
Lecture
Models of computation

(DIT311, TDA184)

Nils Anders Danielsson

2018-11-12



Today

▶ Inductive definitions:
▶ Functions defined by primitive recursion.
▶ Proofs by structural induction.

▶ Two models of computation:
▶ PRF.
▶ The recursive functions. (If we have time.)



Natural
numbers



The natural numbers

The set of natural numbers, ℕ, is defined
inductively in the following way:
▶ zero ∈ ℕ.
▶ If n ∈ ℕ, then suc n ∈ ℕ.



The natural numbers

We can construct natural numbers by using these
rules a finite number of times. Examples:
▶ 0 = zero.
▶ 1 = suc zero.
▶ 2 = suc (suc zero).

The value zero and the function suc are called
constructors.



The natural numbers

An alternative way to present the rules:

zero ∈ ℕ
n ∈ ℕ

suc n ∈ ℕ



Propositions, predicates and relations

▶ A proposition is something that can (perhaps)
be proved or disproved.

▶ A predicate on a set A is a function from A to
propositions.

▶ A binary relation on two sets A and B is a
function from A and B to propositions.

▶ Relations can also have more arguments.



Equality

Two natural numbers are equal if they are built up
by the same constructors.
We can see this as an inductively defined relation:

zero = zero
m = n

suc m = suc n

(The names of the constructors have been omitted.)



Primitive recursion

We can define a function from ℕ to a set A in the
following way:
▶ A value z ∈ A, the function’s value for zero.
▶ A function s ∈ ℕ → A → A, that given n ∈ ℕ

and the function’s value for n gives the
function’s value for suc n.



Primitive recursion

A definition by primitive recursion can be given the
following schematic form:

f ∈ ℕ → A
f zero = z
f (suc n) = s n (f n)



Primitive recursion

We can capture this scheme with a higher-order
function:

rec ∈ A → (ℕ → A → A) → ℕ → A
rec z s zero = z
rec z s (suc n) = s n (rec z s n)



Example: Equality with zero

▶ Can we define is-zero ∈ ℕ → Bool
using primitive recursion?

▶ Let “A” be Bool.
▶ Scheme:

is-zero ∈ ℕ → Bool
is-zero zero = ?
is-zero (suc n) = ?



Example: Equality with zero

▶ Can we define is-zero ∈ ℕ → Bool
using primitive recursion?

▶ Let “A” be Bool.
▶ Scheme:

is-zero ∈ ℕ → Bool
is-zero zero = true
is-zero (suc n) = false



Example: Equality with zero

▶ Can we define is-zero ∈ ℕ → Bool
using primitive recursion?

▶ Let “A” be Bool.
▶ With the higher-order function:

is-zero ∈ ℕ → Bool
is-zero = rec true (𝜆n r. false)



Example: Addition

▶ Can we define add ∈ ℕ → ℕ → ℕ
using primitive recursion?

▶ Let “A” be ℕ → ℕ.
▶ Scheme:

add ∈ ℕ → (ℕ → ℕ)
add zero = ?
add (suc m) = ?



Example: Addition

▶ Can we define add ∈ ℕ → ℕ → ℕ
using primitive recursion?

▶ Let “A” be ℕ → ℕ.
▶ Scheme:

add ∈ ℕ → (ℕ → ℕ)
add zero = 𝜆n. n
add (suc m) = ?



Example: Addition

▶ Can we define add ∈ ℕ → ℕ → ℕ
using primitive recursion?

▶ Let “A” be ℕ → ℕ.
▶ Scheme:

add ∈ ℕ → (ℕ → ℕ)
add zero = 𝜆n. n
add (suc m) = 𝜆n. ?



Example: Addition

▶ Can we define add ∈ ℕ → ℕ → ℕ
using primitive recursion?

▶ Let “A” be ℕ → ℕ.
▶ Scheme:

add ∈ ℕ → (ℕ → ℕ)
add zero = 𝜆n. n
add (suc m) = 𝜆n. suc (add m n)



Quiz

Which of the following terms define addition?
▶ rec (𝜆n. n) (𝜆m r. 𝜆n. suc (r m n))
▶ rec (𝜆n. n) (𝜆m r. 𝜆n. suc (r n))
▶ rec (𝜆n. n) (𝜆m r. 𝜆n. suc (r m))



Structural induction
Let us assume that we have a predicate P on ℕ. If
we can prove the following two statements, then we
have proved ∀n.P n:
▶ P zero.
▶ ∀n.P n implies P (suc n).



Example: Addition
Theorem: ∀m ∈ ℕ. add m zero = m.
Proof:
▶ Let us use structural induction, with the

predicate P = 𝜆m. add m zero = m.
▶ There are two cases:

P zero ⇐ {By definition.}
add zero zero = zero ⇐ {By definition.}
zero = zero



Example: Addition
Theorem: ∀m ∈ ℕ. add m zero = m.
Proof:
▶ Let us use structural induction, with the

predicate P = 𝜆m. add m zero = m.
▶ There are two cases:

P (suc m) ⇐
add (suc m) zero = suc m ⇐
suc (add m zero) = suc m ⇐
add m zero = m ⇐
P m



More
inductively
defined sets



Cartesian products

The cartesian product of two sets A and B is
defined inductively in the following way:

x ∈ A y ∈ B
pair x y ∈ A × B

Notice that this definition is “non-recursive”.



Primitive recursion

Scheme for primitive recursion for pairs:

f ∈ A × B → C
f (pair x y) = p x y

The corresponding higher-order function:

uncurry ∈ (A → B → C) → A × B → C
uncurry p (pair x y) = p x y



Structural induction
Let us assume that we have a predicate P on
A × B. If we can prove the following statement,
then we have proved ∀p.P p:
▶ ∀x y.P (pair x y).



Lists

The set of finite lists containing natural numbers is
defined inductively in the following way:

nil ∈ Nat-list
x ∈ ℕ xs ∈ Nat-list

cons x xs ∈ Nat-list



Primitive recursion
Scheme for primitive recursion for natural number
lists:

f ∈ Nat-list → A
f nil = n
f (cons x xs) = c x xs (f xs)

The corresponding higher-order function:

listrec ∈ A → (ℕ → Nat-list → A → A) →
Nat-list → A

listrec n c nil = n
listrec n c (cons x xs) = c x xs (listrec n c xs)



Structural induction
Let us assume that we have a predicate P on
Nat-list. If we can prove the following statements,
then we have proved ∀xs.P xs:
▶ P nil.
▶ ∀x xs.P xs implies P (cons x xs).



Pattern

▶ Given an inductive definition of the kind
presented here, we can derive:
▶ The structural induction principle.
▶ The primitive recursion scheme.

▶ Pattern:
▶ One case per constructor.
▶ One argument per constructor argument,

plus an extra argument
(for induction: an inductive hypothesis)
per recursive constructor argument.



Quiz

Define the booleans inductively. How many
cases does the structural induction principle
have?
▶ 1
▶ 2
▶ 3
▶ 4

Bonus question: Can you think of an inductive
definition for which the answer would be 0?



PRF



The primitive recursive functions

▶ A model of computation.
▶ Programs taking tuples of natural numbers to

natural numbers.
▶ Every program is terminating.



Sketch

The primitive recursive functions can be constructed
in the following ways:

f () = 0
f (x) = 1 + x
f (x1,…, x𝑘,…, x𝑛) = x𝑘
f (x1,…, x𝑛) = g (h1 (x1,…, x𝑛),…, h𝑘 (x1,…, x𝑛))
f (x1,…, x𝑛, 0) = g (x1,…, x𝑛)
f (x1,…, x𝑛, 1 + x) =

h (x1,…, x𝑛, f (x1,…, x𝑛, x), x)



Vectors

Vectors, lists of a fixed length:

nil ∈ A0
xs ∈ An x ∈ A

xs, x ∈ A1+n

Read nil, x, y, z as ((nil, x), y), z.



Indexing

An indexing operation can be defined by (a slight
variant of) primitive recursion:

index ∈ An →{i ∈ ℕ ∣ 0 ≤ i < n}→ A
index (xs, x) zero = x
index (xs, x) (suc n) = index xs n



Abstract syntax

PRFn: Functions that take n arguments.

zero ∈ PRF0 suc ∈ PRF1

0 ≤ i < n
proj i ∈ PRFn

f ∈ PRFm gs ∈ (PRFn)m

comp f gs ∈ PRFn

f ∈ PRFn g ∈ PRF2+n
rec f g ∈ PRF1+n



Denotational semantics

⟦_⟧ ∈ PRFn → (ℕn → ℕ)
⟦ zero ⟧ nil = 0
⟦ suc ⟧ (nil, n) = 1 + n
⟦ proj i ⟧ 𝜌 = index 𝜌 i
⟦ comp f gs ⟧ 𝜌 = ⟦f ⟧ (⟦gs⟧⋆ 𝜌)
⟦ rec f g ⟧ (𝜌, zero) = ⟦f ⟧ 𝜌
⟦ rec f g ⟧ (𝜌, suc n) = ⟦g⟧ (𝜌, ⟦rec f g⟧ (𝜌, n), n)
⟦_⟧⋆ ∈ (PRFm)n → (ℕm → ℕn)
⟦ nil ⟧⋆ 𝜌 = nil
⟦ fs, f ⟧⋆ 𝜌 = ⟦fs⟧⋆ 𝜌, ⟦f ⟧ 𝜌



Denotational semantics

⟦_⟧ ∈ PRFn → (ℕn → ℕ)
⟦ zero ⟧ nil = 0
⟦ suc ⟧ (nil, n) = 1 + n
⟦ proj i ⟧ 𝜌 = index 𝜌 i
⟦ comp f gs ⟧ 𝜌 = ⟦f ⟧ (⟦gs⟧⋆ 𝜌)
⟦ rec f g ⟧ (𝜌, n) = rec (⟦f ⟧ 𝜌)

(𝜆n r. ⟦g⟧ (𝜌, r, n))
n

⟦_⟧⋆ ∈ (PRFm)n → (ℕm → ℕn)
⟦ nil ⟧⋆ 𝜌 = nil
⟦ fs, f ⟧⋆ 𝜌 = ⟦fs⟧⋆ 𝜌, ⟦f ⟧ 𝜌



Quiz

Which of the following terms, all in PRF2,
define addition?
▶ rec (proj 0) (proj 0)
▶ rec (proj 0) (proj 1)
▶ rec (proj 0) (comp suc (nil, proj 0))
▶ rec (proj 0) (comp suc (nil, proj 1))

Hint: Examine ⟦p⟧ (nil,m, n) for each program p.



Addition

Goal: Define add satisfying the following equations:

∀ m. ⟦add⟧ (nil,m, zero) = m
∀ m n. ⟦add⟧ (nil,m, suc n) =

suc (⟦add⟧ (nil,m, n))

If we can find a definition of add satisfying these
equations, then we can prove using structural
induction that add is an implementation of addition.



Addition

Perhaps we can use rec:

∀ m. ⟦rec f g⟧ (nil,m, zero) = m
∀ m n. ⟦rec f g⟧ (nil,m, suc n) =

suc (⟦rec f g⟧ (nil,m, n))



Addition

Perhaps we can use rec:

∀ m. ⟦f⟧ (nil,m) = m
∀ m n. ⟦rec f g⟧ (nil,m, suc n) =

suc (⟦rec f g⟧ (nil,m, n))



Addition

Perhaps we can use rec:

∀ m. ⟦f⟧ (nil,m) = m
∀ m n. ⟦g⟧ (nil,m, ⟦rec f g⟧ (nil,m, n), n) =

suc (⟦rec f g⟧ (nil,m, n))



Addition

The zero case:

∀ m. ⟦f⟧ (nil,m) = m



Addition

The zero case:

∀ m. ⟦proj 0⟧ (nil,m) = m



Addition

The suc case:

∀ m n. ⟦g⟧ (nil,m, ⟦rec f g⟧ (nil,m, n), n) =
suc (⟦rec f g⟧ (nil,m, n))



Addition

The suc case:

∀ m n r. ⟦g⟧ (nil,m, r, n) = suc r



Addition

The suc case:

∀ m n r. ⟦comp h hs⟧ (nil,m, r, n) = suc r



Addition

The suc case:

∀ m n r. ⟦h⟧ (⟦hs⟧⋆ (nil,m, r, n)) = suc r



Addition

The suc case:

∀ m n r. ⟦suc⟧ (⟦nil, k⟧⋆ (nil,m, r, n)) = suc r



Addition

The suc case:

∀ m n r. ⟦suc⟧ (nil, ⟦k⟧ (nil,m, r, n)) = suc r



Addition

The suc case:

∀ m n r. suc (⟦k⟧ (nil,m, r, n)) = suc r



Addition

The suc case:

∀ m n r. ⟦k⟧ (nil,m, r, n) = r



Addition

The suc case:

∀ m n r. ⟦proj 1⟧ (nil,m, r, n) = r



Addition

We end up with the following definition:

rec (proj 0) (comp suc (nil, proj 1))



Big-step operational semantics
▶ f [𝜌] ⇓ n means that the result of

evaluating f with input 𝜌 is n.
▶ f [𝜌] ⇓ n is well-formed (“type-correct”) if

∃ m ∈ ℕ. f ∈ PRFm ∧ 𝜌 ∈ ℕm ∧ n ∈ ℕ.

▶ fs [𝜌] ⇓⋆ 𝜌′ is well-formed if

∃ m, n ∈ ℕ.
f ∈ (PRFm)n ∧ 𝜌 ∈ ℕm ∧ 𝜌′ ∈ ℕn.

▶ Note that well-formed statements
do not need to be true.



Big-step operational semantics

zero [nil] ⇓ 0 suc [nil, n] ⇓ 1 + n

proj i [𝜌] ⇓ index 𝜌 i

f [𝜌] ⇓ n
rec f g [𝜌, zero] ⇓ n

rec f g [𝜌,m] ⇓ n
g [𝜌, n,m] ⇓ o

rec f g [𝜌, suc m] ⇓ o



Big-step operational semantics

gs [𝜌] ⇓⋆ 𝜌′ f [𝜌′] ⇓ n
comp f gs [𝜌] ⇓ n

nil [𝜌] ⇓⋆ nil
fs [𝜌] ⇓⋆ ns f [𝜌] ⇓ n

fs, f [𝜌] ⇓⋆ ns, n



Equivalence

f [𝜌] ⇓ n iff ⟦f ⟧ 𝜌 = n,
fs [𝜌] ⇓⋆ 𝜌′ iff ⟦fs⟧⋆ 𝜌 = 𝜌′.
This can be proved by induction on the structure of
the semantics in one direction, and f/fs in the other.



Equivalence

Thus the operational semantics is total and
deterministic:
▶ ∀f 𝜌. ∃ n. f [𝜌] ⇓ n.
▶ ∀f 𝜌 m n.

f [𝜌] ⇓ m and f [𝜌] ⇓ n implies m = n.



Quiz

Which of the following propositions are true?
▶ comp zero nil [nil, 5, 7] ⇓ 0
▶ comp suc (nil, proj 0) [nil, 5, 7] ⇓ 6
▶ rec zero (proj 1) [nil, 2] ⇓ 0



No self-interpreter

▶ Not every (Turing-) computable function is
primitive recursive.

▶ Exercise: Define a function code ∈ PRF1 → ℕ
with a computable left inverse.

▶ There is no program eval ∈ PRF1 satisfying

∀ f ∈ PRF1, n ∈ ℕ.
⟦eval⟧ (nil, ⌜ (f, n) ⌝) = ⟦f ⟧ (nil, n),

where ⌜ (f, n) ⌝ = 2code f 3n.



No self-interpreter
Proof sketch:
▶ Define g ∈ PRF1 by

comp suc (nil, comp eval (nil, f)),

where ⟦f ⟧ (nil, n) = 2n 3n.
▶ We get

⟦g⟧ (nil, code g) =
1 + ⟦eval⟧ (nil, ⟦f ⟧ (nil, code g)) =
1 + ⟦eval⟧ (nil, 2code g 3code g) =
1 + ⟦eval⟧ (nil, ⌜ (g, code g) ⌝) =
1 + ⟦g⟧ (nil, code g).



The Ackermann function

▶ Another example of a computable function
that is not primitive recursive.

▶ One variant:

ack ∈ ℕ × ℕ → ℕ
ack (zero, n) = suc n
ack (suc m, zero) = ack (m, suc zero)
ack (suc m, suc n) = ack (m, ack (suc m, n))

▶ For more details, see Nordström, The primitive
recursive functions.



The
recursive
functions



The recursive functions

▶ A model of computation.
▶ Programs taking tuples of natural numbers to

natural numbers.
▶ Not every program is terminating.



Abstract syntax

▶ Extends PRF with one additional constructor.
▶ RFn: Functions that take n arguments.
▶ Minimisation:

f ∈ RF1+n
min f ∈ RFn

▶ Rough idea: min f [𝜌] is the smallest n for
which f [𝜌, n] is 0.

▶ Note that there may not be such a number.



Big-step operational semantics

The operational semantics is extended:

f [𝜌, n] ⇓ 0 ∀m < n. ∃ k ∈ ℕ. f [𝜌,m] ⇓ 1 + k
min f [𝜌] ⇓ n

The semantics is deterministic, but not total:
▶ f [𝜌] ⇓ m and f [𝜌] ⇓ n implies m = n.
▶ ∀m. ∃ f ∈ RFm. ∀ 𝜌. ∄ n. f [𝜌] ⇓ n.



Big-step operational semantics

The operational semantics is extended:

f [𝜌, n] ⇓ 0 ∀m < n. ∃ k ∈ ℕ. f [𝜌,m] ⇓ 1 + k
min f [𝜌] ⇓ n

The semantics is deterministic, but not total:
▶ f [𝜌] ⇓ m and f [𝜌] ⇓ n implies m = n.
▶ ∀m. ∃ f ∈ RFm. ∀ 𝜌. ∄ n. f [𝜌] ⇓ n.



Quiz

▶ Construct f ∈ RF0 in such a way that
∄n. f [nil] ⇓ n.



Denotational semantics?

We can try to extend the denotational semantics:

⟦ ⟧ ∈ RFn → (ℕn → ℕ)
⋮
⟦min f ⟧ 𝜌 = search f 𝜌 0

search ∈ RF1+n → ℕn → ℕ → ℕ
search f 𝜌 n =

if ⟦f ⟧ (𝜌, n) = 0
then n
else search f 𝜌 (1 + n)



Partial functions

▶ This “definition” does not give rise to (total)
functions.

▶ We can instead define a semantics as a
function to partial functions:

⟦ ⟧ ∈ RFn → (ℕn ⇀ ℕ)
⟦f ⟧ 𝜌 =

if f [𝜌] ⇓ n for some n
then n
else undefined



Expressiveness

▶ Equivalent to Turing machines, 𝜆-calculus, …



Summary

▶ Inductive definitions:
▶ Functions defined by primitive recursion.
▶ Proofs by structural induction.

▶ Two models of computation:
▶ PRF.
▶ The recursive functions.


	Introduction
	Natural numbers
	More inductively defined sets
	PRF
	The recursive functions
	Summary

