
Data structures
Summary and exam

Dr. Alex Gerdes
DIT961 - VT 2018

Summing up

• Arrays: good for random access
- dynamic arrays: resizeable

• Linked lists: good for sequential access
- many variants – doubly linked, etc.

• Trees: good for hierarchical data
- special case: binary trees

• Graphs: good for cyclic data
- many variants: weighted, directed, etc.

Basic data structures

• Queue: add to one end, remove from the other

• Stack: add and remove from the same end

• Deque: add and remove from either end

• Priority queue: add, remove minimum

• Maps: maintain a key/value relationship
- An array is a sort of map where the keys are array indices

• Sets: like a map but with only keys, no values

Basic ADTs

• Queues:
- a linked list
- a circular array
- a pair of lists (in a functional language)

• Stacks:
- a dynamic array or linked list
- a list (in a functional language)

• Priority queues:
- a binary heap
- a leftist or skew heap (in a functional language)

Implementing stacks and (priority) queues

• A binary search tree
- Good performance if you can keep it balanced: O(log n)
- Has good random and sequential access: the best of both

worlds

• A hash table
- Very fast if you choose a good hash function: O(1)

Implementing maps and sets

• Java:
- List, ArrayList, LinkedList
- Stack (deprecated use LinkedList)
- Deque, LinkedList, ArrayDeque
- Set, HashSet, TreeSet
- Map, HashMap, TreeMap
- PriorityQueue
- Comparator, Comparable, equals and hashCode in Object
- Iterator

• Haskell:
- Data.Map, Data.Set, Data.Queue, Data.PriorityQueue
- Eq, Ord

Standard libraries

• We mentioned amortised complexity:
- e.g. dynamic arrays
- adding an element normally takes O(1) time
- but occasionally it can take O(n) time
- but the O(n) case happens rarely enough that on average

adding an element takes O(1) time
- and so we say that it takes amortised O(1) time

Amortised data structures

• The data structures and ADTs above
- algorithms that work on these data structures (sorting,

Dijkstra's, etc.)
- complexity
- data structure design (invariant, etc.)

• You can apply these ideas to your own programs, data
structures, algorithms etc.
- Using appropriate data structures to simplify your programs

+ make them faster
- Taking ideas from existing data structures when you need to

build your own

What we have studied

• How to design your own data structures?
- This takes practice!

• Study other people's ideas:
- http://en.wikipedia.org/wiki/List_of_data_ structures
- Book: Programming Pearls
- Book: Purely Functional Data Structures
- Study your favourite language's standard library

Data structure design

• First, identify what operations the data structure must
support
- Often there's an existing data structure you can use
- Or perhaps you can adapt an existing one?

• Then decide on:
- A representation (tree, array, etc.)
- An invariant

• These hopefully drive the rest of the design!

Data structure design

• Finally, the First and Second Rules of Program
Optimisation:

1. Don’t do it.
2. (For experts only!): Don’t do it yet.

• Keep things simple!
- First check that your idea works and that the implementation is

correct: test!
- No point optimising your algorithms to have O(log n)

complexity if it turns out n ≤ 10
- Profile your program to find the bottlenecks are
- Use big-O complexity to get a handle on performance before

you start implementing it

Data structure design

• Splay trees are a balanced BST having amortised O(log n)
complexity

• Skip lists: a nice map-like data structure with O(log n)
expected complexity

• Bucket sort: have a bucket for each equality class and
put each element in right bucket

• Radix sort: for integers do a bucket sort for each digit

• Prefix trees: for strings, each node has a child for each
possible first character of the rest of the string

What we didn’t have time for

Exam

• Signing up is mandatory

• Next week Thursday 8:30 - 12:30 in SB-MU

• Language:
- Written in English
- Solutions should either be in English or Swedish (or

Dutch ;-)

• Allowed aids:
- English dictionary
- Fusklapp: one hand-written sheet of A4 (both sides)

Exam

• 6 questions,
- no points but a U, G or VG per question
- G: at least three questions with a G or VG
- VG: at least five questions with a VG

• Betygsgränser
- VG: 100% correct
- G: correct, may contain (very) minor mistake
- U: if you make a (big) mistake

• Some questions have extra requirements for a VG
- For example lower complexity
- ’For a VG only’ parts: more work, sometimes harder

Exam format

What you need to know?

• Arrays, dynamic arrays

• Linked lists (single-linked, doubly-linked)

• Queue and stack implementations using arrays or linked lists

• Binary trees, binary search trees, AVL trees, AA trees, 2-3 trees
- not deletion for AVL, red-black or 2-3 trees – but still for plain BSTs!

• Hash tables
- Rehashing, linear probing, linear chaining – not how to construct a good hash

function

• Graphs (weighted, unweighted, directed, undirected), adjacency lists,
adjacency matrices

• Binary heaps, skew and leftist heaps

Data structures

• Data structure algorithms (e.g., list insertion, BST
lookup)

• Binary search

• Tree traversal: in-order, pre-order, post- order

• Graph algorithms:
- breadth-first and depth-first search
- Dijkstra's and Prim's algorithms (using a priority queue)

Algorithms

• Bubblesort, selection sort, insertion sort
- In-place versions

• Quicksort, mergesort
- Strategies for choosing the pivot – first element, median-of-

three, randomised

Sorting algorithms

• Complexity and big-O notation
- For iterative and recursive functions – basically, what's in

the complexity hand-in

• Data structure invariants

Theory

Good luck!

