Nils Anders Danielsson

2018-12-03

» Rice's theorem.
» Turing machines.

Rice's
theorem

Rice's theorem
Assume that P € CExp — Bool satisfies the
following properties:

» P is non-trivial:
There are expressions €, e € CETp
satisfying P e, = true and P e, = false.

» P respects pointwise semantic equality:
Ve, eg € CExp.
if Vee CExp.[e; e] = [e, €] then

Then P is y-undecidable.

The halting problem reduces to P:

halts = Ne.case P" X\ _.rec z =z ' of
{False() —
P" Az (A _. e, 2) (eval _codee)’
: True() —
not (P"Ax. (A _. e) (eval codee))
}

1. Is e € CEzp an implementation of the
successor function for natural numbers?

2. Is e € CFEzp syntactically equal to An. Suc(n)?

Turing
machines

Intuitive idea

v

A tape that extends arbitrarily far to the right.
» The tape is divided into squares.

» The squares can contain symbols,
chosen from a finite alphabet.

» A read/write head, positioned over one square.

» The head can move from one square to an
adjacent one.

» Rules that explain what the head does.

Rules

» A finite set of states.
» When the head reads a symbol
(blank squares correspond to a special symbol):
» Check if the current state contains a
matching rule, with:

» A symbol to write.
» A direction to move in.
» A state to switch to.

» If not, halt.

» Turing motivated his design partly by reference
to what a human computer does.

» Please read his text.

Abstract
syntax

Abstract syntax

A Turing machine (one variant) is specified by
giving the following information:
» 5. A finite set of states.
> 55 € 5 An initial state.
» > The input alphabet,
a finite set of symbols with | ¢ X.
I': The tape alphabet,
a finite set of symbols with Y U {,,} CT.
ye SxI'—=9xT x{LR}:
The transition “function”.

v

v

S'is a finite set S50 €S
3 is a finite set L& X

[is a finite set YU{,}CT
g€ SxI'—=9xT x{L,R}

(S, 59,5, T,0) € TM

Operational
semantics

Positioned tapes

» Representation of the tape and
the head’s position:

Tape = ListT' X List T’
» Here (s, rs) stands for

reverse ls H rs

followed by an infinite sequence of blanks ().

([2,1],[3,4,.,]) stands for:

Head

!
1121314 1uvlululuw

The symbol under the head

The head is located over the first symbol in rs
(or a blank, if rs is empty):

headp € Tape—T'
heady (Is, rs) = head rs

head € ListI' = I’
head [] =
head (x:: xs) = x

Writing to the tape:

write € I' = Tape — Tape
write x (Is, rs) = (s, z :: tail rs)

The “tail” of a sequence:

tail € ListT' — List T’
tail [=]
tail (r::rs) =rs

Moving the head:

move € {L,R} — Tape — Tape

move R (Is, rs) = (head rs:: Is, tail rs)
move L ([],rs) = ([] , 75)

move L (Is, rs) = (tail ls , head Is == rs)

Actions describe what the head will do:
Action =T x {L,R}

Note:
0 e SxI'— §x Action

First write, then move:

act € Action — Tape — Tape
act (z, d) t = move d (write x t)

Quiz

Which of the following equalities are valid?

~~

—

/N
/N

—

N

-

SN—
+~

~—

~~

-

~—
-~

1. ac

TN TN — — —

[S—

~— ~— ~—

/N N
TN TN TN
))]]]

—_

~—" —r ~—

TN TN TN

- - - - -

—_ ~ — ~— ~—
R R S

~_ ~ — ~— ~~—

e U N N

- - - - -~

S~— o — ~— —
T SR e

2. ac
3. ac
4. ac

Small-step operational semantics

A configuration consists of a state and a tape:
Configuration = State X Tape

The small-step operational semantics relates
configurations:

d (s, heady t) = (5, a)
(s,t) — (s, act a t)

Reflexive transitive closure

Zero or more small steps:

*
L — Cy Cy —" C5

c—"c g —" ¢

The machine halts if it ends up in a configuration ¢
for which there is no ¢ such that ¢ — ¢'.

The machine’s result

» The machine is started in state s.
» The head is initially over the left-most square.

» The tape initially contains a string of
characters from the input alphabet X
(followed by blanks).

» If the machine halts, then the result consists of
the contents of the tape, up to the last
non-blank symbol.

» (In 2016/2017 | required the machine to halt
with the head over the left-most square.)

A relation between List > and List I

(SOa H) xS) — (Sa t) ﬂc' (Sa t) —C

zs |} remove (list t)

Constructing the result

The function [ist converts the representation of the

tape to a list, and remove removes all trailing
blanks:

list € Tape — List T’
list (Is, rs) = reverse Is + s

remove € List ' — List I’

remove [] =[]

remove (z:: zs) = cons x (remove xs)
cons’ € I' = ListT' — List T’

cons' L[] =[]

cons xxs=x:xs

Quiz

Which properties does |} satisfy?

1. Is it deterministic (for every Turing machine)?

Vs e List Y. Y ys,zs € ListT'.
zs{ ys A\ xsl zs= ys = zs

2. Is it total (for every Turing machine)?

Vase ListX. dys € ListI'. xs | ys

The semantics as a partial function:

[-] € Vtm e TM. List ¥, — ListT,,,
[tm] xs = ys if zs{,, ys

Two
examples

Input alphabet: {0,1}.
Tape alphabet: {0,1,}.
States: {s,}.

Initial state: s,.

vV v v Vv

0 (8070) - (807 17 R)
d (s9,1) = (89,0,R)

(0,1,R)

(1,0,R)

No s W=

No result
0000
1111
0101
1010
0101,
1010,

Another example

One way to make sure that the head ends up over
the left-most square:

Input alphabet: {0,1}.
Tape alphabet: {0,1,0,1, }.
States: { sy, 51, So, 3 }-

v

v vV

Initial state: s.

(1,0,L)

Accepting
states

Accepting states

Turing machines with accepting states:

S'is a finite set ssES ACS
) is a finite set ¢
[is a finite set Yu{, }Cr
de SxI'—=9xTI x{L,R}

(S, 59, A, 2,T,6) € TM

A relation on List X::

(o5 [], 28) —* (s, 1) Ac. (s,1) — ¢
se A

Accept s

Is the string rejected?

A relation on List X:

(S5 [], 28) —* (s, 1) Ac. (s, 1) — ¢
s¢ A

Reject xs

Note that if the TM fails to halt, then the string is
neither accepted nor rejected.

Input alphabet: {1}.
Tape alphabet: {1,.,}.
States: { sy, 1 }-

Initial state: s,.
Accepting states: { s}

vV v v v VY

(1,1,R)

» Quiz: Which strings are accepted by this
Turing machine?

Variants

Variants

Equivalent (in some sense) variants:

v

Possibility to stay put.

A tape without a left end.

Multiple tapes.

Only two symbols, other than the blank one.

v vV

Representing
inductively
defined sets

One method:

" e N— List {1}
"zero ' =]
"sucn'=1="n

B

Another method:

" T e N List {0,1}
"zero' =0:]]
"sucn'=1="n

B

This method is used below.

Lists

Assume that members of A can be represented using
a function " _ " € A — List Z that is splittable:

> It is injective.
» There is a function

split € List 2 — List = x List =
such that, for any z € A, xs € List =,

split ("z" H zs) = "z, xs).

Lists

Assume that members of A can be represented using
a function " _ " € A — List Z that is splittable:

> It is injective.
» There is a function

split € List 2 — List = x List =
such that, for any z € A, xs € List =,
split ("z" H zs) = "z, xs).

Note that split can only be defined for one of the
presented methods for representing natural numbers.

Representation of List A:
"€ List A— List(EU{0,1})
[T =0x]]

"rpoxs =12 ' H " as’

This function is splittable.

S

None
3,0,2]
3,0,2,0]
3,2,0]
4,1,3,1]
4,1,3,1,0]

— o/ o/ o/

Pairs

Assume that members of A and B can be
represented using functions " _ "4 € A — List E and
"_"B € B— List = that are splittable.

Representation of 4 x B:

"_'€ Ax B— List=
r<$7y>-|:r$-|A_H_ry-|B

This function is also splittable.

Turing-
computability

Turing-computable functions

Assume that we have methods for representing
members of the sets A and B as elements of List X2,
where Y is a finite set.

A partial function f € A — Bis Turing-computable
(with respect to these methods) if there is a Turing
machine ¢m such that:

> X, = 2.
» Va€e A Jtm] "a'="fa".

» A language over an alphabet X is
a subset of List 3.

Turing-decidable

A language L over X is Turing-decidable if there is
a Turing machine tm such that:

> X, = 2.
> Vzs € List X, if zs € L then Accept, = ws.
> Vas € List ¥. if zs ¢ L then Reject, s

Turing-recognisable

A language L over X is Turing-recognisable if there
is a Turing machine ¢m such that:

> X, = 2.
> Vs € List ¥. xs € L iff Accept, s

Summary

» Rice's theorem.

» Turing machines:

Abstract syntax.

Operational semantics.

Variants.

Representing inductively defined sets.
Turing-computability.

v

vV v. vy

	Introduction
	Rice's theorem
	Turing machines
	Abstract syntax
	Operational semantics
	Two examples
	Accepting states
	Variants
	Representing inductively defined sets
	Turing-computability
	Summary

