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• Course introduction 

• Small example: dynamic arrays 

• Aritmetisk summa! 

• Google-group: do it now! 

• Resources on course website 

• Labpartner: after lecture or via Google-group 

• Arrays.copyOf(…)

• Measuring time

Summary previous lecture



• This lecture is all about how to describe the 
performance of an algorithm  

• Last time we had three versions of the file-reading 
program. For a file of size n:  
- The first one needed to copy n(n+1)/2 characters 
- The second one needed to copy n(n+1)/200 characters  
- The third needed to copy 2n characters  

• We worked out these formulas, but it was a bit of work 
– now we'll see an easier way 

Introduction



Big idea

Big idea: 
ignore constant 

factors!  



Why do we ignore constant factors?

• Well, when n is 1,000,000…  
- log2 n ≈ 20  
- n is 1,000,000 
- n2 is 1,000,000,000,000 
- 2n is a number with 300,000 digits...  

• Given two algorithms:  
- The first takes 1000000 log2 n steps to run  
- The second takes 0.00000001 × 2n 

• The first is miles better! 

• Constant factors normally don't matter 



• Instead of saying...  
- The first implementation copies n2/2 characters 
- The second copies n2/200 characters 
- The third copies 2n characters 

• We will just say...  
- The first implementation copies O(n2) characters  
- The second copies O(n2) characters 
- The third copies O(n) characters  

• O(n2) means “proportional to n2” (almost) 

Big O (sv: Ordo) notation



• Suppose an algorithm takes n2/2 steps, and each step 
takes 100ns to run 
- The total time taken is 50n2 ns 
- This is O(n2) 
- The number of steps taken is also O(n2)  

• It doesn't matter whether we count steps or time!  

• We say that the algorithm has O(n2) time complexity or 
simply complexity 

Time complexity



• Big O really simplifies things:  
- A small phrase like O(n2) tells you a lot  
- It's easier to calculate than a precise formula  
- We get the same answer whether we count number of 

statements executed or time taken (or in this case number 
of elements copied) – so we can be a bit careless what we 
count  

• On the other hand:  
- Sometimes we do care about constant factors!  

• Big O is normally a good compromise 

Why ignore constant factors?



• How many steps does this function take on an array of 
length n (in the worst case)? 

What happens without big O?

Object search(Object[] a, Object x) {
  for(int i = 0; i < a.length; i++) {
    if (a[i].equals(target))
      return a[i];
  } 
  return null;
}

Assume that 
loop body takes 

1 step

Answer: n



What about this one?

boolean unique(Object[] a) {
  for(int i = 0; i < a.length; i++)
    for (int j = 0; j < a.length; j++)
      if (a[i].equals(a[j]) && i != j)
        return false;
  return true;
} Outer loop runs n times 

Each time, inner loop  
runs n times  

Total: n×n = n2



What about this one?

boolean unique(Object[] a) {
  for(int i = 0; i < a.length; i++)
    for (int j = 0; j < i; j++) 
      if (a[i].equals(a[j])) 
        return false;
  return true;
} Loop runs to i 

instead of n



When i = 0, inner loop runs 0 times  

When i = 1, inner loop runs 1 time 

… 

When i = n-1, inner loop runs n-1 times  

Total:  

which is n(n-1)/2 

Some hard sums
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What about this one?

boolean unique(Object[] a) {
  for(int i = 0; i < a.length; i++)
    for (int j = 0; j < i; j++) 
      if (a[i].equals(a[j])) 
        return false;
  return true;
} 

Answer:  

n(n-1)/2 



What about this one?

boolean unique(Object[] a) {
  for(int i = 0; i < a.length; i++)
    for (int j = 0; j < i; j++)
      for (int k = 0; k < j; k++)
        ”something that takes 1 step”
} 



Counts: how many values i, j, k  
  where 0 ≤ i < n 
              0 ≤ j < i 
              0 ≤ k < j 

More hard sums
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Outer loop: 
i goes from 0 to n-1 

Middle loop: 
j goes from 0 to i-1 

Inner loop: 
k goes from 0 to j-1 

I have no idea how to solve 
this! Wolfram Alpha says it's  

n(n-1)(n-2)/6 

http://www.wolframalpha.com/input/?i=sum+(sum+(sum+1+k=0+to+j-1)+j=0+to+i-1)+i+=+0+to+n-1


What about this one?

boolean unique(Object[] a) {
  for(int i = 0; i < a.length; i++)
    for (int j = 0; j < i; j++)
      for (int k = 0; k < j; k++)
        ”something that takes 1 step”
} 

Answer:  

n(n-1)(n-2)/6,  

apparently



This is just horrible!  
Isn't there a better way? 



Using big O complexity

boolean unique(Object[] a) {
  for(int i = 0; i < a.length; i++)
    for (int j = 0; j < i; j++)
      for (int k = 0; k < j; k++)
        ”something that takes 1 step”
} 

Three nested loops, all running 
from 0 to n...  

Answer: O(n3)! 



• Big O really simplifies things:  
- A small phrase like O(n2) tells you a lot  
- It's easier to calculate than a precise formula  
- We get the same answer whether we count number of 

statements executed or time taken (or in this case number 
of elements copied) – so we can be a bit careless what we 
count  

• On the other hand:  
- Sometimes we do care about constant factors!  

• Big O is normally a good compromise 

Why ignore constant factors? (again)

Our long calculation only 
told us how many steps 
the algorithm takes, not 

how much time!
Isn’t it!

But normally not 
enough to go to all 

this trouble!



How to calculate big-O complexity:  

• We will first have to define formally what it means for 
an algorithm to have a certain complexity  

• We will then come up with some rules for calculating 
complexity  

• To come up with those rules, we will have to do “hard 
sums”, but once we have the rules we can forget the 
sums 

The rest of the lecture 



Big O measures the growth of a mathematical function  

• Typically a function T(n) giving the number of steps taken by an algorithm 
on input of size n  

• But can also be used to measure space complexity (memory usage) or 
anything else  

Formally, we say “T(n) is O(f(n))”  

• E.g., “T(n) is O(n2)”  

This means:  

• T(n) ≤ a × f(n), for some constant a (i.e., T(n) is proportional to f(n) or smaller)  

• But this need only hold for all n above some threshold n0

Big O, formally



• T(n) = O(f(n)) means a × f(n) is an upper bound on T(n). Thus 
there exists some constant a such that T(n) is always ≤ a × 
f(n), for large enough n (i.e. , n ≥ n0 for some constant n0).  

• T(n) = Ω(f(n)) means a × f(n) is a lower bound on T(n). Thus 
there exists some constant a such that T(n) is always ≥ a × 
f(n), for all n ≥ n0.  

• T(n) = Θ(f(n)) means a × f(n) is an upper bound on T(n) and b 
× f(n) is a lower bound on T(n), for all n ≥ n0. Thus there exist 
constants a and b such that T(n) ≤ a × f(n) and T(n) ≥ b × f(n). 
This means that f(n) provides a nice, tight bound on T(n). 

Big O and related concepts



Big O and related concepts

Source: ”The Algorithm Design Manual” by S. Skiena



An example: n2 + 2n + 3 is O(n2) 

  

An example: n2 + 2n + 3 is O(n2)

n2+2n+3 � 2n2
for n � 3

n
0
 = 3
c = 2



• Is 3n + 5 in O(n)?  

• Is n2 + 2n + 3 in O(n3)?  

• Why do we need the “threshold” n0? 

Exercises



Dominance classes

Big O Class

O(1) Constant

O(log n) Logarithmic

O(n) Linear

O(n log n) Linearithmic

O(n2) Quadratic

O(n3) Cubic

O(2n) Exponential

O(n!) Factorial



Imagine that we double the input size from n to 2n .  

If an algorithm is: 

• O(1), then it takes the same time as before  

• O(log n), then it takes a constant amount more  

• O(n), then it takes twice as long  

• O(n log n), then it takes twice as long plus a little bit more  

• O(n2), then it takes four times as long  

If an algorithm is O(2n), then adding one element makes it take twice as 
long !

Growth rates



Growth rates - table

38 2 . ALGORITHM ANALYSIS

n f(n) lg n n n lg n n2 2n n!
10 0.003 µs 0.01 µs 0.033 µs 0.1 µs 1 µs 3.63 ms
20 0.004 µs 0.02 µs 0.086 µs 0.4 µs 1 ms 77.1 years
30 0.005 µs 0.03 µs 0.147 µs 0.9 µs 1 sec 8.4 × 1015 yrs
40 0.005 µs 0.04 µs 0.213 µs 1.6 µs 18.3 min
50 0.006 µs 0.05 µs 0.282 µs 2.5 µs 13 days
100 0.007 µs 0.1 µs 0.644 µs 10 µs 4 × 1013 yrs
1,000 0.010 µs 1.00 µs 9.966 µs 1 ms
10,000 0.013 µs 10 µs 130 µs 100 ms
100,000 0.017 µs 0.10 ms 1.67 ms 10 sec
1,000,000 0.020 µs 1 ms 19.93 ms 16.7 min
10,000,000 0.023 µs 0.01 sec 0.23 sec 1.16 days
100,000,000 0.027 µs 0.10 sec 2.66 sec 115.7 days
1,000,000,000 0.030 µs 1 sec 29.90 sec 31.7 years

Figure 2.4: Growth rates of common functions measured in nanoseconds

The reason why we are content with coarse Big Oh analysis is provided by
Figure 2.4, which shows the growth rate of several common time analysis functions.
In particular, it shows how long algorithms that use f(n) operations take to run
on a fast computer, where each operation takes one nanosecond (10−9 seconds).
The following conclusions can be drawn from this table:

• All such algorithms take roughly the same time for n = 10.

• Any algorithm with n! running time becomes useless for n ≥ 20.

• Algorithms whose running time is 2n have a greater operating range, but
become impractical for n > 40.

• Quadratic-time algorithms whose running time is n2 remain usable up to
about n = 10, 000, but quickly deteriorate with larger inputs. They are likely
to be hopeless for n > 1,000,000.

• Linear-time and n lg n algorithms remain practical on inputs of one billion
items.

• An O(lg n) algorithm hardly breaks a sweat for any imaginable value of n.

The bottom line is that even ignoring constant factors, we get an excellent idea
of whether a given algorithm is appropriate for a problem of a given size. An algo-
rithm whose running time is f(n) = n3 seconds will beat one whose running time is
g(n) = 1,000,000 · n2 seconds only when n < 1,000,000. Such enormous differences
in constant factors between algorithms occur far less frequently in practice than
large problems do.

Source: ”The Algorithm Design Manual” by S. Skiena



Growth rates - graphically

  



When adding a term lower in the hierarchy to one higher 
in the hierarchy, the lower-complexity term disappears:  

• O(1) + O(log n) = O(log n)  

• O(log n) + O(nk) = O(nk) (if k ≥ 0)  

• O(nj) + O(nk) = O(nk), if j ≤ k  

• O(nk) + O(2n) = O(2n) 

Adding big O (a hierarchy)

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n)



An example: n2 + 2n + 3 is O(n2) 

  

An example: n2 + 2n + 3 is O(n2)

n2+2n+3 � 2n2
for n � 3

n
0
 = 3
c = 2

Use hierarchy:  

n2 +2n+3  
= 

O(n2) + O(n) + O(1)  
= 

O(n2) 



What are these in Big O notation? 

• n2 + 11 

• 2n3 + 3n – 1 

• n4 + 2n 

Quiz



• n2 + 11 = O(n2)+ O(1) =  O(n2) 

• 2n3 + 3n – 1 = O(n3)+ O(n) + O(1) = O(n3) 

• n4 + 2n = O(n4) + O(2n) = O(2n)

Just use the hierarchy!



• Often not only the size of the data influences the 
running time, but also the values 

• The longest possible running time for a given data size 
is called the worst case complexity (sv: värsta falls-
komplexiteten)  

• You can also compute the best case complexity, but it’s 
not as useful since what you want in most cases is a 
guarantee that running a program will not take more 
than a certain time

Worst case complexity



A single append-operation for a dynamic array:

Amortised analysis

public void append(char c) {  
  if (size == string.length) { 
    char[] newString = new char[string.length*2];
    for (int i = 0; i < string.length; i++) 
      newString[i] = string[i]; 
    string = newString; 
  }  
  string[size] = c; 
  size++; 
} Time complexity: 

O(n) 
in worst case, which is 

pessimistic.



• Amortised analysis measures how much time each 
operation will take in a sequence of operations 

• For the append method of a dynamic array the 
amortised complexity is O(1)  

• There are different methods for amortising 
- One is the potential method where you “pay” in advance for 

future high-cost executions in such a way that you never 
run out of saved “coins”

Amortised analysis



• We lose some precision by throwing away constant 
factors  
- ...you probably do care about a factor of 100 performance 

improvement  

• On the other hand, life gets much simpler: 
- A small phrase like O(n2) tells you a lot about how the 

performance scales when the input gets big 
- It's a lot easier to calculate big-O complexity than a precise 

formula (lots of good rules to help you)  

• Big O is normally a good compromise! 
- Occasionally, need to do hard sums anyway…

Big O in retrospect


