
Data structures
Sorting

Dr. Alex Gerdes
DIT961 - VT 2018

• Suppose I give you an array, and ask you to find if a particular
value is in it, say 4 (or 2)

• The only way is to look at each element in turn

• Quiz: what is the complexity?

• O(n)

• This is called linear search

• You might have to look at every element before you find the
right one

Searching

5 3 9 2 8 7 3 2 1 4

• But what if the array is sorted?

• Then we can use binary search!

Searching

1 2 2 3 3 4 5 7 8 9

• Suppose we want to look for 4

• We start by looking at the element half way along the
array, which happens to be 3

Binary search

1 2 2 3 3 4 5 7 8 9

• 3 is less than 4

• Since the array is sorted, we know that 4 must come
after 3

• We can ignore everything before 3

Binary search

1 2 2 3 3 4 5 7 8 9

• Now we repeat the process

• We look at the element half way along what’s left of the
array, this happens to be 7

Binary search

1 2 2 3 3 4 5 7 8 9

• 7 is greater than 4

• Since the array is sorted, we know that 4 must come
before 7

• We can safely ignore everything after 7

Binary search

1 2 2 3 3 4 5 7 8 9

• We repeat the process

• We look half way along the array again

• We find 4!

Binary search

1 2 2 3 3 4 5 7 8 9

1

3

2

BINÄRY SEARCH idea-instructions.com/binary-search/
v1.0, CC by-nc-sa 4.0

2 2

4

• Binary search repeatedly chops the array in half

• If we double the size of the array, we need to look at
one more array element

• With an array of size 2n, after n tries, we are down to 1
element

• On an array of size n takes O(log n) time!

• On an array of a billion elements, need to search 30
elements (compared to a billion tries for linear search!)

Performance of binary search

• Keep two indices lo and hi, they represent the part of
the array to be searched

• Let mid = (lo + hi) / 2 and look at a[mid], then
either set lo = mid + 1 or hi = mid - 1,
depending on the value of a[mid]

Implementing binary search

1 2 2 3 3 4 5 7 8 9

lo mid hi

• Keep two indices lo and hi, they represent the part of
the array to be searched

• Let mid = (lo + hi) / 2 and look at a[mid], then
either set lo = mid + 1 or hi = mid - 1,
depending on the value of a[mid]

Implementing binary search

1 2 2 3 3 4 5 7 8 9

lo hi

hi = mid -1

mid

Sorting

Zillions of sorting algorithms (bubblesort, insertion sort,
selection sort, quicksort, heapsort, mergesort, shell sort,
counting sort, ...)

Sorting

1 2 2 3 3 4 5 7 8 9

5 3 9 2 8 7 3 2 1 4

• Why is sorting important? Because sorted data is much
easier to deal with!
• Searching – use binary instead of linear search
• Finding duplicates – takes linear instead of quadratic time

etc.

• Most sorting algorithms are based on comparisons
• Compare elements – is one bigger than the other? If not, do

something about it!
• Advantage: they can work on all sorts of data
• Disadvantage: specialised algorithms for e.g. sorting lists of

integers can be faster

Sorting

Bubblesort

• Go through the array, comparing adjacent elements
- If we find two that are in the wrong order, swap them

• Once we reach the end of the array, go back and start
again!

Bubblesort

Bubblesort

Compare a[0] and a[1]:

5 3 9 2 8

3 5 9 2 8

Bubblesort

Compare a[1] and a[2]:

3 5 9 2 8

3 5 9 2 8

Bubblesort

Compare a[2] and a[3]:

3 5 9 2 8

3 5 2 9 8

Bubblesort

Compare a[3] and a[4]:

3 5 2 9 8

3 5 2 8 9

Bubblesort

Back to the beginning!

3 5 2 8 9

3 5 2 8 9

Bubblesort

Compare a[1] and a[2]:

3 5 2 8 9

3 2 5 8 9

Bubblesort

Compare a[2] and a[3]:

3 2 5 8 9

3 2 5 8 9

Bubblesort

Compare a[3] and a[4]:

3 2 5 8 9

3 2 5 8 9

Bubblesort

Back to the beginning!

3 2 5 8 9

2 3 5 8 9

• How do we know when to stop going back to the beginning?
• When the array is sorted

• How many loops until that happens?
• Each time we loop through the array, at least one more element

ends up in the right place: the biggest element that was in the
wrong place before

• So repeat as many times as there are elements in the input
array

Bubblesort

for k = 0 to array.length-1
 for i = 0 to array.length-2
 if array[i] < array[i+1]
 swap array[i] and array[i+1]

Insertion sort

Imagine someone is dealing you cards. Whenever you get
a new card you put it into the right place in your hand:

This is the idea of insertion sort.

Insertion sort

Insertion sort

Imagine someone is dealing you cards.
Whenever you get a new card you put it
into the right place in your hand:

3is is the idea of insertion sort.

Insertion sort

Sorting

Start by ”picking up” the 5:

5 3 9 2 8

5 3 9 2 8

Insertion sort

Sorting

Then insert 3 into the right place:

5 3 9 2 8

3 5 9 2 8

Insertion sort

Sorting

Then the 9:

5 3 9 2 8

3 5 9 2 8

Insertion sort

Sorting

Then the 2:

5 3 9 2 8

2 3 5 9 8

Insertion sort

Sorting

Finally the 8:

5 3 9 2 8

2 3 5 8 9

• Insertion sort does n insertions for an array of size n

• Does this mean it is O(n)?
- No! An insertion is not constant time.

• To insert into a sorted array, you must move all the
elements up one, which is O(n)

• Thus total is O(n2)

Complexity of insertion sort

• This version of insertion sort needs to make a new
array to hold the result

• An in-place sorting algorithm is one that doesn't need
to make temporary arrays
- Has the potential to be more efficient

• Let's make an in-place insertion sort!

• Basic idea: loop through the array, and insert each
element into the part which is already sorted

In-place insertion sort

• The first element of the array is sorted:

In-place insertion sort

5 3 9 2 8

5 3 9 2 8

Dark gray part
is sorted

• Insert the 3 into the correct place:

In-place insertion sort

5 3 9 2 8

3 5 9 2 8

• Insert the 9 into the correct place:

In-place insertion sort

5 3 9 2 8

3 5 9 2 8

• Insert the 2 into the correct place:

In-place insertion sort

5 3 9 2 8

2 3 5 9 8

• Insert the 8 into the correct place:

In-place insertion sort

5 3 9 2 8

2 3 5 8 9

• One way to do it: repeatedly swap the element with its
neighbour on the left, until it's in the right position

In-place insertion sort

2 3 5 9 4

2 3 5 4 9

In-place insertion sort

2 3 5 4 9

2 3 4 5 9

while n > 0 and array[n] > array[n-1]
 swap array[n] and array[n-1]
 n = n-1

• An improvement: instead of swapping, move elements
upwards to make a “hole” where we put the new value

In-place insertion sort

2 3 5 9 4

2 3 5 9

In-place insertion sort

2 3 5 9

2 3 5 9

2 3 5 9 4

• An aside: we have the invariant that array[0..i) is
sorted
- An invariant is something that holds whenever the loop

body starts to run
- Initially, i = 1 and array[0..1) is sorted
- As the loop runs, more and more of the array becomes

sorted
- When the loop finishes, i = n, so array[0..n) is sorted

– the whole array!

In-place insertion sort

for i = 1 to n-1  
 insert array[i] into array[0..i)

This notation
means

0, 1, …, i-1

Selection sort

• Find the smallest element of the array, and delete it

• Find the smallest remaining element, and delete it

• And so on…

• Quiz: complexity?

• Finding the smallest element is O(n), so total
complexity is O(n2)

Selection sort

Selection sort

Sorting

The smallest element is 2:

We also delete 2 from the input array

5 3 9 2 8

2 3 9 2 8

Selection sort

Sorting

Now smallest element is 3:

We delete 3 from the input array

5 3 9 8 8

2 3 9 2 8

Selection sort

Sorting

Now smallest element is 5:

We delete from the input array (… and so on)

5 9 8 8 8

2 3 5 2 8

• Instead of deleting the smallest element, swap it with
the first element!

• The next time round, ignore the first element of the
array: we know it's the smallest one

• Instead, find the smallest element of the rest of the
array, and swap it with the second element

In-place selection sort

The smallest element is 2:

In-place insertion sort

5 3 9 2 8

2 3 9 5 8

The smallest element in the rest of the array is 3:

In-place insertion sort

2 3 9 5 8

2 3 9 5 8

The smallest element in the rest of the array is 5:

In-place insertion sort

2 3 9 5 8

2 3 5 9 8

The smallest element in the rest of the array is 8:

In-place insertion sort

2 3 5 9 8

2 3 5 8 9

In-place insertion sort

for i = 0 to a.length-1
 find the smallest element
 in a[i .. a.length)
 swap it with a[i]

• All the algorithms so far are O(n2) in the worst case

• One of them is O(n) in the best case (a sorted array) –
which?
• Answer: insertion sort
• This makes insertion sort the best of our three algorithms –

it's actually a fast sorting algorithm in general for small lists
• The other two are bad, but selection sort is the basis for a

better algorithm, heapsort

Comparing the sorting algorithms

