Nils Anders Danielsson

2018-12-10

Today

Representing Turing machines.
A self-interpreter (a universal Turing machine).

A Turing machine that is a x interpreter.

>
>

» The halting problem.

>

» The Post correspondence problem.
>

Some history.

Representing
Turing
machines

Assume that S = {s, ..., s, }.
Note that S is always non-empty.

_|
95}
3
I
.
3
J

r " I‘kﬂ

w
=
I

Assume that ¥ = {¢,, ..., ¢,,, } and
F={.}U{c s Cmant-

I‘E—I:rm—l
I_F—I :l_n—l
I_l_l_l :I_O—I
I_Ck—I:l_k—l

— —

I‘L‘I
I‘R‘I

The transition function

» Arule 6 (s,z) = (5,2, d) is represented by
|_S-I_H_I_x—|_|+|_5/-l_|_l_l_1/j—l_|+l_d—ll

» The transition function is represented by the
representation of a list containing all of its
rules (ordered in some way).

Turing machines and strings

» A Turing machine (S, s
represented by

>,T,8) € TMis

initial

I—S—I_H_I_Sinitial—l_l_l_l—zj_i_l_rr_lﬂ_r(s—l.

» A pair consisting of a Turing machine tm and a
corresponding input string xs is represented by

“tm ' H " zs .

» Note that this encoding only uses two
non-blank symbols, 0 and 1.

1. None

2. S={sp}, X={c}, ' ={¢, 5,0},
6 (895 ¢1) = (895 €15 L)

3. S={so}, X={c, o}, I'={cy, 09,0},
0 (S0, ¢1) = (805 25 R)

Self-

Interpreter

Self-interpreter

A self-interpreter or universal Turing machine
eval can simulate arbitrary Turing machines with
arbitrary input:

eval {0 1}

Vitme TM. Vs € List %,
[eval] " (tm,xzs) " =" [tm] zs"

Implementation sketch

Possibly buggy:

» Let us use three tapes in the implementation.
Can convert to a one-tape machine later.

» Mark the left end of the input tape.

» Move the input string to the second tape.
Mark the left end and the head’s position.

» Write the initial state to the third tape.
Mark the left end.

Implementation sketch

» Simulate the input TM,
using the rules on the first tape.
» If the simulation halts,
write the result to the first tape and halt.

The halting
problem

The halting problem

halts € {(tm,xs) | tm € TM,xs € List ¥, } — Bool
halts (tm, zs) =
if [tm] xs is defined then
true
else
false

This function is not Turing-computable.

The halting problem

The halting problem can also be viewed as a
language:

{"(tm,zs) " | tm € TM, zs € List 2
[tm] xs is defined }

tm>

This language is Turing-undecidable.

(Note the difference between this definition and the
previous one.)

The halting problem (with self-application)

{"tm” | tm € TM,[tm] " tm " is defined }

This language is Turing-undecidable. Proof sketch:
» Assume that the TM halts decides it.
» Define a TM terminuv in the following way:

» Simulate halts with terminv's input.
» If halts accepts, loop forever.
> If halts rejects, halt.

» Note that terminv applied to " terminv ' halts
iff it does not halt.

The halting problem is undecidable

{"(tm,zs) " | tm € TM,zs € List ©
[tm] xs is defined }

tm>?

Proof sketch:
» Assume that the TM halts decides it.
» We can then implement a TM for the
halting problem with self-application:

> If the input is not " tm ' for some
tm € TM, reject.

» Ifitis " ¢tm ', write 7?7 on the tape.

» Run halts.

tm -+ " tm’
rtm—l—l-l—rrtm—l—l
tm—'—l—rtm-l—l-l—rrtm-l-l

1.
2.
3.
4,
5.
6.

X interpreter

A Y interpreter

The x semantics is Turing-computable:

» X programs can be represented as strings in
some finite alphabet >:

"_"™™M ¢ CExp — List®

» There is a TM chi satisfying the following
properties:

Zchz’ =X

Vee CExp. [chilpy "e ™ ="[e], "™

» How can recursion be implemented?
» One idea: An explicit stack on a separate tape.

Implementation sketch

» Come up with a small-step semantics for x.
» Use small steps also for substitution.

» Make sure that every small step can be
simulated on a TM.

» The design can be based on some
abstract machine for the A-calculus,
perhaps the CEK machine.

Every y-computable partial function in
N — N is Turing-computable

Proof sketch:
» If f€ N— N is y-computable, then

VmeN. e mX], ="fm™X

for some e € CFExp.
» The following TM implements f:
» Convert input: "m ™5 "e"m™X
» Simulate the y interpreter.
» Convert output: ""n XM "

™M

™

The Post

correspondence
problem

The Post correspondence problem

Definition (for a set 3 with at least two members):
» Given: z,...,z, € List ¥ X List X.
» Goal: Find k> 1 and iq,...,7;, € {1,...,n}
such that

Jsta; A A fsta =
snd z; +H -+ snd z; .

Examples on Wikipedia.

https://en.wikipedia.org/wiki/Post_correspondence_problem

» A: (001,00), (01,10).
» B: (01,001), (010,01).

The Post correspondence problem

» Undecidable.

» Note that there is no reference to
Turing machines (or x expressions)
in the statement of the problem.
» Proof idea:
» Construct pairs such that a TM halts iff
the problem is solvable.
» The resulting string (if any) encodes the
TM's computation history.
» Sipser's Introduction to the Theory of
Computation (available online via Chalmers’
library) contains a readable proof.

» Undecidable:
Is a context-free grammar ambiguous?

» The Post correspondence problem can be
reduced to this one.

Ambiguity

Proof sketch (taken from Sipser):
> Given: Pairs (t;,), ..., (%, b,).

» Define a CFG with three non-terminals, and
Start as the starting non-terminal:

Start = Top | Bottom

Top ==t Top 1|...]t, Top n
|t 1]...]¢, n

Bottom ::= by, Bottom 1| ... | b, Bottom n
b 1]...]0, n

(Here 1, ...,n are fresh terminals.)

» This grammar is ambiguous iff the given
instance of the Post correspondence problem
has a solution.

Brief and incomplete historical overview

Maybe not entirely correct, I'm not an expert on the
history of the subject.

» 1800s, 1900s: Mathematics is made more
formal.

» 1900: Hilbert's problems, including the
Entscheidungsproblem (mentioned as part of
problem ten).

» 1930: Godel's completeness theorem.
Semi-decision procedure.

Brief and incomplete historical overview

» 1931: Godel's incompleteness theorems.

» 1936, Church: The Entscheidungsproblem is
undecidable. The untyped A-calculus.

» 1937, Turing: Turing machines, equivalence to
the A-calculus.

» 1946, Post: The Post correspondence problem.
» Mid-1900s: The Church-Turing thesis.

» 1970, Matiyasevitch (building on the work of
others): Hilbert's tenth problem is undecidable.

Summary

Representing Turing machines.
A self-interpreter (a universal Turing machine).

A Turing machine that is a x interpreter.

>
>

» The halting problem.

>

» The Post correspondence problem.
>

Some history.

» Summary of the course.
» Old exam questions.

	Introduction
	Representing Turing machines
	Self-interpreter
	The halting problem
	Χ interpreter
	The Post correspondence problem
	Historical overview
	Summary

