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Big-O notation: drops constant factors in algorithm 
runtime 

• O(n2): time proportional to square of input size (e.g. ???)  

• O(n): time proportional to input size (e.g. ???)  

• O(log n): time proportional to log of input size, or: time 
proportional to n, for input of size 2n (e.g. ???)  

We also accept answers that are too big so something 
that is O(n) is also O(n2)

The story so far



Big-O notation: drops constant factors in algorithm runtime 

• O(n2): time proportional to square of input size (e.g. naïve 
dynamic arrays)  

• O(n): time proportional to input size (e.g. linear search, 
good dynamic arrays)  

• O(log n): time proportional to log of input size, or: time 
proportional to n, for input of size 2n (e.g. binary search)  

We also accept answers that are too big so something that 
is O(n) is also O(n2)

The story so far



Hierarchy 

• O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n)  

• Adding together terms gives you the biggest one 

• e.g., O(n) + O(log n) + O(n2) = O(n2)  

Computing big-O using hierarchy: 

• 2n2 + 3n + 2 = ???

The story so far



Hierarchy 

• O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n)  

• Adding together terms gives you the biggest one 

• e.g., O(n) + O(log n) + O(n2) = O(n2)  

Computing big-O using hierarchy: 

• 2n2 + 3n + 2 = O(n2) + O(n) + O(1) = O(n2)

The story so far



O(f(n)) × O(g(n)) = O(f(n) × g(n))  

• e.g., O(n2) × O(log n) = O(n2 log n)  

You can drop constant factors:  

• k × O(f(n)) = O(f(n)), if k is constant e.g. 2 × O(n) = O(n)  

(Exercise: show that these are true)

Multiplying big-O



The rules

There are three rules you need for calculating big-O:  

• Addition (hierarchy) 

• Multiplication 

• Replacing a term with a bigger term



What is (n2 + 3)(2n × n) + log10 n in big-O notation?

Quiz



(n2 + 3)(2n × n) + log10 n  

= O(n2) × O(2n × n) + O(log n) 
= O(2n × n3) + O(log n)                    {multiplication} 
= O(2n × n3)                                          {hierarchy} 

Answer



Suppose we want to prove from scratch the rules for 
adding big-O:  

• O(n2) + O(n3) = O(n3) 

Example of replacing a term

We know n2 < n3  

O(n2) + O(n3) 
→ O(n3) + O(n3)                 {since n2 < n3} 
= 2 × O(n3) 
= O(n3)                                    {throw out constant factors}



Complexity of a program

boolean unique(Object[] a) {
  for(int i = 0; i < a.length; i++)
    for (int j = 0; j < a.length; j++)
      if (a[i].equals(a[j]) && i != j)
        return false;
  return true;
} 

Outer loop runs n 
times:  

O(n) × O(n) = O(n2) 

Loop body:  
O(1) Inner loop runs n 

times: 
O(n) × O(1) = O(n) 



The complexity of a loop is: 

• the number of times it runs  
times the complexity of the body  

Or: 

• If a loop runs O(f(n)) times 
and the body takes O(g(n)) time  
then the loop takes O(f(n) × g(n))  

Complexity of loops



What about this one?

void function(int n) {
  for (int i = 0; i < n*n; i++)
    for (int j = 0; j < n; j++) 
      ”something taking O(1) time”;
} 

Outer loop runs n2 
times:  

O(n2) × O(n) = O(n3) 

Loop body:  
O(1) 

Inner loop runs n 
times: 

O(n) × O(1) = O(n) 



What about this one?

void function(int n) {
  for (int i = 0; i < n*n; i++)
    for (int j = 0; j < n/2; j++) 
      ”something taking O(1) time”;
} 

Outer loop runs n2 
times:  

O(n2) × O(n) = O(n3) 

Loop body:  
O(1) 

Inner loop runs n/2 
times: 

O(n) × O(1) = O(n) 



Here’s a new one

boolean unique(Object[] a) {
  for(int i = 0; i < a.length; i++)
    for (int j = 0; j < i; j++) 
      if (a[i].equals(a[j])) 
        return false;
  return true;
}

Loop body:  
O(1) 

Inner loop is  
i × O(1) = O(i)??? 

But it should be in 
terms of n?



Here’s a new one

boolean unique(Object[] a) {
  for(int i = 0; i < a.length; i++)
    for (int j = 1; j < i; j++) 
      if (a[i].equals(a[j])) 
        return false;
  return true;
}

Loop body:  
O(1) 

i < n, so i is O(n) 
So loop runs O(n) 
times, complexity: 
O(n) × O(1) = O(n)

Outer loop runs n 
times:  

O(n) × O(n) = O(n2) 



What's the complexity?

void something(Object[] a) {
  for(int i = 0; i < a.length; i++)
    for (int j = 1; j <= a.length; j *= 2) 
      // something taking O(1) time 
} 

Inner loop is 
O(log n)

Outer loop is  
O(n log n) 

A loop running through i = 1, 2, 4, ..., n runs 
O(log n) times! 



While loops

long squareRoot(long n) {
  long i = 0; 
  long j = n + 1; 
  while(i + 1 != j) { 
    long k = (i + j) / 2;
    if (k * k <= n) 
      i = k; 
    else
      j = k; 
  } 
  return i;
} Each iteration 

takes O(1) time

… and halves j - i,  
so O(log n) iterations



Basic rule for complexity of loops:  

• Number of iterations times complexity of body  

• for (int i = 0; i < n; i++) : n iterations  

• for (int i = 1; i ≤ n; i *= 2) : O(log n) iterations  

• while loops: same rule, but can be trickier to count number of 
iterations  

If the complexity of the body depends on the value of the loop counter:  

• e.g. O(i), where 0 ≤ i < n  

• round it up to O(n)!

Summary: loops



What's the complexity here? 
(Assume that the loop bodies are O(1)) 

Sequences of statements

…
for (int i = 0; i < n; i++) ...
for (int i = 1; i < n; i *= 2) ...
…

First loop: O(n) 
Second loop: O(log n) 
Total: O(n) + O(log n) = O(n)  

For sequences, add the complexities!



A familiar scene

int[] array = {};
for (int i = 0; i < n; i++) {
  int[] newArray = new int[array.length+1];
  for (int j = 0; j < i; j++)
    newArray[j] = array[j];
  array = newArray;
}

Inner loop:  
O(n) 

Outer loop: 
n iterations, O(n) body, 

so: O(n2) Rest of loop body O(1), 
so loop body:  

O(1) + O(n) = O(n) 



A familiar scene, take 2

int[] array = {};
for (int i = 0; i < n; i += 100) {
  int[] newArray = new int[array.length+100];
  for (int j = 0; j < i; j++)
    newArray[j] = array[j];
  array = newArray;
}

Outer loop: 
n/100 iterations, which is O(n) 

with body O(n),  
so still: O(n2)



A familiar scene, take 3

int[] array = {};
for (int i = 0; i < n; i *= 2) {
  int[] newArray = new int[array.length*2];
  for (int j = 0; j < i; j++)
    newArray[j] = array[j];
  array = newArray;
}

Outer loop: 
log n iterations, 
 with body O(n),  
so: O(n log n)???

Inner loop:  
O(n) 



A familiar scene, take 3

int[] array = {};
for (int i = 0; i < n; i *= 2) {
  int[] newArray = new int[array.length*2];
  for (int j = 0; j < i; j++)
    newArray[j] = array[j];
  array = newArray;
} Here we ”round up”  

O(i) to O(n). This causes an 
overestimate!



Our algorithm has O(n) complexity, but we've calculated O(n log n)  

• An overestimate, but not a severe one (If n = 1000000 then n log n = 20n) 

• This can happen but is normally not severe  

• To get the accurate answer: do the maths  

Good news: for “normal” loops this doesn't happen  

• If all bounds are n, or n2, or another loop variable, or a loop variable 
squared, or ...  

Main exception: loop variable i doubles every time, body complexity 
depends on i

A complication



In our example:  

• The inner loop's complexity is O(i) 

• In the outer loop, i ranges over 1, 2, 4, 8, ..., 2a  

Instead of rounding up, we will add up the time for all the 
iterations of the loop:  

• 1 + 2 + 4 + 8 + … + 2a  
= 2a + 1 – 1 < 2 × 2a  

Since 2a ≤ n, the total time is at most 2n, which is O(n)

Doing the sums



A last example

for (int i = 1; i <= n; i *= 2) {
  for (int j = 0; j < n*n; j++)
    for (int k = 0; k <= j; k++)
      // O(1)
  for (int j = 0; j < n; j++)
    // O(1)
} 

This loop is:  
O(n) 

The outer loop runs 
O(log n) times

The j-loop runs 
n2 times

k <= j < n*n
so his loop is:  

O(n2) 

Total: O(log n) × (O(n2) × O(n2) + O(n))  
= O(n4 log n) 



Big-O complexity:  

• Calculate runtime without doing hard sums!  

• Lots of “rules of thumb” that work almost all of the time  

• Very occasionally, still need to do hard sums :(  

• Ignoring constant factors: seems to be a good tradeoff

Summary big-O



Complexity of recursive functions



Let T(n) be the time that f takes on a list of size n

Calculating complexity

f :: [a] -> [a]
f []  = []
f [x] = [x]
f xs  = g (f ys) (f zs)
 where
  (ys, zs) = splitInTwo xs

Assume O(g) = O(n) then T(n) = O(n) + 2T(n/2)

Two recursive 
calls of size n/2



Procedure for calculating complexity of a recursive 
algorithm:  

• Write down a recurrence relation  
e.g. T(n) = O(n) + 2T(n/2)  

• Solve the recurrence relation to get a formula for T(n) 
(difficult!)  

There isn't a general way of solving any recurrence 
relation – we'll just see a few families of them

Recurrence relations



First approach: draw a diagram



Draw a diagram

  

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

O(log n)
“levels”

                    O(n) time per level

T(n)

2T(n/2)

4T(n/4)

8T(n/8)
Total time is : O(n log n) 



Another example: T(n) = O(1) + 2T(n-1)

  

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

O(n)
“levels”

amount of work doubles at each level

T(n)

2T(n-1)

4T(n-2)

8T(n-3)
Total time is : O(2n) 



• Good for building an intuition 

• Maybe a bit error-prone 

• Second approach: expand out the definition  

• Example: solving T(n) = O(1) + T(n-1) 

This approach



T(n) = 1 + T(n-1)                               { T(n-1) = 1 + T(n-2) } 

= 1 + 1 + T(n-2) = 2 + T(n-2) 

= 3 + T(n-3) 

= ...  

= n + T(0)  

= O(n) 

Expanding out recurrence relations

T(0) is a  
constant so O(1)



T(n) = n + T(n-1)  

= n + (n - 1) + T(n - 2) 

= n + (n - 1) + (n - 2) + T(n - 3) 

= … 

= n + (n - 1) + (n - 2) + … + 1 + T(0) 

= n (n + 1) / 2 + T(0)  

= O(n2) 

Another example: T(n) = O(n) + T(n-1)



T(n) = 1 + T(n/2) 

= 2 + T(n/4) 

= 3 + T(n/8) 

= … 

= log n + T(1)  

= O(log n) 

Another example: T(n) = O(1) + T(n/2)



T(n) = n + T(n/2) 

= n + n/2 + T(n/4) 

= n + n/2 + n/4 + T(n/8) 

= ...  

= n + n/2 + n/4 + n/8 … = n + n (1/2 + 1/4 + 1/8 + …) = n + ~n 

< 2n 

= O(n) 

Another example: T(n) = O(n) + T(n/2)



T(n) = O(1) + T(n-1): T(n) = O(n) 

T(n) = O(n) + T(n-1): T(n) = O(n2) 

T(n) = O(1) + T(n/2): T(n) = O(log n) 

T(n) = O(n) + T(n/2): T(n) = O(n) 

An almost-rule-of-thumb:  

• Solution is maximum recursion depth times amount of work 
in one call  

(except that this rule of thumb would give O(n log n) for the last 
case)

Functions that recurse once



T(n) = O(n) + 2T(n/2): T(n) = O(n log n)  

• for example our function f (this is mergesort!) 

T(n) = O(1) + 2T(n-1): T(n) = O(2n)  

• Because 2n recursive calls of depth n  

Other cases: master theorem (see Wikipedia) 

• Beyond the scope of this course 

Divide-and-conquer algorithms



Basic idea – recurrence relations 
Easy enough to write down, hard to solve  

• One technique: expand out the recurrence and see what 
happens  

• Another rule of thumb: multiply work done per level with 
number of levels  

• Drawing a diagram can help!  

Luckily, in practice you come across the same few recurrence 
relations, so you just need to know how to solve those 

Complexity of recursive functions


