

UNIVERSITY OF GOTHENBURG

Data structures

Complexity

Dr. Alex Gerdes DIT961 - VT 2018

Summary previous lecture

CHALMERS

- Course introduction
- Small example: dynamic arrays

- Aritmetisk summa!
- Google-group: do it now!
- Resources on course website
- Labpartner: after lecture or via Google-group
- Arrays.copyOf(...)
- Measuring time

- This lecture is all about how to describe the performance of an algorithm
- Last time we had three versions of the file-reading program. For a file of size n:
 - The first one needed to copy n(n+1)/2 characters
 - The second one needed to copy *n*(*n*+1)/200 characters
 - The third needed to copy 2*n* characters
- We worked out these formulas, but it was a bit of work
 now we'll see an easier way

Big idea: ignore constant factors!

Why do we ignore constant factors?

- Well, when *n* is 1,000,000...
 - $\log_2 n \approx 20$
 - *n* is 1,000,000
 - *n*² is 1,000,000,000,000
 - 2^{*n*} is a number with 300,000 digits...
- Given two algorithms:
 - The first takes 1000000 log₂ *n* steps to run
 - The second takes 0.0000001×2^n
- The first is miles better!
- Constant factors *normally* don't matter

Big O (sv: Ordo) notation

- Instead of saying...
 - The first implementation copies $n^2/2$ characters
 - The second copies $n^2/200$ characters
 - The third copies 2*n* characters
- We will just say...
 - The first implementation copies **O(n²)** characters
 - The second copies **O**(*n*²) characters
 - The third copies **O(n)** characters
- O(n²) means "proportional to n²" (almost)

Time complexity

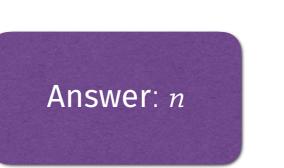
- Suppose an algorithm takes $n^2/2$ steps, and each step takes 100ns to run
 - The total time taken is 50*n*² ns
 - This is $O(n^2)$
 - The number of steps taken is also $O(n^2)$
- It doesn't matter whether we count steps or time!
- We say that the algorithm has $O(n^2)$ time complexity or simply complexity

- Big O really simplifies things:
 - A small phrase like $O(n^2)$ tells you a lot
 - It's easier to calculate than a precise formula
 - We get the same answer whether we count number of statements executed or time taken (or in this case number of elements copied) – so we can be a bit careless what we count
- On the other hand:
 - Sometimes we do care about constant factors!
- Big O is normally a good compromise

What happens without big O?

 How many steps does this function take on an array of length n (in the worst case)?

```
Object search(Object[] a, Object x) {
  for(int i = 0; i < a.length; i++) {
    if (a[i].equals(target))
        return a[i];
    }
  return null;
}
</pre>
```



boolean unique(Object[] a) {
 for(int i = 0; i < a.length; i++)
 for (int j = 0; j < a.length; j++)
 if (a[i].equals(a[j]) && i != j)
 return false;
 return true;
</pre>

Outer loop runs *n* times Each time, inner loop runs *n* times

Total: $n \times n = n^2$

boolean unique(Object[] a) {
 for(int i = 0; i < a.length; i++)
 for (int j = 0; j < i; j++)
 if (a[i].equals(a[j])
 return false;
 return true;
}
Loop runs to i
instead of n</pre>

When i = 0, inner loop runs 0 times

```
When i = 1, inner loop runs 1 time
```

When i = *n*-1, inner loop runs *n*-1 times

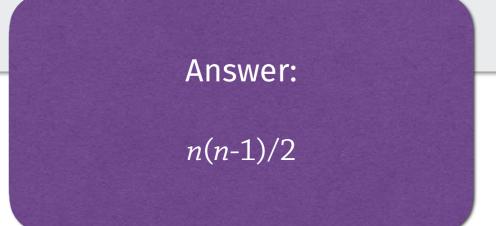
Total:

...

$$\sum_{i=0}^{n-1} i = 0 + 1 + 2 + \dots + n - 1$$

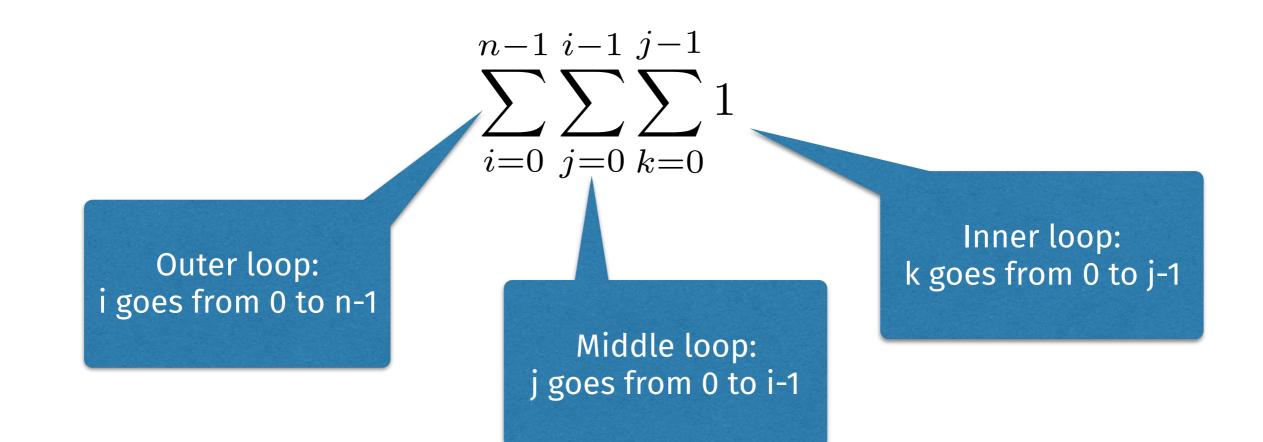
which is n(n-1)/2

boolean unique(Object[] a) {
 for(int i = 0; i < a.length; i++)
 for (int j = 0; j < i; j++)
 if (a[i].equals(a[j]))
 return false;
 return true;
}</pre>



boolean unique(Object[] a) {
 for(int i = 0; i < a.length; i++)
 for (int j = 0; j < i; j++)
 for (int k = 0; k < j; k++)
 "something that takes 1 step"</pre>

More hard sums



Counts: how many values i, j, k where $0 \le i < n$ $0 \le j < i$ $0 \le k < j$

I have no idea how to solve this! <u>Wolfram Alpha</u> says it's n(n-1)(n-2)/6

boolean unique(Object[] a) { for(int i = 0; i < a.length; i++) for (int j = 0; j < i; j++) for (int k = 0; k < j; k++) "something that takes 1 step"</pre>

Answer: n(n-1)(n-2)/6, apparently This is just horrible! Isn't there a better way?

boolean unique(Object[] a) { for(int i = 0; i < a.length; i++) for (int j = 0; j < i; j++) for (int k = 0; k < j; k++) "something that takes 1 step"</pre>

Three nested loops, all running from 0 to *n*...

Answer: O(n³)!

Why ignore constant factors? (again)

CHALMERS

Our long calculation only told us how many steps the algorithm takes, not how much time!

plifies things: like O(*n*²) tells you a lot

Isn't it!

- It's easier to calculate than a precise formula
- We get the same answer whether we count number of statements executed or time taken (of elements copied) – so we can be count
 But normally not enough to go to all this trouble!
- On the other hand:
 - Sometimes we do care about constant factors!
- Big O is normally a good compromise

How to calculate big-O complexity:

- We will first have to define formally what it means for an algorithm to have a certain complexity
- We will then come up with some rules for calculating complexity
- To come up with those rules, we will have to do "hard sums", but once we have the rules we can forget the sums

Big O, formally

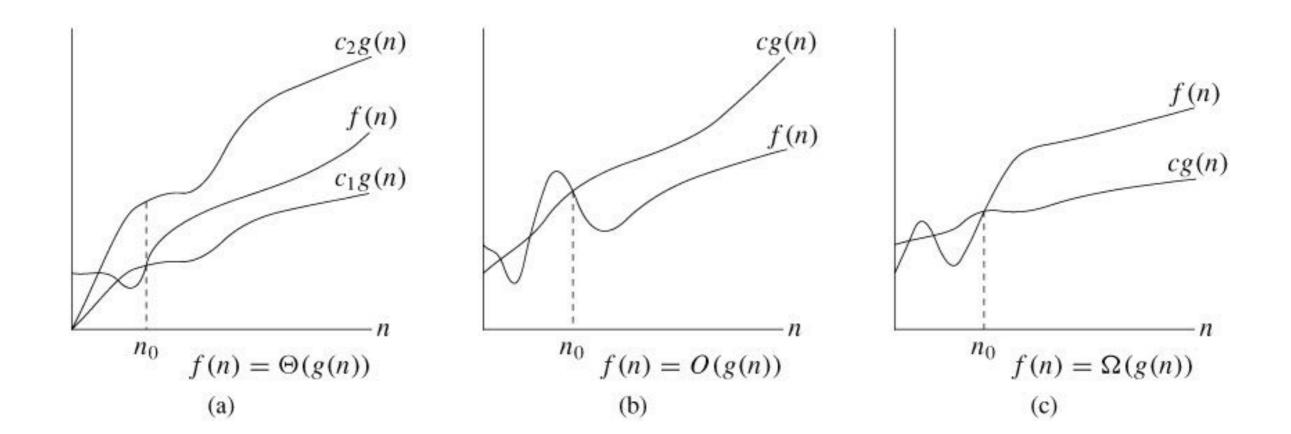
Big O measures the growth of a *mathematical function*

- Typically a function T(n) giving the number of steps taken by an algorithm on input of size n
- But can also be used to measure space complexity (memory usage) or anything else
- Formally, we say "T(n) is O(f(n))"
- E.g., "T(n) is $O(n^2)$ "

This means:

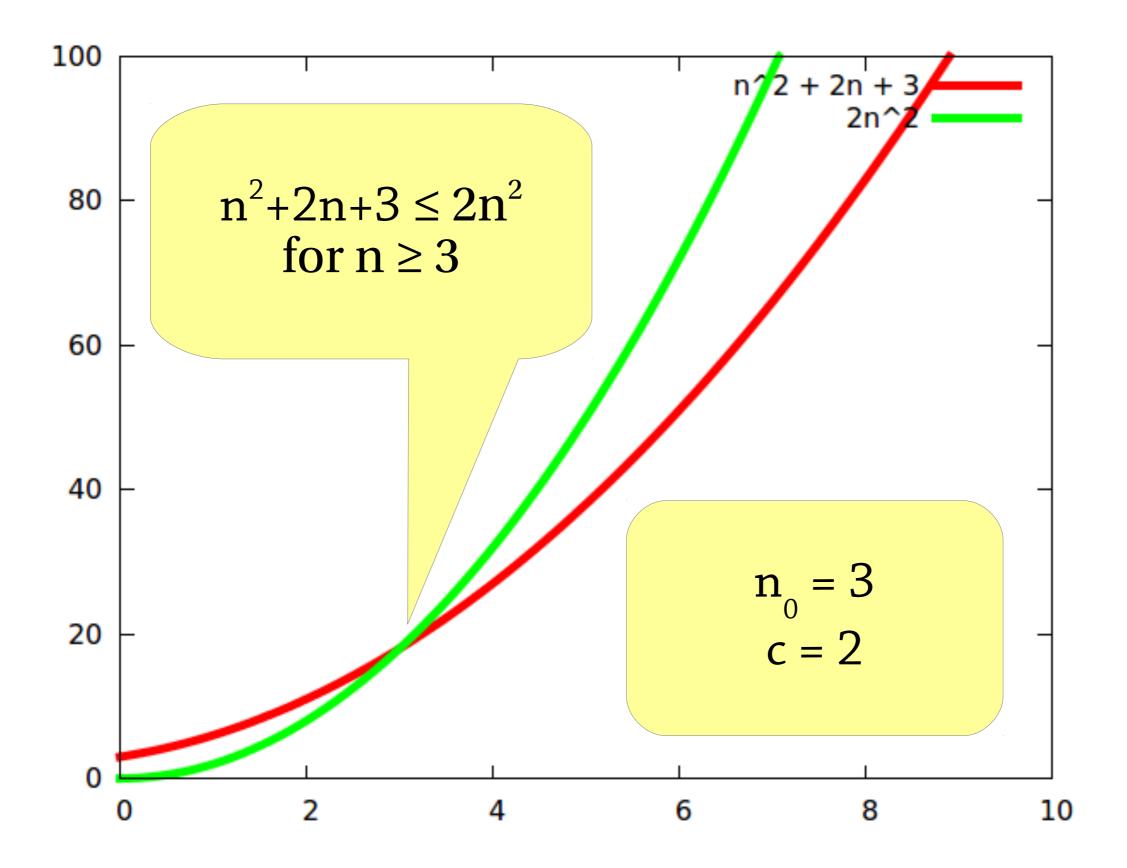
- $T(n) \le a \times f(n)$, for some constant a (i.e., T(n) is proportional to f(n) or **smaller**)
- But this need only hold for all n above some threshold n_0

- T(n) = O(f(n)) means $a \times f(n)$ is an *upper bound* on T(n). Thus there exists some constant a such that T(n) is always $\le a \times$ f(n), for large enough n (i.e., $n \ge n_0$ for some constant n_0).
- $T(n) = \Omega(f(n))$ means $a \times f(n)$ is a *lower bound* on T(n). Thus there exists some constant a such that T(n) is always $\ge a \times f(n)$, for all $n \ge n_0$.
- $T(n) = \Theta(f(n))$ means $a \times f(n)$ is an upper bound on T(n) and $b \times f(n)$ is a lower bound on T(n), for all $n \ge n_0$. Thus there exist constants a and b such that $T(n) \le a \times f(n)$ and $T(n) \ge b \times f(n)$. This means that f(n) provides a nice, tight bound on T(n).



Source: "The Algorithm Design Manual" by S. Skiena

An example: $n^2 + 2n + 3$ is O(n^2)



- Is 3n + 5 in O(n)?
- Is $n^2 + 2n + 3$ in O(n^3)?
- Why do we need the "threshold" n_0 ?

Big O	Class		
O(1)	Constant		
O(log <i>n</i>)	Logarithmic		
O(<i>n</i>)	Linear		
O(<i>n</i> log <i>n</i>)	Linearithmic		
O(<i>n</i> ²)	Quadratic		
O(<i>n</i> ³)	Cubic		
O(2 ⁿ)	Exponential		
O(n!)	Factorial		

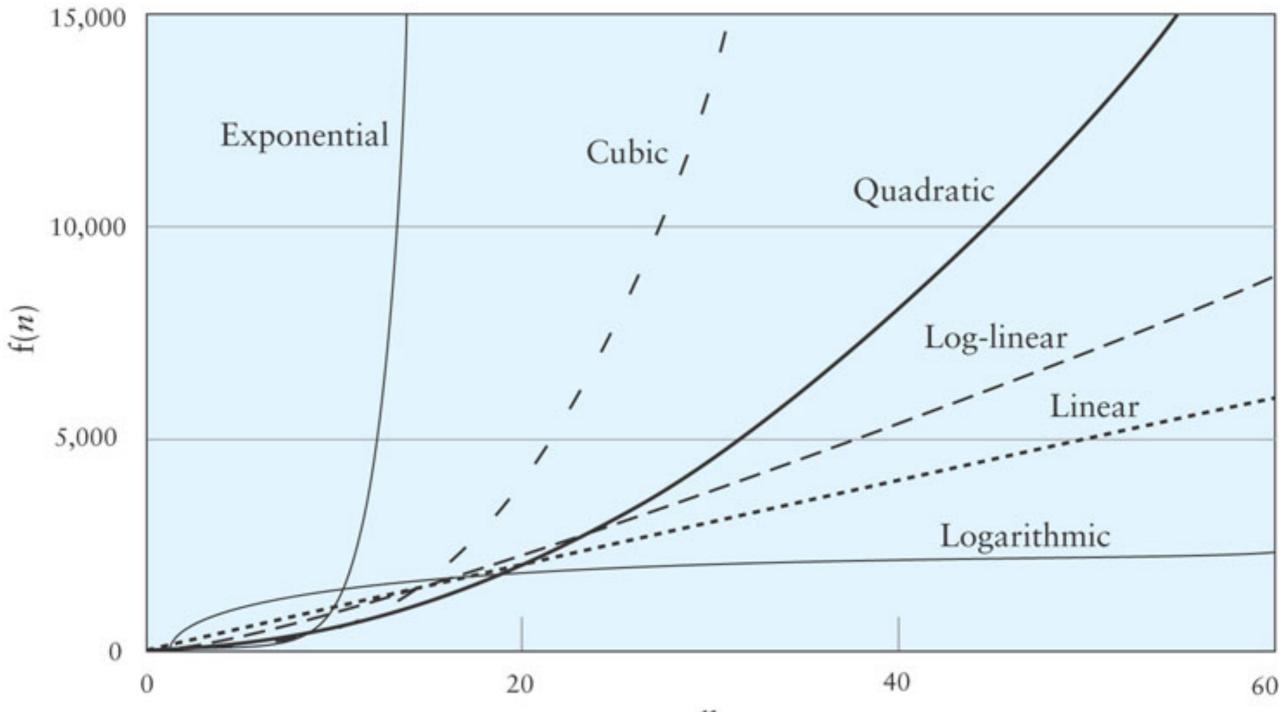
Imagine that we double the input size from n to 2n.

If an algorithm is:

- O(1), then it takes the same time as before
- O(log *n*), then it takes a constant amount more
- O(n), then it takes twice as long
- $O(n \log n)$, then it takes twice as long plus a little bit more
- $O(n^2)$, then it takes four times as long

If an algorithm is O(2ⁿ), then adding one element makes it take **twice as** long!

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003 \ \mu s$	$0.01~\mu{ m s}$	$0.033~\mu{ m s}$	$0.1 \ \mu s$	$1 \ \mu s$	3.63 ms
20	$0.004 \ \mu s$	$0.02~\mu{ m s}$	$0.086~\mu{ m s}$	$0.4 \ \mu { m s}$	$1 \mathrm{ms}$	77.1 years
30	$0.005 \ \mu s$	$0.03~\mu{ m s}$	$0.147~\mu{ m s}$	$0.9 \ \mu s$	$1 \mathrm{sec}$	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005 \ \mu s$	$0.04~\mu{ m s}$	$0.213~\mu{ m s}$	$1.6 \ \mu { m s}$	$18.3 \min$	
50	$0.006 \ \mu s$	$0.05~\mu{ m s}$	$0.282~\mu{ m s}$	$2.5~\mu{ m s}$	$13 \mathrm{~days}$	
100	$0.007 \ \mu s$	$0.1~\mu{ m s}$	$0.644~\mu{ m s}$	$10 \ \mu s$	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010 \ \mu s$	$1.00~\mu{ m s}$	$9.966~\mu{ m s}$	$1 \mathrm{ms}$		
10,000	$0.013 \ \mu s$	$10~\mu{ m s}$	$130 \ \mu { m s}$	$100 \mathrm{ms}$		
100,000	$0.017 \ \mu s$	$0.10 \mathrm{\ ms}$	$1.67 \mathrm{\ ms}$	$10 \sec$		
1,000,000	$0.020 \ \mu s$	$1 \mathrm{ms}$	$19.93 \mathrm{\ ms}$	$16.7 \min$		
10,000,000	$0.023 \ \mu s$	$0.01 \sec$	$0.23 \sec$	$1.16 \mathrm{~days}$		
100,000,000	$0.027 \ \mu s$	$0.10 \sec$	$2.66 \sec$	$115.7 \mathrm{~days}$		
1,000,000,000	$0.030 \ \mu s$	$1 \mathrm{sec}$	$29.90 \sec$	31.7 years		

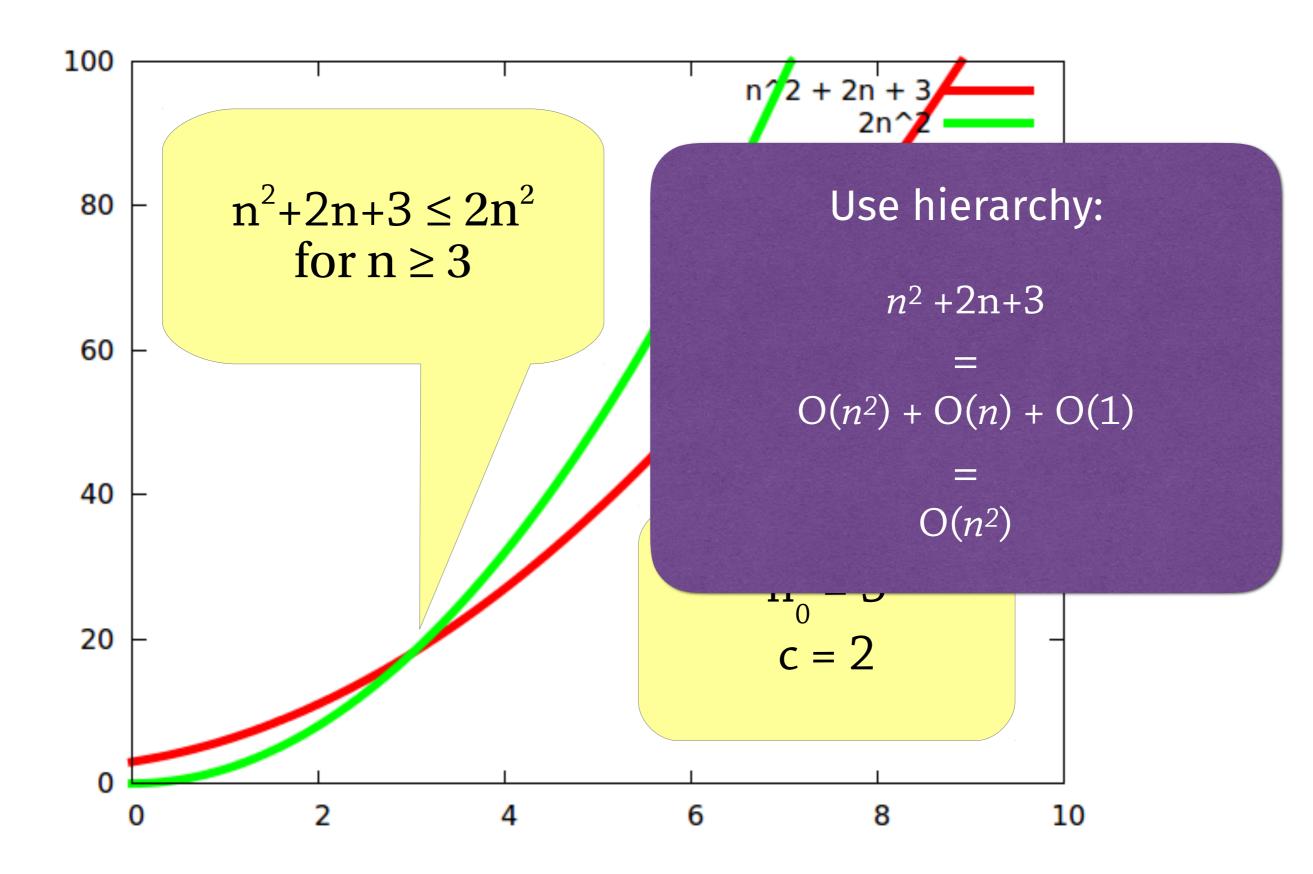


$O(1) < O(\log n) < O(n) < O(n\log n) < O(n^2) < O(n^3) < O(2^n)$

When adding a term lower in the hierarchy to one higher in the hierarchy, the lower-complexity term disappears:

- $O(1) + O(\log n) = O(\log n)$
- $O(\log n) + O(n^k) = O(n^k) (\text{if } k \ge 0)$
- $O(n^{j}) + O(n^{k}) = O(n^{k})$, if $j \le k$
- $O(n^k) + O(2^n) = O(2^n)$

An example: $n^2 + 2n + 3$ is O(n^2)



What are these in Big O notation?

- $n^2 + 11$
- $2n^3 + 3n 1$
- $n^4 + 2^n$

- $n^2 + 11 = O(n^2) + O(1) = O(n^2)$
- $2n^3 + 3n 1 = O(n^3) + O(n) + O(1) = O(n^3)$
- $n^4 + 2^n = O(n^4) + O(2^n) = O(2^n)$

- Often not only the size of the data influences the running time, but also the values
- The longest possible running time for a given data size is called the *worst case complexity* (sv: värsta fallskomplexiteten)
- You can also compute the best case complexity, but it's not as useful since what you want in most cases is a guarantee that running a program will not take more than a certain time

A single append-operation for a dynamic array:

```
public void append(char c) {
    if (size == string.length) {
        char[] newString = new char[string.length*2];
        for (int i = 0; i < string.length; i++)
            newString[i] = string[i];
        string = newString;
    }
    string[size] = c;
    size++;
}
</pre>
```

in worst case, which is pessimistic.

- Amortised analysis measures how much time each operation will take in a sequence of operations
- For the append method of a dynamic array the amortised complexity is O(1)
- There are different methods for amortising
 - One is the potential method where you "pay" in advance for future high-cost executions in such a way that you never run out of saved "coins"

Big O in retrospect

- We lose some precision by throwing away constant factors
 - ...you probably *do* care about a factor of 100 performance improvement
- On the other hand, life gets much simpler:
 - A small phrase like $O(n^2)$ tells you a lot about how the performance scales when the input gets big
 - It's a lot easier to calculate big-O complexity than a precise formula (lots of good rules to help you)
- Big O is normally a good compromise!
 - Occasionally, need to do hard sums anyway...