for any e ∈ Fun we have

⟦is‐total3 ⌜ e ⌝ ⟧ =
⌜ is‐total3 e ⌝ =
⌜ if ∀ b1 ∈ Bool. ∃ b2 ∈ Bool. ⟦e ⌜ b1 ⌝ ⟧ = ⌜ b2 ⌝

then true else false ⌝ =
⌜ is‐total4 e ⌝.

(Note that Fun ⊆ CExp, and that the encoding function for CExp is used
also for Fun.)

4. No. We can prove this by reducing the halting problem (which is not
𝜒-decidable) to is‐total4.
If is‐total4 is 𝜒-decidable, then there is a closed 𝜒 expression is‐total4
witnessing the computability of is‐total4. We can use this expression to

1



construct a closed 𝜒 expression halts (written using a mixture of concrete
syntax and meta-level notation):

halts = 𝜆e. is‐total4 ⌜ 𝜆 . (𝜆 . ⌜ true ⌝) ⌞ e ⌟ ⌝.

Now note that, for any e ∈ CExp, the closed expression 𝜆 . (𝜆 . ⌜ true ⌝) e
is an element of Fun, i.e. there is some f ∈ Bool ⇀ Bool such that

∀ b ∈ Bool. ⟦(𝜆 . (𝜆 . ⌜ true ⌝) e) ⌜ b ⌝ ⟧ = ⌜ f b ⌝.
This holds for f defined by

f b = if ⟦e ⟧ is defined then true else undefined,

because for any b ∈ Bool we have

⟦(𝜆 . (𝜆 . ⌜ true ⌝) e) ⌜ b ⌝ ⟧ =
⟦(𝜆 . ⌜ true ⌝) e ⟧ =
if ⟦e ⟧ is defined then ⌜ true ⌝ else undefined =
⌜ if ⟦e ⟧ is defined then true else undefined ⌝ =
⌜ f b ⌝.

Thus, by the assumption that is‐total4 witnesses the computability of
is‐total4, we get that

⟦is‐total4 ⌜ 𝜆 . (𝜆 . ⌜ true ⌝) e ⌝ ⟧ = ⌜ is‐total4 (𝜆 . (𝜆 . ⌜ true ⌝) e) ⌝.

Let us now verify that halts witnesses the decidability of the halting prob-
lem. For any e ∈ CExp we have

⟦halts ⌜ e ⌝ ⟧ =
⟦is‐total4 ⌜ 𝜆 . (𝜆 . ⌜ true ⌝) e ⌝ ⟧ =
⌜ is‐total4 (𝜆 . (𝜆 . ⌜ true ⌝) e) ⌝ =
if ∀ b1 ∈ Bool. ∃ b2 ∈ Bool. ⟦(𝜆 . (𝜆 . ⌜ true ⌝) e) ⌜ b1 ⌝ ⟧ = ⌜ b2 ⌝

then ⌜ true ⌝ else ⌜ false ⌝ =
if ∃ b2 ∈ Bool. ⟦(𝜆 . ⌜ true ⌝) e ⟧ = ⌜ b2 ⌝

then ⌜ true ⌝ else ⌜ false ⌝.
If ⟦e ⟧ is defined, then

if ∃ b2 ∈ Bool. ⟦(𝜆 . ⌜ true ⌝) e ⟧ = ⌜ b2 ⌝ then ⌜ true ⌝ else ⌜ false ⌝ =
if ∃ b2 ∈ Bool. ⟦⌜ true ⌝ ⟧ = ⌜ b2 ⌝ then ⌜ true ⌝ else ⌜ false ⌝ =
if ∃ b2 ∈ Bool. ⌜ true ⌝ = ⌜ b2 ⌝ then ⌜ true ⌝ else ⌜ false ⌝ =
⌜ true ⌝,

and if ⟦e ⟧ is undefined, then

if ∃ b2 ∈ Bool. ⟦(𝜆 . ⌜ true ⌝) e ⟧ = ⌜ b2 ⌝ then ⌜ true ⌝ else ⌜ false ⌝ =
if ∃ b2 ∈ Bool. ⌜ b2 ⌝ is undefined then ⌜ true ⌝ else ⌜ false ⌝ =
⌜ false ⌝.

2



Thus we get

⟦halts ⌜ e ⌝ ⟧ = ⌜ if ⟦e ⟧ is defined then true else false ⌝,

i.e. halts witnesses the decidability of the halting problem.

5. (a) The value is 3:

⟦p ⟧ (nil, 2) =
⟦comp suc (nil, proj 1) ⟧ (nil, ⟦p ⟧ (nil, 1), 1) =
⟦suc ⟧ (⟦nil, proj 1⟧⋆ (nil, ⟦p ⟧ (nil, 1), 1)) =
⟦suc ⟧ (nil, ⟦proj 1 ⟧ (nil, ⟦p ⟧ (nil, 1), 1)) =
⟦suc ⟧ (nil, ⟦p ⟧ (nil, 1)) =
1 + ⟦p ⟧ (nil, 1) =
1 + ⟦comp suc (nil, proj 1) ⟧ (nil, ⟦p ⟧ (nil, 0), 0) =
1 + ⟦suc ⟧ (⟦nil, proj 1⟧⋆ (nil, ⟦p ⟧ (nil, 0), 0)) =
1 + ⟦suc ⟧ (nil, ⟦proj 1 ⟧ (nil, ⟦p ⟧ (nil, 0), 0)) =
1 + ⟦suc ⟧ (nil, ⟦p ⟧ (nil, 0)) =
2 + ⟦p ⟧ (nil, 0) =
2 + ⟦comp suc (nil, zero) ⟧ nil =
2 + ⟦suc ⟧ (⟦nil, zero⟧⋆ nil) =
2 + ⟦suc ⟧ (nil, ⟦zero ⟧ nil) =
3 + ⟦zero ⟧ nil =
3 + 0 =
3.

(b) The function takes 𝑛 to 1 + 𝑛.
(c) Let us prove by induction on 𝑛 ∈ ℕ that ⟦p ⟧ (nil, n) = 1 + n.

• n = zero: We have

⟦p ⟧ (nil, n) =
⟦p ⟧ (nil, zero) =
⟦comp suc (nil, zero) ⟧ nil =
⟦suc ⟧ (⟦nil, zero⟧⋆ nil) =
⟦suc ⟧ (nil, ⟦zero ⟧ nil) =
1 + ⟦zero ⟧ nil =
1 =
1 + zero =
1 + n.

• n = suc n′ for some 𝑛′ ∈ ℕ: The inductive hypothesis tells us
that ⟦p ⟧ (nil, n′) = 1 + 𝑛′. We get

⟦p ⟧ (nil, n) =
⟦p ⟧ (nil, suc n′) =
⟦comp suc (nil, proj 1) ⟧ (nil, ⟦p ⟧ (nil, n′), n′) =

3



⟦suc ⟧ (⟦nil, proj 1⟧⋆ (nil, ⟦p ⟧ (nil, n′), n′)) =
⟦suc ⟧ (nil, ⟦proj 1 ⟧ (nil, ⟦p ⟧ (nil, n′), n′)) =
⟦suc ⟧ (nil, ⟦p ⟧ (nil, n′)) =
1 + ⟦p ⟧ (nil, n′) =
1 + (1 + n′) =
1 + n.

6. No. The total function that maps every natural number to zero cannot be
implemented. In particular, if the input is ⌜ 1 ⌝ = 10, then it is impossible
to produce the output ⌜ 0 ⌝ = 0, because the head cannot move to the
second square and write a blank.

4


