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Exercise 1

a) an ordinary binary search tree?

O(n2) – We do n insert and delete operations, each of which is O(height of tree). In
case of an ordinary BST the maximum possible height is O(n), if it is unbalanced.

b) an AVL tree?

O(n log n) – The insert and delete operations are O(log n) for an AVL tree, which is
balanced.

c) an unsorted linked list?

O(n2) – Insert is O(1) for an unsorted linked list, so the for-loop takes O(n) time.
However, deleteMin takes O(n) time so the while-loop takes O(n2) time.

d) a 2-3 tree?

O(n log n) – Same reasoning as for AVL trees.

e) a sorted array?

O(n2) – Insert takes O(n) time so the for-loop takes O(n2) time. Deleting an element
takes O(n), if we delete the first element, so that means that the while-loop is O(n2)
as well. If we store the elements in reverse order then the deletion would take O(1)
and the while-loop becomes O(n), but the entire method would still be O(n2) due
to the cost of insert.

Exercise 2

Adapting the example code, to store both keys and values in the nodes:

module Map where

import Prelude hiding (lookup)
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data Map k v

= Empty

| Node k v (Map k v) (Map k v)

deriving Show

lookup :: Ord k => k -> Map k v -> Maybe v

lookup _ Empty = Nothing

lookup k (Node k’ v l r)

| k < k’ = lookup k l

| k > k’ = lookup k r

| otherwise = Just v

update :: Ord k => k -> v -> Map k v -> Map k v

update k v Empty = Node k v Empty Empty

update k v (Node k’ v’ l r)

| k < k’ = Node k’ v’ (update k v l) r

| k > k’ = Node k’ v’ l (update k v r)

| otherwise = Node k v l r

-- O(log n), every case only considers one subtree, if balanced

delete :: Ord k => k -> Map k v -> Map k v

delete _ Empty = Empty

delete k (Node k’ v l r)

| k < k’ = Node k’ v (delete k l) r

| k > k’ = Node k’ v l (delete k r)

| otherwise = maybe l liftMin $ deleteMin r

where

liftMin (mk, mv, r’) = Node mk mv l r’

-- O(log n), recurrence relation: T(n) = O(1) + T(n/2), if balanced

deleteMin :: Map k v -> Maybe (k, v, Map k v)

deleteMin Empty = Nothing

deleteMin (Node k v Empty r) = Just (k, v, r)

deleteMin (Node k v l r) = do

(k’, v’, l’) <- deleteMin l

return (k’, v’, Node k v l’ r)

empty :: Map k v -> Bool

empty Empty = True

emtpy _ = False

Exercise 3

C is the only array that represents a binary heap, which can be drawn as a tree as follows:
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A

3

8

11

32 13

43

50 49

22

79 87

B

The moved bits and new value are drawn in red.

3

8

11

32 13

43

50 49

19

22

79

87

As array: [3, 8, 19, 11, 43, 22, 87, 32, 13, 50, 49, 79]

C

The heap property states that each element must be less than its children. If we have an
element that violates the heap property, we can restore it by ‘sifting down’ the element
(also called ‘sink’). So, we loop through the array and sift down each element in turn.
However, when sifting down the children must already be in heap order. To make sure
that the children have the heap property we loop through the array in reverse order.

Exercise 4

a) AD, DG, DE, AB, BC, CH, CI, DF

b) F : 0, D : 5, G : 6, A : 7, E : 8, B : 11, C : 15, H : 16, I : 18
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Exercise 5

a) Because of probing, an element is either stored at the index corresponding to its hash
or at a next index, which wraps around. So the deleted value’s hash could have been
0, 1 or 9. The correct answers are B (9), C (20), E (41).

The exercise mistakenly named index 6, so giving only A (26) is also correct.

b) One example: find the smallest element in the hash table. (Or get the elements in
increasing order.)

Exercise 6

For a G

Represent the set as e.g. a balanced tree, such as an AVL tree. Implement the operations as
follows:

• new: create an empty AVL tree. O(1)

• insert: use AVL insertion. O(log n)

• member: use binary search for a tree. O(log n)

• delete: use AVL deletion. O(log n)

• deleteLarge: Rebuild the tree with strings smaller than 43: create a new empty tree,
remove an element from the original tree, and add it to the new tree. Do this for all
elements. O(n log n)

Alternatively, create an iterator instance and loop over all strings and call delete.

(You cannot traverse the tree (which would be O(n)) and delete a string, because
you need to rebalance the tree before continuing, if not you will probably return a
tree which violates the AVL invariant.)

For a VG

Represent the set as two AVL trees, one called smallStrings that holds the strings smaller
than 43, and one called largeStrings that stores the other strings. Implement the opera-
tions as follows:

• new: initialise smallStrings and largeStrings to empty trees. O(1)

• insert: use AVL insertion to insert the string into largeStrings if it is larger than
42, otherwise insert it into smallStrings. O(log n)

• member: perform a binary search on the appropriate tree, based on the length of the
string. O(log n)
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• delete: same as for insert but do a delete instead of an insert. O(log n)

• deleteLarge: assign largeStrings to an empty tree. O(1)

5


