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Announcements



• A priority queue has three operations:  
- insert: add a new element 
- find minimum: return the smallest element  
- delete minimum: remove the smallest element  

• Similar idea to a stack or a queue, but:  
- you get the smallest element out instead of the first-added 

(queue) or last-added (stack)  

• (Java: PriorityQueue class) 

Priority queues



• A natural application for priority queues is to handle 
access to a limited resource where the resource users 
can be assigned different degree of urgency 

• An electronic queueing system for an emergency room 
where the patients’ conditions varies in severity 

• Processes with priority levels queueing for resources 
(such as computation time)

Applications 



• Keep a priority queue of future events  
- “At 10am a person will enter the shop”  

• Simulator's job: remove earliest event and run it, then 
repeat  
- In the priority queue, earlier events will be counted as 

“smaller” than later events  

• When we run that event, it can in turn add more events 
to the priority queue  
- When a person enters the shop, add an event “the person 

picked up some milk” to the priority queue at a time of 1 
minute later 

Applications - simulation



• Sorting: 
- Start with an empty priority queue 
- Add each element of the input list in turn  
- As long as the priority queue is not empty, find and remove 

the smallest element  
- You get all elements out in ascending order!  

• Heapsort is an in-place version of this

Applications 



• An efficient implementation of priority queues, the 
binary heap, with the help of:  
- Invariants  
- Trees  

• We'll wander off into those two topics and then come 
back to priority queues  

• Also, hopefully, a bit of: how to think like a data 
structure designer  
- I will try to explain why heaps are the way they are rather 

than just how they work 

This lecture



• Idea 1: implement a priority queue as a dynamic array  
- Insert: add new element to end of array: O(1)  
- Find minimum: linear search through array: O(n)  
- Delete minimum: remove minimum element: O(n)  

• Finding the minimum is quite expensive though 

• Another idea? 

An inefficient priority queue



• Idea 2: use a sorted array  
- Insert: insert new element in right place: O(n)  
- Find minimum: minimum is first element: O(1)  
- Delete minimum: remove first element: O(n)  

• Finding the minimum is cheap! Yay!  

• But... insertion and deletion got expensive :(

An inefficient priority queue



• Idea 3: implement a priority queue as a reverse-sorted 
array  
- Insert: insert new element in right place: O(n)  
- Find minimum: minimum is last element: O(1)  
- Delete minimum: remove last element: O(1)  

• A bit better, but O(n) insertion is not so good...

An inefficient priority queue



• “The array is reverse-sorted” is an example of an 
invariant of a data structure  
- An invariant is a property that always holds in our 

implementation of the data structure  
- Something the data structure designer picks that helps 

implementing the data structure  

• Insert, find minimum and delete minimum can assume 
that the array is already reverse- sorted...  
- ...but they must make sure that the array remains reverse-

sorted afterwards (they must preserve the invariant) 

A detour: invariants



• Preconditions – requirements on a function’s input (not 
expressed by types) that must hold when it’s called 

• Postcondition – requirements on a function’s output 
that will hold when it returns 

• Invariants – requirements on data that exists in 
between function calls (in Java this typically means 
requirements on an object’s instance variables) 

• Invariants can be seen as pre- and postconditions that 
are added to all instance methods of a class

Pre-, postconditions, and invariants



• What happens if you break the invariant?  
- e.g., insert simply adds the new element to the end  

• Answer: nothing goes wrong straight away, but later 
operations might fail  
- A later find minimum might return the wrong answer!  

• These kind of bugs are a nightmare to track down!  

• Solution: check the invariant

Checking the invariant



• Define a method  
 
  bool invariant() 
 
that returns true if the invariant holds  
- in this case, if the array is reverse-sorted  

• Then, in the implementation of every operation, do  
 
  assert invariant(); 

• This will throw an exception if the invariant doesn't hold!  

• (Note: in Java, must run program with -ea)

Checking the invariant



• Define a function 
 
  invariant :: Whatever -> Bool

• Then add an extra case to all operations:  
 
  whatever x 
    | not (invariant x) = error ”oops" 
 whatever x = ...  

• [Perhaps remove this case when you've finished testing 
your code]

Invariants in Haskell



• Writing down and checking invariants will help you find 
bugs much more easily  
- I'd say most data structure bugs involve breaking an 

invariant  
- Even if you don't think about an invariant, if your data 

structure is at all fancy there is probably one hiding there!  
- Almost all programming languages support assertions – use 

them to check invariants and make your life easier 

Checking invariants



Live coding



Designing data structures



• Here is how not to design a data structure:  
1. Take the operations you have to implement 
2. Think very hard about how to implement them  
3. Bash something together that seems to work  

• Because:  
- You will probably have lots of bugs 
- You will probably miss the best solution

How not to do it



• We implemented bounded queues by an array and a 
pair of indices front and back  
- The content of the queue is the elements between index 
front and index back  

• Once we decide on this representation, there is only 
one way to implement the queue!  
- Here, “representation” means – what datatype we use, plus 

what an instance of that datatype means as a queue (in this 
case, what the queue contains)

Looking back on older designs



• We represented a priority queue by an array with the 
invariant that the array is reverse-sorted  

• Once we choose this invariant, there is only one way to 
implement it!

Looking back on older designs



• How to design a data structure:  
- Pick a representation  

Here: we represent the priority queue by an array  
- Pick an invariant  

Here: the array is reverse-sorted  

• Once you have the right representation and invariant, 
the operations often almost “design themselves”!  
- There is often only one way to implement them  

• You could say...  
data structure = representation + invariant

Data structure design



• How do you know which representation and invariant 
to go for?  

• Good plan: have a first guess, see if the operations work 
out, then tweak it  
- Queues: at first we tried a dynamic array, but there was no 

way to efficiently remove items, so we switched to a circular 
array  

- Priority queues: at first we tried a sorted array, but then 
remove minimum needed to delete the first element 
(inefficient), so we switched to a reverse- sorted array  

• Takes practice!

Picking a representation and invariant



• A strong invariant like “the array is reverse-sorted”:  
- Can make it easier to get information from the data structure 

(the data is more structured)  
- Can make it harder to update the data structure (you have to 

preserve the invariant)  

• In our case:  
- find minimum becomes easier (array is sorted) 
- insert becomes harder (must make sure array is sorted 

afterwards)  

• A good invariant will provide some extra structure that 
makes the operations you want easier  
- sorting the array makes it easier to find the minimum

More on invariants



Trees



• A tree is a hierarchical data structure  
- Each node can have several children but only has one 

parent  
- The root has no parents; there is only one root  

• Example: directory hierarchy 

Trees



• Most often we use binary trees, where each node has at 
most two children

Binary trees

class Node<E> {  
  E value; 
  Node<E> left, right; 
}

data Tree a
  = Node a (Tree a) (Tree a)
  | Nil

Can be 
null



Terminology

  

(left) child
of hamster

parent of gorilla
ancestor of ape

root

leafsiblings

owlowl

hamsterhamster

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

left subtree or branch
of owl

Terminology

descendant of
hamster

apeape

path
node



• The depth of a node is 
the distance from the 
root 

• The height of a tree is 
the number of edges 
from the root to the 
deepest leaf 

• The size of a tree is the 
number of nodes in it

Terminology

  

Terminology
:e depth of a node is the distance from the root
:e height of a tree is the number of levels in the tree
:e size of a tree is the number of nodes in it

depth 1
height 3

size 4

owlowl

hamsterhamster

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

What are depth, 
height, and size for 

’owl’ and ’wolf’?

2



• Two major modes of tree traversal (visiting all nodes):  
- DFS, depth-first search; for binary trees there are three 

variants:  
‣ Pre-order 
‣ In-order 
‣ Post-order  

- BFS, breadth-first search 

• See the following slides for visualisations

Tree traversal



• First current node, 

• then left sub tree, 

• then right sub tree 

• Quiz: sequence?

Pre-order traversal

  

Pre-order traversal

C E H

A D I

B G

F

First current node,
then left sub tree,
then right sub tree

[F, B, A, D, C, E, G, I, H]



• First left sub tree,  

• then current node,  

• then right sub tree  

• Quiz: sequence?

In-order traversal

  

Pre-order traversal

C E H

A D I

B G

F

First current node,
then left sub tree,
then right sub tree

[A, B, C, D, E, F, G, H, I]



• First left sub tree,  

• then right sub tree,  

• then current node   

• Quiz: sequence?

Post-order traversal

  

Pre-order traversal

C E H

A D I

B G

F

First current node,
then left sub tree,
then right sub tree

[A, C, E, D, B, H, I, G, F]



• Each level from left to right 

Breadth-first search

  

Breadth-(rst search

C E H

A D I

B G

F

Each level from left to right



• A tree can be balanced or unbalanced  

• If a tree of size n is  
- balanced, its height is O(log n)  

- unbalanced, its height could be O(n)  

• Many tree algorithms have complexity O(height of tree), so are efficient 
on balanced trees and less so on unbalanced trees  

• Normally: balanced trees good, unbalanced bad!

Balanced trees

  

Balanced trees

A tree can be balanced or unbalanced

If a tree of size n is
● balanced, its height is O(log n)
● unbalanced, its height could be O(n)
Many tree algorithms have complexity O(height of 
tree), so are e/cient on balanced trees and less so on 
unbalanced trees
Normally: balanced trees good, unbalanced bad!

  

Balanced trees

A tree can be balanced or unbalanced

If a tree of size n is
● balanced, its height is O(log n)
● unbalanced, its height could be O(n)
Many tree algorithms have complexity O(height of 
tree), so are e/cient on balanced trees and less so on 
unbalanced trees
Normally: balanced trees good, unbalanced bad!



Heaps



• A heap implements a priority queue as a tree. Here is a 
tree:  

• This is not yet a heap. We need to add an invariant that 
makes it easy to find the minimum element. 

Heaps - representation

  

Heaps – representation

A heap implements a priority queue as a 
tree. Here is a tree:

:is is not yet a heap. We need to add an 
invariant that makes it easy to �nd the 
minimum element.

28

29 20

18 8 74 39

37 32 89 66



• A tree satisfies the heap property if the value of each 
node is less than (or equal to) the value of its children:  

• Where can we find the smallest element? 

The heap property

  

The heap property

A tree satis�es the heap property if the 
value of each node is less than (or equal 
to) the value of its children:

Where can we �nd the smallest element?

8

18 29

37 32 74 89

20 28 39 66

Root node is the
smallest –

can �nd minimum
in O(1) time

Root node is the 
smallest – 

can find minimum 
in O(1) time 



• Why did we pick this invariant? One reason:  
- It puts the smallest element at the root of the tree, so we can find it 

in O(1) time  

• Why not just have the invariant “the root node is the smallest”? 
Because:  
- Trees are a recursive structure – the children of a node are also trees  
- It's then a good rule of thumb to have a recursive invariant – each 

node of the tree should satisfy the same sort of property  
- In this case, instead of “the root node is smaller than its 

descendants”, we pick “each node is smaller than its descendants” 

• General hint: when using a tree data structure, make each node 
have the same invariant 

Why the heap property



• A binary heap is a complete binary tree that satisfies 
the heap property:  

• Complete means that all levels except the bottom one 
are full, and the bottom level is filled from left to right 

Binary heap

  

The heap property

A tree satis�es the heap property if the 
value of each node is less than (or equal 
to) the value of its children:

Where can we �nd the smallest element?

8

18 29

37 32 74 89

20 28 39 66

Root node is the
smallest –

can �nd minimum
in O(1) time



• The height is O(log n) since 2h ≤ n ≤ 2h+1 – 1  

• So complete trees are balanced 

• If we manage to implement operations with complexity 
O(h) then they will be O(log n)

Complete binary tree



• There are a couple of reasons why we choose to have a 
complete tree:  
- It makes sure the tree is balanced 
- When we insert a new element, it means there is only one 

place the element can go – this is one less design decision 
we have to make  

• There is a third reason which trumps the first two, but 
that will have to wait for next time!

Why completeness?



• The binary heap invariant:  
- The tree must be complete 
- It must have the heap property (each node is less than or 

equal to its children)  

• Remember, all our operations must preserve this 
invariant  

• Once we have picked this invariant, there is only one 
sensible way to implement the operations!

Binary heap invariant



Heap or not?

  

Heap or not?

8

18 29

20 28 66

8

18 29

20 28

8

28 29

20 18 39 66

8

8 78

20 95 85

39

No: 
not complete

No: 
not complete

Yes No: 
28 > 18



• Step 1: insert the element at the next empty position in 
the tree  

• This might break the heap invariant! 

• In this case, 12 is less than 66, its parent. 

Adding an element to a binary heap

  

Adding an element to a binary heap

Step 1: insert the element at the next 
empty position in the tree

:is might break the heap invariant!
In this case, 12 is less than 66, its parent.

8

18 29

37 26 76 32 74 89

20 28 39 66

12



• To modify a data structure with an invariant, we have to  
- modify it, 
- while preserving the invariant  

• Often it's easier to separate these:  
- first modify the data structure, possibly breaking the 

invariant in the process  
- then “repair” the data structure, making the invariant true 

again  

• This is what we are going to do here

An aside



• Step 2: if the new element is less than its parent, swap 
it with its parent  

• The invariant is still broken, since 12 is less than 29, its 
new parent 

Adding an element to a binary heap

  

Adding an element to a binary heap

Step 2: if the new element is less than its 
parent, swap it with its parent

:e invariant is still broken, since 12 is 
less than 29, its new parent

8

18 29

37 26 76 32 74 89

20 28 39 12

66



• Repeat step 2 until the new element is greater than or 
equal to its parent.  

• Now 12 is in its right place, and the invariant is restored. 
(Think about why this algorithm restores the invariant.) 

Adding an element to a binary heap

  

Adding an element to a binary heap

Repeat step 2 until the new element is 
greater than or equal to its parent.

Now 12 is in its right place, and the 
invariant is restored. (:ink about why 
this algorithm restores the invariant.)

8

18 12

37 26 76 32 74 89

20 28 39 29

66



• At every step, the heap property almost holds except 
that the new element might be less than its parent  

• After swapping the element and its parent, still only the 
new element can be in the wrong place (why?) 

Why this works

  

Why this works

At every step, the heap property almost 
holds except that the new element might 
be less than its parent
After swapping the element and its 
parent, still only the new element can be 
in the wrong place (why?)

8

18 29

37 26 76 32 74 89

20 28 39 12

66



• To remove the minimum element, we are going to 
follow a similar scheme as for insertion:  
- First remove the minimum (root) element from the tree 

somehow, breaking the invariant in the process  
- Then repair the invariant 

• Replace the root with another element from the tree… 
which one? 

• Because of completeness, we can only really remove 
the last (bottom-right) element from the tree  
- Solution: first swap the root element with the last element, 

then remove the last element 

Removing the minimum element



• Step 1: replace the root element with the last element 
in the tree, and remove the last element  

• The invariant is broken, because 66 is greater than its 
children 

Removing the minimum element

  

Removing the minimum element

Step 1: replace the root element with the 
last element in the tree, and remove the 
last element

:e invariant is broken, because 66 is 
greater than its children

66

18 12

37 26 76 32 74 89

20 28 39 29



• Step 2: if the moved element is greater than its 
children, swap it with its least child  

• (Why the least child in particular?) 

Removing the minimum element

  

Removing the minimum element

Step 2: if the moved element is greater 
than its children, swap it with its least 
child

(Why the least child in particular?)

12

18 66

37 26 76 32 74 89

20 28 39 29



• Step 3: repeat until the moved element is less than or 
equal to its children 

Removing the minimum element

  

Removing the minimum element

Step 3: repeat until the moved element is 
less than or equal to its children

12

18 29

37 26 76 32 74 89

20 28 39 66



• Two useful operations we can extract from all this  

• Sift up: if an element might be less than its parent, i.e. 
needs “moving up” (used in insert)  
- Repeatedly swap the element with its parent  

• Sift down: if an element might be greater than its 
children, i.e. needs “moving down” (used in removing 
the minimum element)  
- Repeatedly swap the element with its least child  

• Also called swim and sink

Sifting



• Implementation of priority queues  
- Heap property – means smallest value is always at root  
- Completeness – means tree is always balanced  

• Complexity:  
- find minimum – O(1)  
- insert, delete minimum – O(height of tree), O(log n) because 

tree is balanced

Binary heaps – summary so far



• Main topic was binary heaps, but it was also about how 
to design data structures  
- The main task is not how to implement the operations, but 

choosing the right representation and invariant  
- These are the main design decisions – once you choose 

them, lots of stuff falls into place  
- Understanding them is the best way to understand a data 

structure, and checking invariants is a very good way of 
avoiding bugs!  

• But you also need lots of existing data structures to get 
inspiration from!  
- Many of these in the rest of the course

Today


