


Graphs

A graph is a data structure consisting of
nodes (or vertices) and edges

e An edge is a connection between two nodes

A .~ B
(D—(E)—»{C
Nodes: A, B, C, D, E
Edges: (A, B), (A, D), (D, E), (E, C)
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CURVATURE

COMPENSATOR
CIRCUIT

Nodes are components
Edges are connections

Algorithm:
How much current
flows through each wire
(as a function of time)?

1

0.8R,




Graphs

Graphs are used all over the place:

e communications networks
e many of the algorithms behind the internet

e maps, transport networks, route ﬁnding

o ctc.

Anywhere where you have connections or
relationships!

Normally the vertices and edges are labelled
with relevant information!



Graphs

Graphs can be directed or undirected

— |

e In an undirected graph, an edge connects N \ -
two nodes symmetrically (we draw a line |
between the two nodes)

e Inadirected graph (a digraph), the edge goes
from the source node to the target node (we | |
draw an arrow from the source to the target) l T

A tree is a special case of a directed
graph
e Edge from parent to child

e A certain node is identified as root



Drawing graphs

We represent nodes as points, and edges
as lines — in a directed graph, edges are
arrows:

: © (Ar——=p)

0 ® © @/ G'

V=1{A,B,C(,D, E} V=1{AB,(,D,E}
E=1(4A, B), (A4, D), E =1(A, B), (B, A), (B, E), (D, A),
(G, E), (D, B)} (E,A), (&, C), (E, D)}




Drawing graphs

The layout of the graph is completely
irrelevant: only the nodes and edges
matter

() )
5o

V=1{0,1,2%,3,4,5,6}
k=10, 1),(0,2), (0, 5), (0, 6), (8, 5), (8, 4), (4, 5), (4, 6)}




Graph terminology and properties

e Aloop is an edge from a node to itself — often —~
not allowed. - O

o A multigraph is a graph with multiple edge ()
between the same pair of nodes — often not / /
allowed.

e In a complete graph is every possible edge } >< \

present.

|

E

b

e In complete graphs, the number of edges,
is proportional to | V|2
o Directed, with loops: |E|= | V|2
e Directed, without loops: |E|=|V|(|V]|-1)
e Undirected, with loops: |E|= |V |(|V| + 1)/2
o Undirected, without loops: |E|= |V|(|V] -1)/2



Weighted graphs

In a weighted graph, each edge has a
weight associated with it:

Ann Arbor
0 Detroit
40 60 120 Cleveland ¢3¢ Pittsburgh

Chicago® 48
ort
ayne
180 20
180

Indianapolis Columbus

Philadelphia

A graph can be directed, weighted,
neither or both



Paths and cycles

Two vertices are adjacent if there is an

edge between them:  Cleveland is
Ann Arbor adjacent to

0 Detroit Plttsburgh
> 120 Cleveland A130 Pittsburgh

320

Chicago

 Philadelphia

~ Philadelphia is
Indianapolis Columbus adjacent to
Pittsburgh




Paths and cycles

Two vertices are adjacent if there is an

edge between them: " Cleveland is
Ann Arbor not adjacent to

0 Detroit Phi].a.de].phia
> 120 Cleveland 130 Pittsburgl"

320

Chicago

Philadelphia

Indianapolis Columbus




Paths and cycles

In a directed graph, the target of an edge
is adjacent to the source, not the other
way around:

Ais adjacent to D,
but D is not
~ adjacentto A




Paths

A path is a sequence of edges that take you
from one node to another

Ann Arbor

Detroit

Cleveland

120 130 Pittsburgh

Toledo

Chicago ¢
>

180 Philadelphia

Indianapolis Columbus

If there is a path from node A to node B, we
say that B is reachable from A



Paths and cycles

In a simple path, no node or edge appears twice,
except that the first and last node can be the same

Ann Arbor

0 Detroit
60 120 Cleveland 130 Pittsburgh

80 Philadelphia

Chicago &

| y This path is
Indianapolis Columbus a Simple path




Paths and cycles

In a simple path, no node or edge appears twice,
except that the first and last node can be the same

Ann Arbor

0 Detroit
60 120 Cleveland 130 Pittsburgh

80 Philadelphia

Chicago &

“ This path is
Indianapolis Columbus not a Simple Path




Paths and cycles

A cycle is a simple path where the first and last

nodes are the same — a graph that contains a cycle is

called cyclic, otherwise it is called acyclic
Ann Arbor

0 Detroit
60 120 Cleveland 130 Pittsburgh

320
Chicago

Philadelphia

“This path is a cycle,\
and a simple path;
the graph is cyclic

Indianapolis Columbus




DAG

e A DAG is a directed, acyclig graph.



Implementing a graph

Alternative 1: adjacency lists
Keep a list of all nodes in the graph

o With each node, associate a list of all the nodes
adjacent to that nodes

Alternative 2: adjacency matrix

Keep a 2-dimensional array, with one
entry for each pair of nodes

o ali][j] = true if there is an edge between node i
and node ]



How to implement a graph

Typically: adjacency list

e List of all nodes in the graph, and with each node

store all the edges having that node as source

—

next = nu

hoch?LJ

[e]
(1]
[2]
[3]
[4]
(5]

LN

next = nu




Adjacency list — undirected graph

Each edge appears twice, once for the source
and once for the target node

Node —S. Node
next = [ — next = null
vailue = =

Node [] Node S Node S Node S. Node
next = [ —— next = [ —3— next = [ —3— next = nu
[0] _d.‘-/ value = @ value 4 value = 2 value =
/
[1] el
[2] _\H‘ Node Node
[4] —_ next = [ —— next = null
value = 1 value = 3
Node ; Node S’
t — next —— t n
1 1 val 4 1 2




Adjecency matrix

e The other main way to implement graph
representation is adjecency matrix.

A matrix with dimensions | V|x|V|. Each element (i,j)
is true/contains an edge label if there is an edge from
nod i to node ;.

e For undirected graphs the matrix is symmetric or only
one of the halves is used.

e Adjecency matrix representation can be preferable for
dense graphs, i.e. in graphs where a large portion of the
possible edges are present.

e For graphs which are not dense, the matrix
representation is a waist of space.



Adjacency matrix, weighted graph

Column

(0] | [11] [21 | [3]|[4] ] [5]
@1 [10| |09
[1] 1.0

5 [2] 0.3[1.0
31 0.6
[4] 1.0
[5] 0.5
Column

(o] | (11| [2]|[3]1|[4]

1| |10 0.9

[1]|1.0 1.010.83 0.6
(2] 1.0 0.5
[3] 0.3(0.5 1.0
[4](0.9 |0.6 1.0

Row




Graphs implicitly

Very often, the data in your program implicitly makes a
graph
e Nodes are objects

e Edges are references — if obj1.x = obj2 then there is an edge from
obj1 to obj2
Object variables correspond to associations/edged in
the class diagram of your program. Classes correspond
to nodes.
Sometimes, you can solve your problem by viewing
your data as a graph and using graph algorithms on it

This is probably more common than using an explicit
graph data structure!



Graph algorithms:
depth-first search,

reachability,
connected components




Graph traversals

Many graph algorithms involve visiting
each node in the graph in some
systematic order

o Just like with trees, there are several orders you
might want

The two commonest methods are:

e breadth-first search
e depth-first search



Reachability

How can we tell what nodes are reachable
from a given node?

We can start exploring the graph from that
node, but we have to be careful not to (e.g.)
get caught in cycles

Depth-first search is one way to explore the
part of the graph reachable from a given
node



Depth-first search

Depth-first search is a traversal algorithm

o This means it takes a node as input, and enumerates all nodes
reachable from that node

[t comes in two variants, preorder and postorder —
well start with preorder

To do a preorder DES starting from a node:

e visit the node

e for each outgoing edge from the node,
recursively DES the target of that edge,
unless it has already been visited
It's called preorder because we visit each node

before its outgoing edges



Implementing DFS

« We maintain a stack of nodes that we are going to visit next

- Initially, the stack contains the start node

e We repeat the following process:

- Remove a node from the stack
- Visit it
- Find all nodes adjacent to the visited node and add them to

the stack, unless they have been visited or added to the stack
already



Example of a depth-first search

Visit order: 1
DFS node 1

(By the way, is 5
reachable from 17?)

O = current - =unvisited - =visited



Example of a depth-first search

Visit order: 1 3

Follow edge 1 — 3,
recursively DFS node 3

O = current = unvisited - =visited



Example of a depth-first search

Visit order: 1 3 6

Follow edge 3 — 6,
recursively DFS node 6

1 » 2« 5,

N,

3 =4

\@ﬁ;

O = current w - = unvisited - =visited




Example of a depth-first search

Visit order: 1 3 6

Recursion backtracks to 3

O = current - =unvisited - =visited



Example of a depth-first search

Visit order:1 36 4

Follow edge 3 — 4,
recursively DFS node 4

O = current w - = unvisited - =visited



Example of a depth-first search

Visitorder: 13642

Follow edge 4 — 2,
recursively DFES node 2

We don't follow 4 — 6 ‘
or 2 — 3, as those nodes \ /
have already been visited

Eventually the recursion
backtracks to 1 and we stop

O = current w - = unvisited

3—»4

- = visited

-



Reachability revisited

How can we tell what nodes are reachable
from a given node?

Answer:

Perform a depth-first search starting from
node A, and the nodes visited by the DES are
exactly the reachable nodes



Connectedness

An undirected graph is called connected if

there is a path from every node to every
other node

This graph is
connected

How can we tell if a graph is connected?



Connectedness

An undirected graph is called connected if

there is a path from every node to every
other node

@ %)
This graph is

not connected

How can we tell if a graph is connected?



Connectedness

[f an undirected graph is unconnected, it still
consists of connected components

) 5)

{4,5}isa ~ {6,7,89}isa
connected connected
component component




Connectedness

A single unconnected node is a connected
component in itself

{4} is a — @

connecte d
compo nent




Connected components

How can we find:

e the connected component containing a
given node?

e all connected components in the graph?



Connected components

To find the connected component containing
a given node:
e Perform a DFS starting from that node

o The set of visited nodes is the connected component
To find all connected components:

e Pick a node that doesn't have a connected component
yet

e Use the algorithm above to find its connected
component

o Repeat until all nodes are in a connected component



Strongly-connected components

In a directed graph, there are two notions of
connectedness:

o strongly connected means there is a path from every
node to every other node

o weakly connected means the graph is connected if you
ignore the direction of the edges
(the equivalent undirected graph is connected)

T | 1 »2< 5
et | NS

but not strongly
- connected (why?) \ | /




Strongly-connected components

You can always divide a directed graph into its
strongly-connected components (SCCs):

1,-2< 5

oAy

B34

In each strongly-connected component, every node
is reachable from every other node

e The relation “nodes A and B are both reachable from each
other” is an equivalence relation on nodes

o The SCCs are the equivalence classes of this relation



Strongly-connected components

To find the SCC of a node A, we take the

intersection of:

e the set of nodes reachable from A

e the set of nodes which A can be reached from
(the set of nodes “backwards-reachable” from A)

This gives us all the nodes B such that:

e there is a path from A to B, and

o there is a path from B to A
To find the set of nodes backwards-reachable
from A, we will use the idea of the transpose

of a graph



Transpose of a graph

To find the transpose of a directed graph, flip the
direction of all the graph's edges:

1 »2< 5 1<« 2 »5

AW NG W,

f O
Graph Transpose

Note that: there is a path from A to B in the
original graph iff there is a path from
B to A in the transpose graph!



Strongly-connected components

To find the SCC of a node (such as 2),
perform a DFS in the graph and the

transpose graph:

1%2%5 1%2%5

R
e Nel ok
Graph Transpose

The nodes visited in both DESs are the SCC —
in this case {1, 2, 3, 4}



Strongly-connected components

To find the SCC of a node A:

e Find the set of nodes reachable from A, using DES

o Find the set of nodes which have a path to A,
by doing a DES in the transpose graph

e Take the intersection of these two sets
Implementation in practice:

e When doing the DES in the transpose graph, we
restrict the search to the nodes that were reachable
from A in the original graph



What do SCCs mean?

The SCCs in a graph tell you about the cycles in
that graph!

e If a graph has a cycle, all the nodes in the cycle will be in the
same SCC

o If an SCC contains two nodes A and B, there is a path from
A to B and back again, so there is a cycle

A directed graph is acyclic iff:
e All the SCCs have size 1, and

e no node has an edge to itself (SCCs do not take any notice

of self-loops)

If the SCCs are collapsed to single nodes, the
resulting graph is a DAG.



Cycles and SCCs

Here is the directed graph from before.

Notice that:

e The big SCC is where all the cycles are
e The acyclic "parts” of the graph have SCCs of size 1

The SCCs characterise the cycles in the graph!

1,-24 5

Ny

S)—=4

e




Graph algorithms:
postorder DFS,

detecting cycles,
topological sorting




Topological sorting

Here is a DAG with courses and prerequisites:

We might want o)
to find out: what T
is a possible order ”"'—'

to take these Cas o2

courses in? ‘

200 Level @ Theory CIS 223
Elective

This is what
topological sorting gives us.

Note that the graph must be acyclic!



Example: topological sort

A topological sort of the nodes in a DAG is a
list of all the nodes, so that if there is a path
from u to v, then u comes before v in the list

Every DAG has a

topological sort,
often several

012345678 1s a
topological sort of
this DAG, but
015342678 isn't.




Postorder depth-first search

One way to implement topological sorting is
to use a variant of DFS called postorder
depth-first search

To do a postorder DFS starting from a node:

e mark the node as reached

e for each outgoing edge from the node,
recursively DFS the target of that edge,
unless it has already been reached

e visit the node

In postorder DFS, we visit each node after we
visit its outgoing edges!



Postorder depth-first search

Visit oxrder:

DES node 1 (don't visit it yet, but remember
that we

have reached it) 2« 5
R

O = current w - = unvisited - =visited




Postorder depth-first search

Visit order:

Follow edge 1 — 3,
recursively DFS node 3

O = current = unvisited - =visited



Postorder depth-first search

Visit order: 6

Follow edge 3 — 6,
recursively DFS node 6

The recursion bottoms

out, visit 6! ‘ \ R \ / ’

O = current w - = unvisited w - = visited



Postorder depth-first search

Visit order: 6

Recursion backtracks to 3

O = current - =unvisited - =visited



Postorder depth-first search

Visit order: 6

Follow edge 3 — 4,
recursively DFS node 4

O = current w - = unvisited - =visited



Postorder depth-first search

Visit order: 6 2

Follow edge 4 — 2,
recursively DFES node 2

The recursion bottoms
out again and we visit 2

O = current w - = unvisited

3—»4

- = visited

-



Postorder depth-first search

Visit order:6 2 4

The recursion backtracks and
now we visit 4

1245

O = current w - = unvisited - =visited



Postorder depth-first search

Visit order:624 3

The recursion backtracks and
now we visit 3

O = current w - = unvisited - =visited



Postorder depth-first search

Visitorder:624 31

The recursion backtracks and
now we visit 1

O = current w - = unvisited - =visited



Why postorder DFS?

In postorder DES:

e We only visit a node after we recursively DFES its
successors (the nodes it has an edge to)

If we look at the order the nodes are visited

(rather than the calls to DES):

o If the graph is acyclic, we visit a node only after we
have visited all its successors

If we look at the list of nodes in the order
they are visited, each node comes after all its
successors (look at the previous slide)



Topological sorting

Visitorder:62431

In topological sorting, we want each node to come
before its successors...

With postorder DES, 2 S
each node is visited \ /
dfter its successors! ~

[dea: to topologically sort,

do a postorder DFS, \ | / Y

look at the order the nodes
are visited in and reverse it

Small problem: not all nodes are visited!
Solution: pick a node we haven't visited and DFS it



Topological sorting

To topologically sort a DAG:

e Pick a node that we haven't visited yet
e Do a postorder DFS on it
e Repeat until all nodes have been visited

Then take the list of nodes in the order they
were visited, and reverse it

If the graph is acyclic, the list is topologically
sorted:

o If there is a path from node A to B, then A comes
before B in the list



Preorder vs postorder

You might think that in preorder DFES, we

visit each node before we visit its successsors

But this is not the case, 1 =2 <« 5

in this example from M /
earlier we visited 6 before |

its predecessor 4, becausewe 3 = 4

happened to go through 3 \ 2
7

Postorder DFS is more well-behaved in this
sense.




Detecting cycles in graphs

We can only topologically sort acyclic graphs
— how can we detect if a graph is cyclic?

Easiest answer: topologically sort the graph
and check if the result is actually
topologically sorted

e Does any node in the result list have an edge to a
node earlier in the list? If so, the topological sorting
failed, and the graph must be cyclic

o Otherwise, the graph is acyclic



Cycles in undirected graphs

An undirected graph has a cycle if there are
two different paths between two nodes:

Two paths
from6to 9

You can join the two paths to get a cycle!



Detecting cycles in undirected graphs

To check if an undirected graph has a cycle:

e Pickanode
e Do a DFS starting from that node, but...

e ..if we ever reach a node that has already been visited,
stop: the graph has a cycle because there are two
paths to the node
(normal DES would skip the node)

e Repeat for each connected component



Summary

Graphs are extremely useful!

o Common representation: adjacency lists (or just implicitly as references
between the objects in your program)

Several important graph algorithms:

e Reachability — can I get from node A to B?
e Does the graph have a cycle?
e Strongly-connected components — where are the cycles in the graph?

e Topological sorting — how can I order the nodes in an acyclic graph?
All based on depth-first search!

e Enumerate the nodes reachable from a starting node
e Preorder: visit each node before its successors
e Postorder: visit each node after its successors, gives nicer order

o Common pattern in these algorithms: repeat DES from different nodes
until all nodes have been visited
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