4 ¢ CHALMERS |)) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Data structures
Complexity

Dr. Alex Gerdes
DIT961 - VT 2018

Summary previous lecture

Course introduction

Small example: dynamic arrays

Aritmetisk summal!

Google-group: do it now!

Resources on course website

Labpartner: after lecture or via Google-group

* Arrays.copyOf(...)

Measuring time

CHALMERS

Introduction

This lecture Is all about how to describe the
performance of an algorithm

Last time we had three versions of the file-reading
program. For a file of size n:

- The first one needed to copy n(n+1)/2 characters

- The second one needed to copy n(n+1)/200 characters

- The third needed to copy 2n characters

We worked out these formulas, but it was a bit of work
- now we'll see an easier way

Big idea

Big Idea:
Ignore constant
factors!

Why do we ignore constant factors?

Well, when » 1s 1,000,000...

- logon=20

- n151,000,000

- n21s1,000,000,000,000

- 2nis a number with 300,000 digits...

Given two algorithms:
- The first takes 1000000 log> n steps to run
- The second takes 0.00000001 x 2n

The first Is miles better!

Constant factors normally don't matter

Big O (sv: Ordo) notation

Instead of saying...

T

ne first implementation copies n2/2 characters
ne second copies n2/200 characters

ne third copies 2n characters

We will just say...

ne first implementation copies O(n2) characters

ne second copies O(n2) characters

- The third copies O(n) characters

On2) means “proportional to n2” (almost)

Time complexity

Suppose an algorithm takes n2/2 steps, and each step
takes 100ns to run

- The total time taken is 50n2 ns
- This Is O(n?)

- The number of steps taken is also O(#?)
It doesn't matter whether we count steps or time!

We say that the algorithm has O(n2) time complexity or
simply complexity

Why ignore constant factors?

Big O really simplifies things:

- A small phrase like O?) tells you a lot

- It's easler to calculate than a precise formula

- We get the same answer whether we count number of
statements executed or time taken (or in this case number
of elements copied) — so we can be a bit careless what we
count

On the other hand:

- Sometimes we do care about constant factors!

Big O I1s normally a good compromise

What happens without big 0?

How many steps does this function take on an array of
length » (in the worst case)?

Answer: n

Object search(Object|[] a, Object x) {
for(int 1 = 0; 1 < a.length; 1i++) {
if (a[i1].equals(target))
return al[i];

}

return null; Assume that
} loop body takes
1 step

What about this one?

boolean unique(Object[] a) {
for(int 1 = 0; 1 < a.length; 1i++)
for (1int jJ = 0; J < a.length; j++)
if (a[i1].equals(a[]]) && 1 != 7
return false;

return true;
} Outer loop runs n times

Each time, inner loop
runs n times

Total: nxn = n2

What about this one?

boolean unique(Object[] a) {
for(int 1 = 0; 1 < a.length; 1i++)
for (int j = 0; jJ < 1; jJ++)
if (a[i].equals(a[]j]
return false;

return true;
} Loop runsto i

instead of n

Some hard sums

When i1 =0, inner loop runs 0 times

When 1 =1, inner loop runs 1time

When 1 = n-1, inner loop runs n-1times

Total:
n—1

Zz’:()+1+2+...+n—1
1=0

which Is n(n-1)/2

What about this one?

boolean unique(Object[] a) {
for(int 1 = 0; 1 < a.length; 1i++)
for (int j = 0; jJ < 1; jJ++)
if (a[i1].equals(a[]]))
return false;
return true;

What about this one?

boolean unique(Object[] a) {
for(int 1 = 0; 1 < a.length; 1i++)
for (int j = 0; J < 1; J++)
for (int k 0; k < 73; kt++)
"something that takes 1 step”

More hard sums

n—111—1 7—1

Inner loop:

~ Outer loop: k goes from 0 to j-1
| goes from 0 to n-1

Middle loop:
j goes from 0 to i-1

Counts: how many values |, J, k | have no idea how to solve
. this! Wolfram Alpha says it's
where0<i<n

0<)<I n(n-1)(n-2)/6
0<k<

http://www.wolframalpha.com/input/?i=sum+(sum+(sum+1+k=0+to+j-1)+j=0+to+i-1)+i+=+0+to+n-1

What about this one?

boolean unique(Object[] a) {
for(int 1 = 0; 1 < a.length; 1i++)
for (int jJ = 0; J < 1; J++)
for (int k 0; k < 73; kt++)
"something that takes 1 step”

Answer:

n(n-1)(n-2)/6,

apparently

This i1s just horrible!
Isn't there a better way?

Using big O complexity

boolean unique(Object[] a) {
for(int 1 = 0; 1 < a.length; 1i++)
for (int j = 0; J < 1; J++)
for (int k 0; k < 73; kt++)
"something that takes 1 step”

Three nested loops, all running
from 0 to n...

Answer: O(n3)!

Our long calculation only

told us how many steps gYF -]
the algorithm takes, not olifies thmgs'

how much time! like O(n2) tells you a lot

It's eafer to calculate than a precise formula

- We getfthe same answer whether we
statements executed or time taken |

of elements copied) — so we can be FREISIIUEIRR
count enough to go to all

this trouble!

- On the other hand:

- Sometimes we do care about constant factors!

+ Big O 1s normally a good compromise

The rest of the lecture

How to calculate big-O complexity:

- We will first have to define formally what it means for
an algorithm to have a certain complexity

- We will then come up with some rules for calculating
complexity

- To come up with those rules, we will have to do “hard
sums’, but once we have the rules we can forget the
sSuUmSs

Big O, formally

Big O measures the growth of a mathematical function

- Typically a function T(n) giving the number of steps taken by an algorithm
on input of size n

But can also be used to measure space complexity (memory usage) or
anything else

Formally, we say “T(n) is O(£(n))”
E.g, “T(n) is O(n2)”

This means:

* T(n) < a x f(n), for some constant a (i.e,, T(n) is proportional to () or smaller)

- But this need only hold for all n above some threshold no

CHALMERS

Big O and related concepts

- T(n) = O(f(n)) means a x f(n) Is an upper bound on T(n). Thus
there exists some constant a such that T(n) Is always < a x
f(n), for large enough n (i.e., n > no for some constant no).

- T(n) = Q(f(n)) means a x f(n) Is a lower bound on T(n). Thus
there exists some constant a such that T(n) Is always > a x

f(n), for all n > no.

+ T(n) = O(f(n)) means a x f(n) 1s an upper bound on T(n) and b
x f(n) 1S a lower bound on T(n), for all n > no. Thus there exist

constants a and b suc

N that T(n) < a x f(n) and T(n) > b x f(n).

This means that f(n) provides a nice, tight bound on T(n).

Big O and related concepts

c28(n)

n

I
f(n) =0O(gn))
(a)

cg(n)

fn)

n
& f(n) = 0(g(n))
(b)

f(n)

cg(n)

|
I
I
!
!
I
I
I

ng "
fn) =82(g(n))
(c)

CHALMERS

Source: "The Algorithm Design Manual” by S. SRiena

An example: n2 + 2n + 3 is 0(n2)

100 | | | |
n +2n + 3
2n N ——
80 ‘+2n+3 <2n° -
n +Zn+o = 2Z1n
forn>3

n =23

20 ’ 0 -
| c=2
0 l I |

0 2 - 6 8 10

Exercises

+ 1s3n+51In O(n)?
- Isn2+2n+31n O(n3)?

- Why do we need the “threshold” ng?

Dominance classes

Big O Class

O(1) Constant
O(log n) Logarithmic
O(n) Linear

O(n log n) Linearithmic
O(n?) Quadratic
O(n3) Cubic

O(27) Exponential
O(n!) Factorial

Growth rates

Imagine that we double the input size from n to 2n.

If an algorithm is:

- 0@, then It takes the same time as before

- O(logn), then It takes a constant amount more
- O(n), then It takes twice as long
- O(nlogn), then It takes twice as long plus a little bit more

+ O(n?), then It takes four times as long

If an algorithm is O(27), then adding one element makes it take twice as
long!

Growth rates - table

CHALMERS

n f(n) lgn n nlgn n” 2™ n!

10 0.003 us 0.01 us 0.033 us 0.1 us 1 us 3.63 ms
20 0.004 us 0.02 us 0.086 us 0.4 us 1 ms 77.1 years
30 0.005 pus | 0.03 us | 0.147 us | 0.9 us 1 sec 8.4 x 10'° yrs
40 0.005 pus | 0.04 us 0.213 us 1.6 us 18.3 min

50 0.006 pus | 0.05 us 0.282 us 2.5 us 13 days

100 0.007 ps | 0.1 pus 0.644 ps | 10 ps 4 x 10"° yrs

1,000 0.010 us 1.00 us 9.966 us 1 ms

10,000 0.013 us 10 ps 130 s 100 ms

100,000 0.017 ws 0.10 ms 1.67 ms 10 sec

1,000,000 0.020 us 1 ms 19.93 ms 16.7 min

10,000,000 0.023 us 0.01 sec 0.23 sec 1.16 days

100,000,000 0.027 us 0.10 sec 2.66 sec 115.7 days

1,000,000,000 0.030 us 1 sec 29.90 sec 31.7 years

Source: "The Algorithm Design Manual” by S. SRiena

Growth rates - graphically

CHALMERS

15.000
/
Exponential =
P Cubic /
Quadratic
10.000 /
-
-
—— /
= Log-linear -~
- -
-
-
- - ;
Linear. ..s==%
\-,()()() — i -
———— Logarithmic
0
0 20 40 60

Mn

Adding big O (a hierarchy)

O(1) < O(logn) < O(n) < O(nlogn) < On?) < OnN3) < O2n)

When adding a term lower in the hierarchy to one higher
In the hierarchy, the lower-complexity term disappears:

.+ O@) + O(log n) = O(log n)
+ O(logn) + O(nk) = O(nk) (ifk > 0)
.+ O@) + O(nk) = O(nk), ifj < k

. O(nk) + O(2n) = O(27)

An example: n2 + 2n + 3 is 0(n2)

CHALMERS

100 I I
80 |- n’+2n+3 < 2n° Use hierarchy:
forn=>3
n2 +2n+3
0(n2) + O(n) + O(1)
40 =
O(n?)
20
/ /
0 | | | |

0 2 - 6 8 10

What are these in Big O notation?

- n2+11

+ 2n3+3n-1

© nt+2n

Just use the hierarchy!

n2+11=0n2)+01Q) = O(n2
2n3+3n-1=00n3)+ Omn) + O() = O(nd)

nt +2n=0(n?) + O(27) = O(2)

Worst case complexity

Often not only the size of the data influences the
running time, but also the values

The longest possible running time for a given data size
is called the worst case complexity (sv: varsta falls-
komplexiteten)

You can also compute the best case complexity, but it's
not as useful since what you want in most cases Is a
guarantee that running a program will not take more
than a certain time

Amortised analysis

A single append-operation for a dynamic array:

public void append(char c¢) {
if (size == string.length) {
char[] newString = new char[string.length#*2];
for (int 1 = 0; 1 < string.length; i++)

newString[i1] = string[i];
string = newString;
}
string[size] = c;
sizet++;
y Time complexity:

O(n)

In worst case, which is
pessimistic.

Amortised analysis

Amortised analysis measures how much time each
operation will take in a sequence of operations

For the append method of a dynamic array the
amortised complexity i1s O(1)

There are different methods for amortising

- One Is the potential method where you “pay” in advance for

future high-cost executions in such a way that you never
run out of saved “coins”

Big O in retrospect

We lose some precision by throwing away constant

factors

- ..you probably do care abo
Improvement

ut a factor of 100 performance

On the other hand, life gets much simpler:

- Asmall phrase like O2?) te
performance scales when t

s you a lot about how the
ne input gets big

- It's a lot easler to calculate

n1g-0 complexity than a precise

formula (lots of good rules to help you)

Big O I1s normally a good compromise!

- Occasionally, need to do hard sums anyway...

