
Data structures
Complexity

Dr. Alex Gerdes
DIT961 - VT 2018

• Course introduction

• Small example: dynamic arrays

• Aritmetisk summa!

• Google-group: do it now!

• Resources on course website

• Labpartner: after lecture or via Google-group

• Arrays.copyOf(…)

• Measuring time

Summary previous lecture

• This lecture is all about how to describe the
performance of an algorithm

• Last time we had three versions of the file-reading
program. For a file of size n:
- The first one needed to copy n(n+1)/2 characters
- The second one needed to copy n(n+1)/200 characters
- The third needed to copy 2n characters

• We worked out these formulas, but it was a bit of work
– now we'll see an easier way

Introduction

Big idea

Big idea: 
ignore constant

factors!

Why do we ignore constant factors?

• Well, when n is 1,000,000…
- log2 n ≈ 20
- n is 1,000,000
- n2 is 1,000,000,000,000
- 2n is a number with 300,000 digits...

• Given two algorithms:
- The first takes 1000000 log2 n steps to run
- The second takes 0.00000001 × 2n

• The first is miles better!

• Constant factors normally don't matter

• Instead of saying...
- The first implementation copies n2/2 characters
- The second copies n2/200 characters
- The third copies 2n characters

• We will just say...
- The first implementation copies O(n2) characters
- The second copies O(n2) characters
- The third copies O(n) characters

• O(n2) means “proportional to n2” (almost)

Big O (sv: Ordo) notation

• Suppose an algorithm takes n2/2 steps, and each step
takes 100ns to run
- The total time taken is 50n2 ns
- This is O(n2)
- The number of steps taken is also O(n2)

• It doesn't matter whether we count steps or time!

• We say that the algorithm has O(n2) time complexity or
simply complexity

Time complexity

• Big O really simplifies things:
- A small phrase like O(n2) tells you a lot
- It's easier to calculate than a precise formula
- We get the same answer whether we count number of

statements executed or time taken (or in this case number
of elements copied) – so we can be a bit careless what we
count

• On the other hand:
- Sometimes we do care about constant factors!

• Big O is normally a good compromise

Why ignore constant factors?

• How many steps does this function take on an array of
length n (in the worst case)?

What happens without big O?

Object search(Object[] a, Object x) {
 for(int i = 0; i < a.length; i++) {
 if (a[i].equals(target))
 return a[i];
 }
 return null;
}

Assume that
loop body takes

1 step

Answer: n

What about this one?

boolean unique(Object[] a) {
 for(int i = 0; i < a.length; i++)
 for (int j = 0; j < a.length; j++)
 if (a[i].equals(a[j]) && i != j)
 return false;
 return true;
} Outer loop runs n times 

Each time, inner loop
runs n times

Total: n×n = n2

What about this one?

boolean unique(Object[] a) {
 for(int i = 0; i < a.length; i++)
 for (int j = 0; j < i; j++)
 if (a[i].equals(a[j]))
 return false;
 return true;
} Loop runs to i

instead of n

When i = 0, inner loop runs 0 times

When i = 1, inner loop runs 1 time

…

When i = n-1, inner loop runs n-1 times

Total:

which is n(n-1)/2

Some hard sums

n�1X

i=0

i = 0 + 1 + 2 + . . .+ n� 1
<latexit sha1_base64="I3taXI+fQ8VzJVis1SqHC9YAYOc=">AAACF3icbVDNSsNAGNzUv1r/oh69LBZBkNakCOqhUPTisYKxhSaGzWZbl242YXcjlJDH8OKrePGg4lVvvo3bNgdtHRgYZr6P3W+ChFGpLOvbKC0sLi2vlFcra+sbm1vm9s6tjFOBiYNjFotugCRhlBNHUcVINxEERQEjnWB4Oc47D0RIGvMbNUqIF6EBp32KkdKWbx67Mo38jDat/C7jNTuHFDahBY+grdnQdFkYK6kFhzVo+2bVqlsTwHlhF6IKCrR988sNY5xGhCvMkJQ920qUlyGhKGYkr7ipJAnCQzQgPS05ioj0sslhOTzQTgj7sdDkCk7c3xsZiqQcRYGejJC6l7PZ2Pwv66Wqf+ZllCepIhxPH+qnDKoYjluCIRUEKzbSAmFB9V8hvkcCYaW7rOgS7NmT54XTqJ/X7euTauuiaKMM9sA+OAQ2OAUtcAXawAEYPIJn8ArejCfjxXg3PqajJaPY2QV/YHz+AHDzmyg=</latexit><latexit sha1_base64="I3taXI+fQ8VzJVis1SqHC9YAYOc=">AAACF3icbVDNSsNAGNzUv1r/oh69LBZBkNakCOqhUPTisYKxhSaGzWZbl242YXcjlJDH8OKrePGg4lVvvo3bNgdtHRgYZr6P3W+ChFGpLOvbKC0sLi2vlFcra+sbm1vm9s6tjFOBiYNjFotugCRhlBNHUcVINxEERQEjnWB4Oc47D0RIGvMbNUqIF6EBp32KkdKWbx67Mo38jDat/C7jNTuHFDahBY+grdnQdFkYK6kFhzVo+2bVqlsTwHlhF6IKCrR988sNY5xGhCvMkJQ920qUlyGhKGYkr7ipJAnCQzQgPS05ioj0sslhOTzQTgj7sdDkCk7c3xsZiqQcRYGejJC6l7PZ2Pwv66Wqf+ZllCepIhxPH+qnDKoYjluCIRUEKzbSAmFB9V8hvkcCYaW7rOgS7NmT54XTqJ/X7euTauuiaKMM9sA+OAQ2OAUtcAXawAEYPIJn8ArejCfjxXg3PqajJaPY2QV/YHz+AHDzmyg=</latexit><latexit sha1_base64="I3taXI+fQ8VzJVis1SqHC9YAYOc=">AAACF3icbVDNSsNAGNzUv1r/oh69LBZBkNakCOqhUPTisYKxhSaGzWZbl242YXcjlJDH8OKrePGg4lVvvo3bNgdtHRgYZr6P3W+ChFGpLOvbKC0sLi2vlFcra+sbm1vm9s6tjFOBiYNjFotugCRhlBNHUcVINxEERQEjnWB4Oc47D0RIGvMbNUqIF6EBp32KkdKWbx67Mo38jDat/C7jNTuHFDahBY+grdnQdFkYK6kFhzVo+2bVqlsTwHlhF6IKCrR988sNY5xGhCvMkJQ920qUlyGhKGYkr7ipJAnCQzQgPS05ioj0sslhOTzQTgj7sdDkCk7c3xsZiqQcRYGejJC6l7PZ2Pwv66Wqf+ZllCepIhxPH+qnDKoYjluCIRUEKzbSAmFB9V8hvkcCYaW7rOgS7NmT54XTqJ/X7euTauuiaKMM9sA+OAQ2OAUtcAXawAEYPIJn8ArejCfjxXg3PqajJaPY2QV/YHz+AHDzmyg=</latexit><latexit sha1_base64="I3taXI+fQ8VzJVis1SqHC9YAYOc=">AAACF3icbVDNSsNAGNzUv1r/oh69LBZBkNakCOqhUPTisYKxhSaGzWZbl242YXcjlJDH8OKrePGg4lVvvo3bNgdtHRgYZr6P3W+ChFGpLOvbKC0sLi2vlFcra+sbm1vm9s6tjFOBiYNjFotugCRhlBNHUcVINxEERQEjnWB4Oc47D0RIGvMbNUqIF6EBp32KkdKWbx67Mo38jDat/C7jNTuHFDahBY+grdnQdFkYK6kFhzVo+2bVqlsTwHlhF6IKCrR988sNY5xGhCvMkJQ920qUlyGhKGYkr7ipJAnCQzQgPS05ioj0sslhOTzQTgj7sdDkCk7c3xsZiqQcRYGejJC6l7PZ2Pwv66Wqf+ZllCepIhxPH+qnDKoYjluCIRUEKzbSAmFB9V8hvkcCYaW7rOgS7NmT54XTqJ/X7euTauuiaKMM9sA+OAQ2OAUtcAXawAEYPIJn8ArejCfjxXg3PqajJaPY2QV/YHz+AHDzmyg=</latexit>

What about this one?

boolean unique(Object[] a) {
 for(int i = 0; i < a.length; i++)
 for (int j = 0; j < i; j++)
 if (a[i].equals(a[j]))
 return false;
 return true;
}

Answer:

n(n-1)/2

What about this one?

boolean unique(Object[] a) {
 for(int i = 0; i < a.length; i++)
 for (int j = 0; j < i; j++)
 for (int k = 0; k < j; k++)
 ”something that takes 1 step”
}

Counts: how many values i, j, k  
 where 0 ≤ i < n 
 0 ≤ j < i 
 0 ≤ k < j

More hard sums

n�1X

i=0

i�1X

j=0

j�1X

k=0

1

<latexit sha1_base64="Ov21rwtn4SRKhL6I39jy7LR2+Yw=">AAACHHicbZDNSsNAFIUn9a/Wv6hLN4NFcGNJpKAuhKIblxWMLbQxTKbTdtrJJMxMhBLyIm58FTcuVNy4EHwbJ2lAbT0wcPjuvdy5x48YlcqyvozSwuLS8kp5tbK2vrG5ZW7v3MowFpg4OGShaPtIEkY5cRRVjLQjQVDgM9Lyx5dZvXVPhKQhv1GTiLgBGnDapxgpjTyz3pVx4CX03ErvEn5kp3AKRjmgP2Ccg1EGbM+sWjUrF5w3dmGqoFDTMz+6vRDHAeEKMyRlx7Yi5SZIKIoZSSvdWJII4TEakI62HAVEukl+XQoPNOnBfij04wrm9PdEggIpJ4GvOwOkhnK2lsH/ap1Y9U/dhPIoVoTj6aJ+zKAKYRYV7FFBsGITbRAWVP8V4iESCCsdaEWHYM+ePG+c49pZzb6uVxsXRRplsAf2wSGwwQlogCvQBA7A4AE8gRfwajwaz8ab8T5tLRnFzC74I+PzG3JXoRI=</latexit><latexit sha1_base64="Ov21rwtn4SRKhL6I39jy7LR2+Yw=">AAACHHicbZDNSsNAFIUn9a/Wv6hLN4NFcGNJpKAuhKIblxWMLbQxTKbTdtrJJMxMhBLyIm58FTcuVNy4EHwbJ2lAbT0wcPjuvdy5x48YlcqyvozSwuLS8kp5tbK2vrG5ZW7v3MowFpg4OGShaPtIEkY5cRRVjLQjQVDgM9Lyx5dZvXVPhKQhv1GTiLgBGnDapxgpjTyz3pVx4CX03ErvEn5kp3AKRjmgP2Ccg1EGbM+sWjUrF5w3dmGqoFDTMz+6vRDHAeEKMyRlx7Yi5SZIKIoZSSvdWJII4TEakI62HAVEukl+XQoPNOnBfij04wrm9PdEggIpJ4GvOwOkhnK2lsH/ap1Y9U/dhPIoVoTj6aJ+zKAKYRYV7FFBsGITbRAWVP8V4iESCCsdaEWHYM+ePG+c49pZzb6uVxsXRRplsAf2wSGwwQlogCvQBA7A4AE8gRfwajwaz8ab8T5tLRnFzC74I+PzG3JXoRI=</latexit><latexit sha1_base64="Ov21rwtn4SRKhL6I39jy7LR2+Yw=">AAACHHicbZDNSsNAFIUn9a/Wv6hLN4NFcGNJpKAuhKIblxWMLbQxTKbTdtrJJMxMhBLyIm58FTcuVNy4EHwbJ2lAbT0wcPjuvdy5x48YlcqyvozSwuLS8kp5tbK2vrG5ZW7v3MowFpg4OGShaPtIEkY5cRRVjLQjQVDgM9Lyx5dZvXVPhKQhv1GTiLgBGnDapxgpjTyz3pVx4CX03ErvEn5kp3AKRjmgP2Ccg1EGbM+sWjUrF5w3dmGqoFDTMz+6vRDHAeEKMyRlx7Yi5SZIKIoZSSvdWJII4TEakI62HAVEukl+XQoPNOnBfij04wrm9PdEggIpJ4GvOwOkhnK2lsH/ap1Y9U/dhPIoVoTj6aJ+zKAKYRYV7FFBsGITbRAWVP8V4iESCCsdaEWHYM+ePG+c49pZzb6uVxsXRRplsAf2wSGwwQlogCvQBA7A4AE8gRfwajwaz8ab8T5tLRnFzC74I+PzG3JXoRI=</latexit><latexit sha1_base64="Ov21rwtn4SRKhL6I39jy7LR2+Yw=">AAACHHicbZDNSsNAFIUn9a/Wv6hLN4NFcGNJpKAuhKIblxWMLbQxTKbTdtrJJMxMhBLyIm58FTcuVNy4EHwbJ2lAbT0wcPjuvdy5x48YlcqyvozSwuLS8kp5tbK2vrG5ZW7v3MowFpg4OGShaPtIEkY5cRRVjLQjQVDgM9Lyx5dZvXVPhKQhv1GTiLgBGnDapxgpjTyz3pVx4CX03ErvEn5kp3AKRjmgP2Ccg1EGbM+sWjUrF5w3dmGqoFDTMz+6vRDHAeEKMyRlx7Yi5SZIKIoZSSvdWJII4TEakI62HAVEukl+XQoPNOnBfij04wrm9PdEggIpJ4GvOwOkhnK2lsH/ap1Y9U/dhPIoVoTj6aJ+zKAKYRYV7FFBsGITbRAWVP8V4iESCCsdaEWHYM+ePG+c49pZzb6uVxsXRRplsAf2wSGwwQlogCvQBA7A4AE8gRfwajwaz8ab8T5tLRnFzC74I+PzG3JXoRI=</latexit>

Outer loop: 
i goes from 0 to n-1

Middle loop: 
j goes from 0 to i-1

Inner loop:
k goes from 0 to j-1

I have no idea how to solve
this! Wolfram Alpha says it's

n(n-1)(n-2)/6

http://www.wolframalpha.com/input/?i=sum+(sum+(sum+1+k=0+to+j-1)+j=0+to+i-1)+i+=+0+to+n-1

What about this one?

boolean unique(Object[] a) {
 for(int i = 0; i < a.length; i++)
 for (int j = 0; j < i; j++)
 for (int k = 0; k < j; k++)
 ”something that takes 1 step”
}

Answer:

n(n-1)(n-2)/6,

apparently

This is just horrible!
Isn't there a better way?

Using big O complexity

boolean unique(Object[] a) {
 for(int i = 0; i < a.length; i++)
 for (int j = 0; j < i; j++)
 for (int k = 0; k < j; k++)
 ”something that takes 1 step”
}

Three nested loops, all running
from 0 to n...

Answer: O(n3)!

• Big O really simplifies things:
- A small phrase like O(n2) tells you a lot
- It's easier to calculate than a precise formula
- We get the same answer whether we count number of

statements executed or time taken (or in this case number
of elements copied) – so we can be a bit careless what we
count

• On the other hand:
- Sometimes we do care about constant factors!

• Big O is normally a good compromise

Why ignore constant factors? (again)

Our long calculation only
told us how many steps
the algorithm takes, not

how much time!
Isn’t it!

But normally not
enough to go to all

this trouble!

How to calculate big-O complexity:

• We will first have to define formally what it means for
an algorithm to have a certain complexity

• We will then come up with some rules for calculating
complexity

• To come up with those rules, we will have to do “hard
sums”, but once we have the rules we can forget the
sums

The rest of the lecture

Big O measures the growth of a mathematical function

• Typically a function T(n) giving the number of steps taken by an algorithm
on input of size n

• But can also be used to measure space complexity (memory usage) or
anything else

Formally, we say “T(n) is O(f(n))”

• E.g., “T(n) is O(n2)”

This means:

• T(n) ≤ a × f(n), for some constant a (i.e., T(n) is proportional to f(n) or smaller)

• But this need only hold for all n above some threshold n0

Big O, formally

• T(n) = O(f(n)) means a × f(n) is an upper bound on T(n). Thus
there exists some constant a such that T(n) is always ≤ a ×
f(n), for large enough n (i.e. , n ≥ n0 for some constant n0).

• T(n) = Ω(f(n)) means a × f(n) is a lower bound on T(n). Thus
there exists some constant a such that T(n) is always ≥ a ×
f(n), for all n ≥ n0.

• T(n) = Θ(f(n)) means a × f(n) is an upper bound on T(n) and b
× f(n) is a lower bound on T(n), for all n ≥ n0. Thus there exist
constants a and b such that T(n) ≤ a × f(n) and T(n) ≥ b × f(n).
This means that f(n) provides a nice, tight bound on T(n).

Big O and related concepts

Big O and related concepts

Source: ”The Algorithm Design Manual” by S. Skiena

An example: n2 + 2n + 3 is O(n2)

An example: n2 + 2n + 3 is O(n2)

n2+2n+3 � 2n2
for n � 3

n
0
 = 3
c = 2

• Is 3n + 5 in O(n)?

• Is n2 + 2n + 3 in O(n3)?

• Why do we need the “threshold” n0?

Exercises

Dominance classes

Big O Class

O(1) Constant

O(log n) Logarithmic

O(n) Linear

O(n log n) Linearithmic

O(n2) Quadratic

O(n3) Cubic

O(2n) Exponential

O(n!) Factorial

Imagine that we double the input size from n to 2n .

If an algorithm is:

• O(1), then it takes the same time as before

• O(log n), then it takes a constant amount more

• O(n), then it takes twice as long

• O(n log n), then it takes twice as long plus a little bit more

• O(n2), then it takes four times as long

If an algorithm is O(2n), then adding one element makes it take twice as
long !

Growth rates

Growth rates - table

38 2 . ALGORITHM ANALYSIS

n f(n) lg n n n lg n n2 2n n!
10 0.003 µs 0.01 µs 0.033 µs 0.1 µs 1 µs 3.63 ms
20 0.004 µs 0.02 µs 0.086 µs 0.4 µs 1 ms 77.1 years
30 0.005 µs 0.03 µs 0.147 µs 0.9 µs 1 sec 8.4 × 1015 yrs
40 0.005 µs 0.04 µs 0.213 µs 1.6 µs 18.3 min
50 0.006 µs 0.05 µs 0.282 µs 2.5 µs 13 days
100 0.007 µs 0.1 µs 0.644 µs 10 µs 4 × 1013 yrs
1,000 0.010 µs 1.00 µs 9.966 µs 1 ms
10,000 0.013 µs 10 µs 130 µs 100 ms
100,000 0.017 µs 0.10 ms 1.67 ms 10 sec
1,000,000 0.020 µs 1 ms 19.93 ms 16.7 min
10,000,000 0.023 µs 0.01 sec 0.23 sec 1.16 days
100,000,000 0.027 µs 0.10 sec 2.66 sec 115.7 days
1,000,000,000 0.030 µs 1 sec 29.90 sec 31.7 years

Figure 2.4: Growth rates of common functions measured in nanoseconds

The reason why we are content with coarse Big Oh analysis is provided by
Figure 2.4, which shows the growth rate of several common time analysis functions.
In particular, it shows how long algorithms that use f(n) operations take to run
on a fast computer, where each operation takes one nanosecond (10−9 seconds).
The following conclusions can be drawn from this table:

• All such algorithms take roughly the same time for n = 10.

• Any algorithm with n! running time becomes useless for n ≥ 20.

• Algorithms whose running time is 2n have a greater operating range, but
become impractical for n > 40.

• Quadratic-time algorithms whose running time is n2 remain usable up to
about n = 10, 000, but quickly deteriorate with larger inputs. They are likely
to be hopeless for n > 1,000,000.

• Linear-time and n lg n algorithms remain practical on inputs of one billion
items.

• An O(lg n) algorithm hardly breaks a sweat for any imaginable value of n.

The bottom line is that even ignoring constant factors, we get an excellent idea
of whether a given algorithm is appropriate for a problem of a given size. An algo-
rithm whose running time is f(n) = n3 seconds will beat one whose running time is
g(n) = 1,000,000 · n2 seconds only when n < 1,000,000. Such enormous differences
in constant factors between algorithms occur far less frequently in practice than
large problems do.

Source: ”The Algorithm Design Manual” by S. Skiena

Growth rates - graphically

When adding a term lower in the hierarchy to one higher
in the hierarchy, the lower-complexity term disappears:

• O(1) + O(log n) = O(log n)

• O(log n) + O(nk) = O(nk) (if k ≥ 0)

• O(nj) + O(nk) = O(nk), if j ≤ k

• O(nk) + O(2n) = O(2n)

Adding big O (a hierarchy)

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n)

An example: n2 + 2n + 3 is O(n2)

An example: n2 + 2n + 3 is O(n2)

n2+2n+3 � 2n2
for n � 3

n
0
 = 3
c = 2

Use hierarchy:

n2 +2n+3
= 

O(n2) + O(n) + O(1)
=

O(n2)

What are these in Big O notation?

• n2 + 11

• 2n3 + 3n – 1

• n4 + 2n

Quiz

• n2 + 11 = O(n2)+ O(1) = O(n2)

• 2n3 + 3n – 1 = O(n3)+ O(n) + O(1) = O(n3)

• n4 + 2n = O(n4) + O(2n) = O(2n)

Just use the hierarchy!

• Often not only the size of the data influences the
running time, but also the values

• The longest possible running time for a given data size
is called the worst case complexity (sv: värsta falls-
komplexiteten)

• You can also compute the best case complexity, but it’s
not as useful since what you want in most cases is a
guarantee that running a program will not take more
than a certain time

Worst case complexity

A single append-operation for a dynamic array:

Amortised analysis

public void append(char c) {  
 if (size == string.length) {
 char[] newString = new char[string.length*2];
 for (int i = 0; i < string.length; i++)
 newString[i] = string[i];
 string = newString;
 }  
 string[size] = c;
 size++;
} Time complexity:

O(n)
in worst case, which is

pessimistic.

• Amortised analysis measures how much time each
operation will take in a sequence of operations

• For the append method of a dynamic array the
amortised complexity is O(1)

• There are different methods for amortising
- One is the potential method where you “pay” in advance for

future high-cost executions in such a way that you never
run out of saved “coins”

Amortised analysis

• We lose some precision by throwing away constant
factors
- ...you probably do care about a factor of 100 performance

improvement

• On the other hand, life gets much simpler:
- A small phrase like O(n2) tells you a lot about how the

performance scales when the input gets big
- It's a lot easier to calculate big-O complexity than a precise

formula (lots of good rules to help you)

• Big O is normally a good compromise!
- Occasionally, need to do hard sums anyway…

Big O in retrospect

