
Graphs

Graphs

A graph is a data structure consisting of
nodes (or vertices) andedges
● An edge is a connection between two nodes

Nodes: A, B, C, D, E

Edges: (A, B), (A, D), (D, E), (E, C)

A B

CED

Nodes are stations
Edges are “bits of line”

Algorithm:
What is the quickest way
from point A to point B?

Nodes are components
Edges are connections

Algorithm:
How much current
(ows through each wire
(as a function of time)?

Graphs

Graphs are used all over the place:
● communications networks

● many of the algorithms behind the internet

● maps, transport networks, route *nding

● etc.

Anywhere where you have connections or
relationships!

Normally the vertices and edges arelabelled
with relevant information!

Graphs

Graphs can bedirected or undirected
● In an undirected graph, an edge connects
two nodes symmetrically (we draw a line
between the two nodes)

● In a directed graph (a digraph), the edge goes
from the source node to the target node (we
draw an arrow from the source to the target)

A tree is a special case of a directed
graph
● Edge from parent to child
● A certain node is identi*ed as root

Drawing graphs

We represent nodes as points, and edges
as lines – in a directed graph, edges are
arrows:

V = {A, B, C, D, E}
E = {(A, B), (A, D),
 (C, E), (D, E)}

V = {A, B, C, D, E}
E = {(A, B), (B, A), (B, E), (D, A),
 (E, A), (E, C), (E, D)}

Drawing graphs

%e layout of the graph is completely
irrelevant: only the nodes and edges
matter

V = {0, 1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 2), (0, 5), (0, 6), (3, 5), (3, 4), (4, 5), (4, 6)}

Graph terminology and properties

● A loop is an edge from a node to itself – often
not allowed.

● A multigraph is a graph with multiple edge
between the same pair of nodes – often not
allowed.

● In a complete graph is every possible edge
present.

● In complete graphs, the number of edges, |E|,
is proportional to |V|2.
● Directed, with loops: |E|= |V|2

● Directed, without loops: |E|= |V|(|V| - 1)

● Undirected, with loops: |E|= |V|(|V| + 1)/2
● Undirected, without loops: |E|= |V|(|V| - 1)/2

Weighted graphs

In a weighted graph, each edge has a
weight associated with it:

A graph can be directed, weighted,
neither or both

320

130

180
150

180

180 120

148

260
40

50

60

155

120

Chicago

Indianapolis Columbus

Fort
Wayne

Ann Arbor
Detroit

Toledo

Cleveland Pittsburgh

Philadelphia

Paths and cycles

Two vertices are adjacent if there is an
edge between them:

320

130

180

150

180

180 120

148

260

40

50

60

155

120

Chicago

Indianapolis Columbus

Fort
Wayne

Ann Arbor

Detroit

Toledo

Cleveland Pittsburgh

Philadelphia

Philadelphia is
adjacent to
Pittsburgh

Cleveland is
adjacent to
Pittsburgh

Paths and cycles

Two vertices are adjacent if there is an
edge between them:

320

130

180

150

180

180 120

148

260

40

50

60

155

120

Chicago

Indianapolis Columbus

Fort
Wayne

Ann Arbor

Detroit

Toledo

Cleveland Pittsburgh

Philadelphia

Cleveland is
not adjacent to
Philadelphia

Paths and cycles

In a directed graph, the target of an edge
is adjacent to the source, not the other
way around:

A

ED

B

C

A is adjacent to D,
but D is not
adjacent to A

Paths

A path is a sequence of edges that take you
from one node to another

If there is a path from node A to node B, we
say that B isreachable from A

Paths and cycles

In a simple path, no node or edge appears twice,
except that the �rst and last node can be the same

320

130

180

150

180

180 120

148

260

40

50

60

155

120

Chicago

Indianapolis Columbus

Fort
Wayne

Ann Arbor

Detroit

Toledo

Cleveland Pittsburgh

Philadelphia

%is path is
a simple path

Paths and cycles

In a simple path, no node or edge appears twice,
except that the �rst and last node can be the same

320

130

180

150

180

180 120

148

260

40

50

60

155

120

Chicago

Indianapolis Columbus

Fort
Wayne

Ann Arbor

Detroit

Toledo

Cleveland Pittsburgh

Philadelphia

%is path is
not a simple path

Paths and cycles

A cycle is a simple path where the �rst and last
nodes are the same – a graph that contains a cycle is
called cyclic, otherwise it is called acyclic

320

130

180

150

180

180 120

148

260

40

50

60

155

120

Chicago

Indianapolis Columbus

Fort
Wayne

Ann Arbor

Detroit

Toledo

Cleveland Pittsburgh

Philadelphia

%is path is a cycle,
and a simple path;
the graph is cyclic

DAG

●A DAG is a directed, acyclig graph.

Implementing a graph

Alternative 1: adjacency lists
Keep a list of all nodes in the graph
● With each node, associate a list of all the nodes
adjacent to that nodes
Alternative 2: adjacency matrix
Keep a 2-dimensional array, with one
entry for each pair of nodes
● a[i][j] = true if there is an edge between node i
and node j

How to implement a graph

Typically:adjacency list
● List of all nodes in the graph, and with each node
store all the edges having that node as source

Adjacency list – undirected graph

Each edge appears twice, once for the source
and once for the target node

Adjecency matrix

● Be other main way to implement graph
representation isadjecency matrix.

● A matrix with dimensions |V|x|V|. Each element (i,j)
is true/contains an edge label if there is an edge from
nod i to nodej.

● For undirected graphs the matrix is symmetric or only
one of the halves is used.

● Adjecency matrix representation can be preferable for
dense graphs, i.e. in graphs where a large portion of the
possible edges are present.

● For graphs which are not dense, the matrix
representation is a waist of space.

Adjacency matrix, weighted graph

0.6 1.0
0.3 1.0

0.5

1.0

0.9

1.0 1.0 0.9
1.0
1.00.3

0.6
1.0

0.5

0.91.0

0.6

1.0

1.0

0.5

0.31.0

1.0

0.3

0.60.9

1.0

0.5

1.0

0.60.9

1.0

0.3
0.5

1.0

Graphs implicitly

Very often, the data in your programimplicitly makes a
graph
● Nodes are objects

● Edges are references – if obj1.x = obj2 then there is an edge from
obj1 to obj2

Object variables correspond to associations/edged in
the class diagram of your program. Classes correspond
to nodes.
Sometimes, you can solve your problem by viewing
your data as a graph and using graph algorithms on it

Bis is probably more common than using an explicit
graph data structure!

Graph algorithms:
depth-�rst search,
reachability,

connected components

Graph traversals

Many graph algorithms involve visiting
each node in the graph in some
systematic order
● Just like with trees, there are several orders you
might want
%e two commonest methods are:
● breadth-�rst search
● depth-�rst search

Reachability

How can we tell what nodes are reachable
from a given node?

We can start exploring the graph from that
node, but we have to be careful not to (e.g.)
get caught in cycles

Depth-⇢rst search is one way to explore the
part of the graph reachable from a given
node

Depth-�rst search

Depth-*rst search is atraversal algorithm
● Bis means it takes a node as input, and enumerates all nodes
reachable from that node

It comes in two variants,preorder and postorder –
we'll start with preorder

To do apreorderDFS starting from a node:
● visit the node

● for each outgoing edge from the node,
recursively DFS the target of that edge,
unless it has already been visited

It's called preorder because we visit each node
before its outgoing edges

Implementing DFS

● We maintain a stack of nodes that we are going to visit next
– Initially, the stack contains the start node

● We repeat the following process:
– Remove a node from the stack
– Visit it
– Find all nodes adjacent to the visited node and add them to
the stack, unless they have been visited or added to the stack
already

Example of a depth-�rst search

Visit order: 1
DFS node 1

(By the way, is 5
reachable from 1?) 1 2

3 4

5

6 7

= unvisited = visited= current

Example of a depth-�rst search

Visit order: 1 3
Follow edge 1 → 3,
recursively DFS node 3

1 2

3 4

5

6 7

= unvisited = visited= current

Example of a depth-�rst search

Visit order: 1 3 6
Follow edge 3 → 6,
recursively DFS node 6

1 2

3 4

5

6 7

= unvisited = visited= current

Example of a depth-�rst search

Visit order: 1 3 6
Recursion backtracks to 3

1 2

3 4

5

6 7

= unvisited = visited= current

Example of a depth-�rst search

Visit order: 1 3 6 4
Follow edge 3 → 4,
recursively DFS node 4

1 2

3 4

5

6 7

= unvisited = visited= current

Example of a depth-�rst search

Visit order: 1 3 6 4 2
Follow edge 4 → 2,
recursively DFS node 2

We don't follow 4 → 6
or 2 → 3, as those nodes
have already been visited

Eventually the recursion
backtracks to 1 and we stop

1 2

3 4

5

6 7

= unvisited = visited= current

Reachability revisited

How can we tell what nodes are reachable
from a given node?

Answer:

Perform a depth-*rst search starting from
node A, and the nodes visited by the DFS are
exactly the reachable nodes

Connectedness

An undirected graph is calledconnected if
there is a path from every node to every
other node

How can we tell if a graph is connected?

4

8

5

9

6 7

Bis graph is
connected

Connectedness

An undirected graph is calledconnected if
there is a path from every node to every
other node

How can we tell if a graph is connected?

4

8

5

9

6 7

Bis graph is
not connected

Connectedness

If anundirectedgraph is unconnected, it still
consists ofconnected components

4

8

5

9

6 7

{4, 5} is a
connected
component

{6, 7, 8, 9} is a
connected
component

Connectedness

A single unconnected node is a connected
component in itself

4

8 9

6 7

{4} is a
connected
component

Connected components

How can we *nd:
● the connected component containing a
given node?

● all connected components in the graph?

Connected components

To *nd the connected component containing
a given node:
● Perform a DFS starting from that node

● Be set of visited nodes is the connected component

To *nd all connected components:
● Pick a node that doesn't have a connected component
yet

● Use the algorithm above to *nd its connected
component

● Repeat until all nodes are in a connected component

Strongly-connected components

In a directed graph, there are two notions of
connectedness:
● strongly connected means there is a path from every
node to every other node

● weakly connected means the graph is connected if you
ignore the direction of the edges
(the equivalent undirected graph is connected)

1 2

3 4

5

6 7

Bis graph is
weakly connected,
but not strongly
connected (why?)

Strongly-connected components

You can always divide a directed graph into its
strongly-connected components (SCCs):

In each strongly-connected component, every node
is reachable from every other node
● Be relation “nodes A and B are both reachable from each
other” is anequivalence relation on nodes

● Be SCCs are the equivalence classes of this relation

1 2

3 4

5

6 7

Strongly-connected components

To *nd the SCC of a node A, we take the
intersection of:
● the set of nodes reachable from A

● the set of nodes which A can be reachedfrom
(the set of nodes “backwards-reachable” from A)

Bis gives us all the nodes B such that:
● there is a path from A to B, and

● there is a path from B to A

To *nd the set of nodes backwards-reachable
from A, we will use the idea of thetranspose
of a graph

Transpose of a graph

To *nd the transpose of a directed graph, (ip the
direction of all the graph's edges:

Note that: there is a path fromA to B in the
original graph iN there is a path from
B to A in the transpose graph!

1 2

3 4

5

6 7

1 2

3 4

5

6 7

Graph Transpose

Strongly-connected components

To *nd the SCC of a node (such as 2),
perform a DFS in the graph and the
transpose graph:

Be nodes visited in both DFSs are the SCC –
in this case {1, 2, 3, 4}

1 2

3 4

5

6 7

1 2

3 4

5

6 7

Graph Transpose

Strongly-connected components

To *nd the SCC of a node A:
● Find the set of nodes reachable from A, using DFS

● Find the set of nodes which have a path to A,
by doing a DFS in thetranspose graph

● Take the intersection of these two sets

Implementation in practice:
● When doing the DFS in the transpose graph, we
restrict the search to the nodes that were reachable
from A in the original graph

What do SCCs mean?

Be SCCs in a graph tell you about thecycles in
that graph!
● If a graph has a cycle, all the nodes in the cycle will be in the
same SCC

● If an SCC contains two nodes A and B, there is a path from
A to B and back again, so there is a cycle

A directed graph is acyclic iN:
● All the SCCs have size 1, and

● no node has an edge to itself (SCCs do not take any notice
of self-loops)

 If the SCCs are collapsed to single nodes, the
 resulting graph is a DAG.

Cycles and SCCs

Here is the directed graph from before.
Notice that:
● �e big SCC is where all the cycles are
● Be acyclic “parts” of the graph have SCCs of size 1

Be SCCs characterise the cycles in the graph!

1 2

3 4

5

6 7

Graph algorithms:
postorder DFS,
detecting cycles,
topological sorting

Topological sorting

Here is aDAG with courses and prerequisites:

We might want
to *nd out: what
is a possible order
to take these
courses in?

Bis is what
topological sorting gives us.
Note that the graph must be acyclic!

Example: topological sort

A topological sort of the nodes in a DAG is a
list of all the nodes, so thatif there is a path
from u to v, then u comes before v in the list
Every DAG has a
topological sort,
often several

012345678 is a
topological sort of
this DAG, but
015342678 isn't.

Postorder depth-�rst search

One way to implement topological sorting is
to use a variant of DFS calledpostorder
depth-*rst search

To do apostorderDFS starting from a node:
● mark the node as reached

● for each outgoing edge from the node,
recursively DFS the target of that edge,
unless it has already been reached

● visit the node

In postorder DFS, we visit each nodeafter we
visit its outgoing edges!

Postorder depth-�rst search

Visit order:
DFS node 1 (don't visit it yet, but remember
that we
have reached it) 1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-�rst search

Visit order:
Follow edge 1 → 3,
recursively DFS node 3

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-�rst search

Visit order: 6
Follow edge 3 → 6,
recursively DFS node 6

Be recursion bottoms
out, visit 6!

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-�rst search

Visit order: 6
Recursion backtracks to 3

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-�rst search

Visit order: 6
Follow edge 3 → 4,
recursively DFS node 4

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-�rst search

Visit order: 6 2
Follow edge 4 → 2,
recursively DFS node 2

Be recursion bottoms
out again and we visit 2

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-�rst search

Visit order: 6 2 4
Be recursion backtracks and
now we visit 4

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-�rst search

Visit order: 6 2 4 3
Be recursion backtracks and
now we visit 3

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-�rst search

Visit order: 6 2 4 3 1
Be recursion backtracks and
now we visit 1

1 2

3 4

5

6 7

= unvisited = visited= current

Why postorder DFS?

In postorder DFS:
● We only visit a nodeafter we recursively DFS its
successors (the nodes it has an edge to)

If we look at the order the nodes are visited
(rather than the calls to DFS):
● If the graph is acyclic, we visit a node only after we
have visited all its successors

If we look at the list of nodes in the order
they are visited, each node comes after all its
successors (look at the previous slide)

Topological sorting

Visit order: 6 2 4 3 1
In topological sorting, we want each node to come
before its successors...
With postorder DFS,
each node is visited
after its successors!
Idea: to topologically sort,
do a postorder DFS,
look at the order the nodes
are visited in andreverse it
Small problem: not all nodes are visited!
Solution: pick a node we haven't visited and DFS it

1 2

3 4

5

6 7

Topological sorting

To topologically sort a DAG:
● Pick a node that we haven't visited yet

● Do a postorder DFS on it

● Repeat until all nodes have been visited

Ben take the list of nodes in the order they
were visited, and reverse it

If the graph is acyclic, the list is topologically
sorted:
● If there is a path from node A to B, then A comes
before B in the list

Preorder vs postorder

You might think that in preorder DFS, we
visit each nodebefore we visit its successsors
But this is not the case,
in this example from
earlier we visited 6 before
its predecessor 4, because we
happened to go through 3

Postorder DFS is more well-behaved in this
sense.

1 2

3 4

5

6 7

Detecting cycles in graphs

We can only topologically sortacyclic graphs
– how can we detect if a graph is cyclic?

Easiest answer: topologically sort the graph
and check if the result is actually
topologically sorted
● Does any node in the result list have an edge to a
node earlier in the list? If so, the topological sorting
failed, and the graph must be cyclic

● Otherwise, the graph is acyclic

Cycles in undirected graphs

An undirected graph has a cycle if there are
two diNerent paths between two nodes:

You can join the two paths to get a cycle!

4

8

5

9

6 7

Two paths
from 6 to 9

Detecting cycles in undirected graphs

To check if an undirected graph has a cycle:
● Pick a node

● Do a DFS starting from that node, but...

● ...if we ever reach a node that has already been visited,
stop: the graph has a cycle because there are two
paths to the node
(normal DFS would skip the node)

● Repeat for each connected component

Summary

Graphs are extremely useful!
● Common representation: adjacency lists (or just implicitly as references
between the objects in your program)

Several important graph algorithms:
● Reachability – can I get from node A to B?

● Does the graph have a cycle?

● Strongly-connected components – where are the cycles in the graph?

● Topological sorting – how can I order the nodes in an acyclic graph?

All based on depth-*rst search!
● Enumerate the nodes reachable from a starting node

● Preorder: visit each node before its successors

● Postorder: visit each node after its successors, gives nicer order

● Common pattern in these algorithms: repeat DFS from diNerent nodes
until all nodes have been visited

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 70

