
Data structures
More sorting

Dr. Alex Gerdes
DIT961 - VT 2018

• Very general name for a type of recursive algorithm

• You have a problem to solve:
- Split that problem into smaller subproblems
- Recursively solve those subproblems
- Combine the solutions for the subproblems to solve the

whole problem

Divide and conquer

To solve this…

To solve this...

1. Split the problem into
subproblems

2. Recursively solve the
subproblems

3. Combine the solutions

Divide and conquer

1. Split the problem
into subproblems

2. Recursively solve
the subproblems

3. Combine
the solutions

• Pick an element from the array, called the pivot

• Partition the array:
- First come all the elements smaller than the pivot, then the

pivot, then all the elements greater than the pivot

• Recursively quicksort the two partitions

Quicksort

• Say the pivot is 5.

• Partition the array into: all elements less than 5, then 5,
then all elements greater than 5

Quicksort

5 3 9 2 8 7 3 2 1 4

3 3 2 2 1 4 5 9 8 7

Less than the
pivot

Greater than
the pivot

3 3 2 2 1 4 5 9 8 7

• Now recursively quick sort the two partitions!

Quicksort

1 2 2 3 3 4 5 7 8 9

Less than the
pivot

Greater than
the pivot

Quicksort Quicksort

• Common optimisation: switch to insertion sort when
the input array is small

Pseudocode

// call as sort(a, 0, a.length-1);
void sort(int[] a, int low, int high) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 // assume that partition returns the
 // index where the pivot now is
 sort(a, low, pivot-1);
 sort(a, pivot+1, high);
}

What is the complexity of quicksort? (assuming partition
is O(n))

• O(log n)

• O(n)

• O(n log n)

• O(n2)

• Vet ej

Quiz

• In the best case, partitioning splits an array of size n
into two halves of size n/2:

Complexity of quick sort

Complexity of quicksort

In the best case, partitioning splits an
array of size n into two halves of size n/2:

n

n/2 n/2

• The recursive calls will split these arrays into four
arrays of size n/4:

Complexity of quick sort

Complexity of quicksort

/e recursive calls will split these arrays
into four arrays of size n/4:

n

n/2 n/2

n/4 n/4 n/4 n/4

Complexity of quick sort

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n

“levels”

O(n) time per level

Total time is
O(n log n)!

• But that's the best case!

• In the worst case, everything is greater than the pivot
(say)
- The recursive call has size n-1
- Which in turn recurses with size n-2, etc.
- Amount of time spent in partitioning:  

n + (n-1) + (n-2) + ... + 1 = O(n2)

Complexity of quicksort

n

n-1

n-2

n-3

n
“levels”

O(n) time per level

Total time is
O(n2)!

• When we pick the first element as the pivot, we get this
worst case for:
- Sorted arrays
- Reverse-sorted arrays

• The best pivot to use is the median value of the array, but in
practice it's too expensive to compute...

• Most important decision in QuickSort: what to use as the
pivot

• You don't need to split the array into exactly equal parts, it's
enough to have some balance (e.g. 10%/90% split still gives
O(n log n) runtime)

Worst cases

• Quicksort works well when the pivot splits the array
into roughly equal parts
- Median-of-three: pick first, middle and last element of the

array and pick the median of those three
- Pick pivot at random: gives O(n log n) expected

(probabilistic) complexity

• Introsort: detect when we get into the O(n2) case and
switch to a different algorithm (e.g. heapsort)

Complexity of quicksort

1. Pick a pivot (here 5)

Partitioning algorithm

5 3 9 2 8 7 3 2 1 4

Partitioning algorithm

2. Set two indexes, low and high

5 3 9 2 8 7 3 2 1 4

low high

Idea: everything to the left of low is less than the pivot
(coloured yellow), everything to the right of high is
greater than the pivot (orange)

Partitioning algorithm

3. Move low right until you find something greater than
the pivot

5 3 9 2 8 7 3 2 1 4

low high

while (a[low] < pivot) low++;

Partitioning algorithm

3. Move low right until you find something greater than
the pivot

5 3 9 2 8 7 3 2 1 4

low high

while (a[low] < pivot) low++;

Partitioning algorithm

3. Move low right until you find something greater than
the pivot

5 3 9 2 8 7 3 2 1 4

low high

while (a[low] < pivot) low++;

Partitioning algorithm

3. Move low right until you find something greater than
the pivot

5 3 9 2 8 7 3 2 1 4

low high

while (a[high] < pivot) high—;

Partitioning algorithm

4. Swap them!

5 3 4 2 8 7 3 2 1 9

low high

swap(a, low, high);

Partitioning algorithm

5. Advance low and high and repeat

5 3 4 2 8 7 3 2 1 9

low high

low++; high—;

Partitioning algorithm

Move low until higher than pivot

5 3 4 2 8 7 3 2 1 9

low high

Partitioning algorithm

Move high until lower than pivot

5 3 4 2 8 7 3 2 1 9

low high

Partitioning algorithm

Swap low and high

5 3 4 2 1 7 3 2 8 9

low high

Partitioning algorithm

Advance and repeat

5 3 4 2 1 7 3 2 8 9

low high

Partitioning algorithm

Move low and then high

5 3 4 2 1 7 3 2 8 9

low high

Partitioning algorithm

Swap and advance

5 3 4 2 1 2 3 7 8 9

low

high

Partitioning algorithm

Move high and low

5 3 4 2 1 2 3 7 8 9

low

high

Partitioning algorithm

6. When low and high have crossed, we are finished!

5 3 4 2 1 2 3 7 8 9

low

high

But the pivot is in the wrong place…

Partitioning algorithm

7. Final step: swap pivot with high

3 3 4 2 1 2 5 7 8 9

low

high

But the pivot is in the wrong place…

KWICK SÖRT idea-instructions.com/quick-sort/
v1.0, CC by-nc-sa 4.0

1xx

1

2

4

3

KWICK SÖRT KWICK SÖRT6

1x 51x

1. What to do if the pivot is not the first element?
- Swap the pivot with the first element before starting

partitioning!

2. What happens if the array contains many duplicates?
- Notice that we only advance a[low] as long as a[low] <
pivot

- If a[low] == pivot we stop, same for a[high]
- If the array contains just one element over and over again,
low and high will advance at the same rate

- Hence we get equal-sized partitions

Details

• Which pivot should we pick?
- First element: gives O(n2) behaviour for already- sorted lists
- Median-of-three: pick first, middle and last element of the

array and pick the median of those three
- Pick pivot at random: gives O(n log n) expected (probabilistic)

complexity

Pivot

• Typically the fastest sorting algorithm...  
...but very sensitive to details!
- Must choose a good pivot to avoid O(n2) case
- Must take care with duplicates
- Switch to insertion sort for small arrays to get better

constant factors

• If you do all that right, you get an in-place sorting
algorithm, with low constant factors and O(n log n)
complexity

Quicksort

Mergesort

• We can merge two sorted lists into one in linear time:

Mergesort

2 3 5 8 9 1 2 3 4 7

1 2 2 3 3 4 5 7 8 9

• Another divide-and-conquer algorithm

• To mergesort a list:
- Split the list into two equal parts
- Recursively mergesort the two parts
- Merge the two sorted lists together

Mergesort

1. Split the list into two equal parts

Mergesort

5 3 9 2 8 7 3 2 1 4

5 3 9 2 8 7 3 2 1 4

2. Recursively mergesort the two parts

Mergesort

2 3 5 8 9 1 2 3 4 7

5 3 9 2 8 7 3 2 1 4

3. Merge the two sorted lists together

Mergesort

2 3 5 8 9 1 2 3 4 7

1 2 2 3 3 4 5 7 8 9

• Mergesort's divide-and-conquer approach is similar to
quicksort

• But it always splits the list into equally- sized pieces!

• Hence O(n log n), just like the best case for quicksort –
but this is the worst case for mergesort

Complexity analysis

Complexity of quick sort

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n

“levels”

O(n) time per level

Total time is
O(n log n)!

• Mergesort:
- Not in-place
- O(n log n)

- Only requires sequential access to the list – this makes it good in functional
programming

• Quicksort:
- In-place
- O(n log n) but O(n2) if you are not careful
- Works on arrays only (random access)
- Unstable

• Both the best in their fields!
- Quicksort best imperative algorithm
- Mergesort best functional algorithm

Mergesort vs quicksort

• When sorting complex objects, e.g. where each element
contains various information about a person, the
ordering may only take part of the data in account (via
Comparable, Comparator, Ord)

• Then it’s sometimes important that objects that are
deemed equal by the ordering should appear in the
same order as they did in the original list

• A sorting algorithm that does not change the order of
equal elements is called stable

Stable sorting

• Let’s say that we want to sort 
 [(5, “a”), (3, “d”), (2, “f”), (3, “b”)] 
and that the ordering of the pairs is defined to be the
natural ordering of the first component

• Unstable sorting might result in 
 [(2, “f”), (3, “b”), (3, “d”), (5, “a”)]

• Stable sorting always gives 
 [(2, “f”), (3, “d”), (3, “b”), (5, “a”)]

• Insertion sort is stable (provided that the insert inequality
check is the right one, so that equal elements are not
swapped).

Stable sorting

