
Hash tables

Faster than O(log n) sets and maps?

● Balanced search trees of various kinds and skip lists
provides set and map operations with logarithmic
complexity. Can we do better?

● For arrays we have constant time random access.
● Let’s assume we need to quickly look up the address of any
Swedish citizen based on personnummer.

● We can create an array with one element for each possible
personnummer and have a quick way to calculate the index.
In this array we store the addresses. We get constant time
operations.

● %is is plausible because the number of possible
personnummer isn’t a whole lot bigger than the number of
Swedish citizens.

Alex Gerdes

Faster than O(log n) sets and maps?

● What if google asks us to create a map that maps
every word occurring on the internet to a set of
url:s to pages where it occurs.

● %en we have a problem since the number of
possible words is much larger than the set of
occurring words. It’s di'cult to design the set of
keys such that the array doesn’t end up very
sparsely populated and too big even for data
centers.

● Idea: Let’s make an array whose size is
proportionate to the number of entries and project
the keys onto the set of valid indeces.

Hash tables naively

�e plan: take an array of some sizek
De*ne ahash function that maps values (set
elements or map keys) to indices in the range
{0,...,k-1}
● Example: if the values are integers, hash function
might be h(n) = n mod k

To *nd, insert or remove a valuex, put it in
index h(x) of the array
● Avoid searching through the whole array!

%is takes constant time!

Hash tables naively, example

Implementing a set of integers, suppose we
take a hash table of size 5 and a hash
functionh(n) = n mod 5

Inserting 14 gives:

5 178
01234

%is hash table contains
{5, 8, 17}

145 178
01234

Similarly, if we
wanted to *nd 8,
we would look it
up in index 3

A problem

%is idea doesn't work.
What if we want to insert 12 into the set?

We should store 12 at index 2, but there's already
something there!
%is is called acollision
Real hash tables are naive hash tables plus tricks for
dealing with and avoiding collisions!

5 178
01234

Handling collisions: chaining

Instead of an array of elements, have an
array oflinked lists (chains)
To add an element, calculate its hash and
insert it into the list at that index

01234

5 178

Handling collisions: chaining

Instead of an array of elements, have an
array oflinked lists (chains)
To add an element, calculate its hash and
insert it into the list at that index

Inserting 12
into the table

01234

5 178

12

Performance of chained hash tables

Chained hash tables are fast if the chains are
small
● If the size is bounded, operations are O(1) time

But if the chains get big, everything gets slow
● Can degrade to O(n) in the worst case

%ere are two cases when this can happen!
We have to avoid both of them.

Performance of chained hash tables

Case one: the hash table is too full
● If we try to store 1,000,000 values in an array of size 5, some
chains will be 200,000 long

Solution: expand the hash table
● If the hash table gets too full (load factor too high), allocate a
new array about twice as big (rehashing)

● load factor = number of elements / size of array

Problem: h(x) is speci*c to a particular size of array
● Allow the hash function to return an arbitrary integer (the
hash code of x) and then take it modulo the array size:
h(x) = x.hashCode() mod array.size

● Hash function of an integer will just be the integer itself

Alex Gerdes

Performance of chained hash tables

Case two: the hash function is lousy
● Worst case: h(x) is a constant function, e.g.
h(x) = 0

● %en all elements will end up in the same chain!

%e hash function must distribute values evenly
● Each hash bucket has an equal chance of being chosen
● %ere are no observable patterns, e.g., easy ways to construct
two values which always have the same hash

In other words, it should look like the hash
function returns arandom bucket

Chained hash tables – the theory

We need:
● to resize the hash table when it gets too full
● a hash function which appears to be random
(no patterns, equal distribution)

If we do that, the average chain size will be constant
and we getexpected O(1) performance for
insert/lookup/delete!
● Complexity analysis uses probability theory

When should we resize the hash table?
● If the load factor is 3 (number of elements = array size D 3), each
operation needs on average 2.5 comparisons

● Pick some constant load factor, resize when it reaches that

A slightly awkward problem

In reality, the hash function does not return a
random hash code!
● Common hash functions can have patterns

%is breaks the nice theory we have. Here is one
problem:
● If we double the size of the array when resizing, the array size
will always be even

● If we then insert only even numbers into the hash table, only
the even buckets will be used

To *x this, we make the array size always be aprime
number (while roughly doubling it each time) – this
masks patterns in the hash function

Chained hash tables – summary

Start with a naive hash table
Add chaining
Double the size of the array when the load
factor is too high...
● ...but make sure the array size is always prime

Now you have a chained hash table!
● O(1) expected complexity for all operations

But how should we design hash functions?

Designing hash functions

A good hash function should distribute
values evenly
● h(x) has a roughly equal chance of being any
particular number (up to some large bound)

● %at way, all chains will be roughly the same length!
● Also, similar values should not have similar hash
codes

De*ning good hash functions is a black art!
● Weird heuristics that are semi-backed-up by theory

We'll settle for: unlikely to insert many
elements with the same hash

De+ning a good hash function

What is bad about the following hash function on strings?
Add together the character code of each character in the string
(character code of a = 97, b = 98, c = 99 etc.)

● Maps e.g. bass and bart to the same hash code! (s + s = r + t)
● Any anagrams will have the same hash code
● Similar strings will be mapped to nearby hash codes – does
not distribute strings evenly

● %ere are many strings with 10 characters or less. All of
them will map to numbers 0..2550 (assuming 8 bit ascii
characters)

Alex Gerdes

De+ning a good hash function

What is bad about the following hash function on strings?
Add together the character code of each character in the string
(character code of a = 97, b = 98, c = 99 etc.)

● Maps e.g. bass and bart to the same hash code! (s + s = r + t)
● Any anagrams will have the same hash code
● Similar strings will be mapped to nearby hash codes – does
not distribute strings evenly

● %ere are many strings with 10 characters or less. All of
them will map to numbers 0..2550 (assuming 8 bit ascii
characters)

A hash function on strings

An idea: map strings to integers as follows:
128n + s0 · 128n-1 + s1 · 128n-2 + … + sn-1

where si is the code of the
character at index i
If all characters are ASCII
(character code 0 – 127), each
string is mapped to a diLerent
integer!

An analogy

Suppose we want to de*ne a hash function for
lists of digits from 0-9:
● [0,9,3,4,2,1] etc.

Idea: write out the digits as a single number with
a leading 1:
● hash([0,9,3,4,2,1]) = 1093421

(Without the leading 1 we would get the same
hash for e.g. [0,1] and [1])
%e hash function on strings is doing exactly this,
only working in base 128 instead of base 10

The problem

For performance, we will calculate the hash
using machine integers so the calculation
128n + s0 · 128n-1 + s1 · 128n-2 + … + sn-1,
will happen modulo 232 (integer over ow)
So the hash will only use the last few
characters!
Solution: replace 128 with another number
(which is not a power of 2), e.g. 33
33n + s0 · 33n-1 + s1 · 33n-2 + … + sn-1
%is is (almost) what Java uses for strings

Hash functions

%is is calledBernstein hashing, it's only one way of
de*ning hash functions
● Bernstein discovered that using 33 as the constant gives good
distribution

● Why? Nobody knows, but primes are in general good
candidates.

Many hash functions are inspired by random
number generation algorithms
● %e output of a good hash function should look random so
there are many similarities

Often pretty ad hoc!
● Lots of experimentation involved

Hashing a pair

class C { A a; B b; }
One way: multiply the two hash codes by
diOerent prime numbers and add the
results, then add a constant:
int hashCode() {
 return 31 * a.hashCode() +
 37 * b.hashCode() + 1;
}

Hash functions in Java

● %e top classObject in Java has a hashCode()
method.

● %is is implemented for all standard types. If you use
a standard type as elements in aHashSet or keys in a
HashMap you don’t need to worry about the hash
function.

● For your own classes you can use the Objects.hash
method.

● If you provide the instance variables as arguments to
this method it will use the hash code for each of
them and combine them in a way similar to the
example.

Linear probing

Another way (than chaining) of dealing with
collisions islinear probing
Linear probing is a kind of probing.
Uses an array of values, like in the naive hash table
If you want to store a value at indexi but it's full,
store it in indexi+1 instead!
If that's full, tryi+2, and so on
...if you get to the end of the array, wrap around to 0
Probing is also calledopen addressing because the
index is not *xed. Chaining is sometimes called
closed addressing.

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Tom Dan Harry Sam Pete

[0]
[1]
[2]
[3]
[4]

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Sam Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Sam

Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Sam

Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Pete Pete

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4] To *nd “Pete” (hash 3),

you must start at index 3
and work your way all the
way around to index 2

Searching with linear probing

To *nd an element under linear probing:
● Calculate the hash of the element,i
● Look at array[i]
● If it's the right element, return it!
● If there's no element there, fail
● If there's a di(erent element there, search again at
index (i+1) % array.size

We call a group of adjacent non-empty
indices acluster

Deleting with linear probing

Can't just remove
an element...

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Pete Pete

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

If we remove Harry,
Pete will be in the wrong cluster
and we won't be able to *nd him

Deleting with linear probing

Instead, mark it
as deleted
(lazy deletion)

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Pete Pete

 XXXXXXX XXXXXXX

 Tom Tom

[0]
[1]
[2]
[3]
[4]

%e search algorithm
should skip over XXXXXXX

Deleting with linear probing

It's useful to think of the invariant here:
● chaining: each element is found at the index given by
its hash code

● Linear probing: each element is found at the index
given by its hash code, or a later index in the same
cluster

Naive deletion will split a cluster in two,
which may break the invariant
Hence the need for an empty value that does
not mark the end of a cluster

Linear probing performance

To insert or *nd an element under linear probing,
you might have to look through a whole cluster of
elements
Performance depends on the size of these clusters:
● Small clusters – expected O(1) performance
● Almost-full array – O(n) performance
● If the array is full, you can't insert anything!

%us you need:
● to expand the array andrehash when it starts getting full
● a hash function that distributes elements evenly

Same situation as with linear chaining!

Linear probing vs chaining

In linear chaining, if you insert many values with the
same hash, values with that hash become slower to
access but other hashes are unaLected
In linear probing, you get a cluster and values with
nearby hashes become slower to access too!
As the array gets close to 100% full, you get very long
clusters in the hash table and performance becomes
dreadful
Linear probing needs a much bigger array than linear
chaining for the same performance
But: as you don't need to also create list nodes, you can
create a bigger array in the same amount of memory

Linear probing vs chaining

load factor
(#elements /
array size)

#comparisons
(linear
probing)

#comparisons
(linear
chaining)

0V% 1.00 1.00
25V% 1.17 1.13
50V% 1.50 1.25
75V% 2.50 1.38
85V% 3.83 1.43
90V% 5.50 1.45
95V% 10.50 1.48

100V% — 1.50

200V% — 2.00

300V% — 2.50

Quadratic probing

●Linear probing is not the only kind of
probing. %ere are alternatives that try to
improve the tendency of linear probing to
create clusters.

●Linear probing looks at index (h(x)+i) %n for
attempt 0,1,2,…

●Quadratic probing is one of them. Here you
look at index (h(x)+i2) % n. %e idea is that
you shouldn’t get stuck locally.

Summary of hash table design

Several details to consider:
● Rehashing: resize the array when the load factor is too high
● A good hash function: need an even distribution
● Collisions: either chaining or probing

– Other alternatives to linear probing, e.g. quadratic probing
– Some sort of probing seems to be fastest

In return:
● Expected (average) O(1) performance if the hash function is random
(there are no patterns)

● Better performance in practice than BSTs
● Disadvantage: hash tables are unordered so you can't get the elements in
increasing order

%eoretical foundations of hashfunctions are a bit uncertain,
but heuristics work well in practice

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

