4 ¢ CHALMERS |)) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Data structures
Sorting

Dr. Alex Gerdes
DIT961 - VT 2018

Searching

Suppose | give you an array, and ask you to find if a particular
value is in it, say 4 (or 2)

5 3 9 2 8 7 3 2 1 4
The only way Is to look at each element in turn
Quiz: what Is the complexity?
O(n)
This Is called linear search

You might have to look at every element before you find the
right one

Searching

But what if the array Is sorted?

Then we can use binary search!

Binary search

Suppose we want to look for 4

We start by looking at the element half way along the
array, which happens to be 3

Binary search

31s less than 4

Since the array Is sorted, we know that 4 must come
after 3

We can ignore everything before 3

Binary search

Now we repeat the process

We look at the element half way along what's left of the
array, this happens to be 7

Binary search

7 1s greater than 4

Since the array Is sorted, we know that 4 must come
before 7

We can safely ignore everything after 7

Binary search

We repeat the process
We look half way along the array again

We find 4!

BINARY SEARCH

Performance of binary search

Binary search repeatedly chops the array in half

If we double the size of the array, we need to look at
one more array element

With an array of size 2, after n tries, we are down to 1
element

On an array of size n takes O(log n) time!

On an array of a billion elements, need to search 30
elements (compared to a billion tries for linear search!)

Implementing binary search

Keep two indices 1o and hi, they represent the part of
the array to be searched

Lletmid = (lo + hi) / 2 andlookata[mid],then
eithersetlo = mid + 1orhi = mid - 1,
depending on the value of a[mid]

Implementing binary search

Keep two indices 1o and hi, they represent the part of
the array to be searched

Lletmid = (lo + hi) / 2 andlookata[mid],then
eithersetlo = mid + lorhi = mid - 1
depending on the value of a[mid]

4

1

lo hi mid

Sorting

Sorting

Zillions of sorting algorithms (bubblesort, insertion sort,
selection sort, quicksort, heapsort, mergesort, shell sort,
counting sort, ...)

Sorting

Why Is sorting important? Because sorted data i1s much
easler to deal with!

Searching — use binary instead of linear search

Finding duplicates — takes linear instead of quadratic time

etc.

Most sorting algorithms are based on comparisons

Compare elements - is one bigger than the other? If not, do

something a
Advantage: t

oout It!

ney can work on all sorts of data

Disadvantage: specialised algorithms for e.g. sorting lists of

Integers can

be faster

Bubblesort

Bubblesort

Go through the array, comparing adjacent elements

- If we find two that are in the wrong order, swap them

Once we reach the end of the array, go back and start
again!

Bubblesort

4
CHALMERS

Comparea[0]anda[1]:

5] 3 9 2
3 S 9 2

Bubblesort

4
CHALMERS

Comparea[l]anda[2]:

Bubblesort

4
CHALMERS

Comparea[2] and a[3]:

Bubblesort

4
CHALMERS

Comparea[3]and a[4]:

Bubblesort

Back to the beginning!

Bubblesort

4
CHALMERS

Comparea[l]anda[2]:

Bubblesort

4
CHALMERS

Comparea[2] and a[3]:

Bubblesort

4
CHALMERS

Comparea[3]and a[4]:

Bubblesort

Back to the beginning!

3 2 5 38
2 3 5 3

Bubblesort

How do we know when to stop going back to the beginning?
- When the array Is sorted

How many loops until that happens?

- Each time we loop through the array, at least one more element
ends up in the right place: the biggest element that was in the
wrong place before

So repeat as many times as there are elements in the input
array

for Kk = 0 to array.length-1
for 1 = 0 to array.length-2
if array[i1] < array[i+]1]
swap array|[1] and array|[i+1]

Insertion sort

Insertion sort

Imagine someone Is dealing you cards. Whenever you get
a new card you put It into the right place in your hand:

This is the idea of insertion sort.

Insertion sort

Sorting 5 3 9 2 8

Start by "picking up” the 5:

Insertion sort

Sorting 5 3 9 2 8

Then insert 3 into the right place:

Insertion sort

Sorting 5 3 9 2 8

Then the 9:

Insertion sort

Sorting 5 3 9 2 8

Then the 2:

Insertion sort

Sorting 5 3 9 2 8

Finally the 8:

Complexity of insertion sort

Insertion sort does n insertions for an array of size n

Does this mean 1t is O(n)?

- No! An insertion Is not constant time.

To Insert into a sorted array, you must move all the
elements up one, which is O(n)

Thus total iIs O(n?)

In-place insertion sort

This version of insertion sort needs to make a new
array to hold the result

An in-place sorting algorithm Is one that doesn't need
to make temporary arrays

- Has the potential to be more efficient

Let's make an in-place insertion sort!

Basic idea: loop through the array, and insert each
element into the part which is already sorted

In-place insertion sort

CHALMERS

Dark gray part

Is sorted

In-place insertion sort

In-place insertion sort

In-place insertion sort

CHALMERS

In-place insertion sort

CHALMERS

In-place insertion sort

One way to do It: repeatedly swap the element with its
neighbour on the left, until it's in the right position

In-place insertion sort

CHALMERS

while n > 0 and array|[n] > array|[n-1]
swap array[n] and array|[n-1]
n = n-1

In-place insertion sort

An improvement: instead of swapping, move elements
upwards to make a “hole” where we put the new value

In-place insertion sort

CHALMERS

In-place insertion sort

This notation
means
s e e e i |

for 1 = 1 to n-1
insert array[i1] into array|[0..1)

An aside: we have the invariant that array[0..1) IS
sorted

- An Invariant is something that holds whenever the loop
pody starts to run

- Initially, 1 = 1and array[0..1) Issorted

- As the loop runs, more and more of the array becomes
sorted

- When the loop finishes, i
—the whole array!

n,So array[0..n) IS sorted

Selection sort

Selection sort

Find the smallest element of the array, and delete It

Find the smallest remaining element, and delete it

And so on...
Quiz: complexity?

Finding the smallest element is O(n), so total
complexity I1s O(2)

Selection sort

The smallest element Is 2:

We also delete 2 from the input array

Selection sort

Now smallest element is 3:

We delete 3 from the input array

Selection sort

Now smallest element is 5:

We delete from the input array (... and so on)

In-place selection sort

Instead of deleting the smallest element, swap it with
the first element!

- The next time round, ignore the first element of the
array: we know It's the smallest one

Instead, find the smallest element of the rest of the
array, and swap i1t with the second element

In-place insertion sort

The smallest element Is 2:

In-place insertion sort

In-place insertion sort

In-place insertion sort

In-place insertion sort

4
CHALMERS

for 1 = 0 to a.length-1
find the smallest element
in afji .. a.length)
swap 1t with a[1]

Comparing the sorting algorithms

All the algorithms so far are O(n?) in the worst case

One of them is O(n) in the best case (a sorted array) -
which?
- Answer: Insertion sort

- This makes insertion sort the best of our three algorithms -
It's actually a fast sorting algorithm in general for small lists

- The other two are bad, but selection sort is the basis for a
better algorithm, heapsort

