
Data structures
Introduction and dynamic arrays

Dr. Alex Gerdes
DIT961 - VT 2018

• Teaching team:
- Alex Gerdes, lecturer, examiner and course responsible

‣ alexg@chalmers.se, room EDIT 6479
- Sarosh Nasir, course assistant
- Adi Hrustic, course assistant

• All information on the course website!

• Student representatives! Any takers?

Introduction

mailto:alexg@chalmers.se

• Explain some basic abstract data types and data structures, including lists,
queues, tables, trees, and graphs

• Explain some of the algorithms used to manipulate and query these data
structures in an efficient way, and explain why they are correct

• Apply basic abstract data types and data structures and algorithms related to
these

• Implement and use abstract data types as interfaces and data structures as
classes in an object-oriented programming language

• Implement and use abstract data types in a functional programming language

• Make informed choices between different data structures and algorithms for
different applications

• Analyse the efficiency of some algorithms

Learning outcomes

• 9 weeks in total

• Two lectures per week, which cover the theoretical part

• One exercise session per week, where you can get personal help to understand
the material; these sessions are not obligatory, but recommended

• 2 to 3 lab sessions per week, where you can get help from the course assistants

• one hand-in and 3 lab assignments, which all need to be completed in order to
complete the course

• One written exam at the end of the course; this is obligatory and done
individually

• Your final grade will be determined by your grade on the written exam only

• Loaded with holidays -> irregular schedule -> check TimeEdit

Course organisation

• The course website contains updated and relevant
information:
- Latests news (also announced via a Google-group,

subscribe!)
- Schedule
- Slides (contains last year’s slides now, will be updated

after/just before lecture)
- Lab assignments
- Exercises
- …

• Check it regularly!

Course website

• One hand-in and three labs, description on website

• Do them in pairs, search suitable partner

• Lab supervision in 3354/3358, check TimeEdit

• Submit files via Fire (link on website)

• The deadlines are on the website and Fire

• Electronic queueing system:  
 
 http://www.waglys.com/is5Zbj

Labs

http://www.waglys.com/is5Zbj

• Optional (but helpful) exercises

• One set a week - answers go up following week

• One exercise session per week, teacher is (often)
present

Exercises

Ask questions!

Reflect!

It is going to be fun!!!

A simple problem

Suppose we want to write a program that reads a file, and
then outputs it, twice

Idea: read the file into a string

A simple problem

String result = ””;
Character c = readChar();
while(c != null) {
 result += c;
 c = readChar();
}
System.out.print(result);
System.out.print(result);

This program
is amazingly

slow!

Use a StringBuilder instead

The right way to solve it?

StringBuilder result = new StringBuilder();
Character c = readChar();  
while(c != null) {
 result.append(c);
 c = readChar();
}
System.out.print(result);
System.out.print(result);

...but: why is there a difference?

A string is basically an array of characters: 
 
String s = “hello” ↔ char[] s = {'h','e','l','l','o'}

This little line of code...  
 
result = result + c; 
 
is:

1. Creating a new array one character longer than before
2. Copying the original string into the array, one character at a

time
3. Storing the new character at the end

Behind the scenes

See
CopyNaive.java

1. Make new array 
 

2. Copy the old array 
 

3. Add the new element

Behind the scenes

W O R D + S

W O R D

W O R D S

• Appending a single character to an string of length n
needs to copy n characters

• Imagine we are reading a file of length n
- ...we append a character n times
- ...the string starts off at length 0, finishes at length n
- ...so average length throughout is n/2
- total: n×n/2 = n2/2 characters copied

• For “War and Peace”, n = 3200000 
so 1600000 × 3200000 = 5,120,000,000,000 characters
copied! No wonder it's slow!

Well, is it really so bad?

• It's a bit silly to copy the whole array every time we
append a character

• Idea: add some slack to the array
- Whenever the array gets full, make a new array that's (say)

100 characters bigger
- en we can add another 99 characters before we need to

copy anything!
- Implementation: array+variable giving size of currently used

part of array

Improving it (take 1)

See
Copy100.java

• Add an element 
 
 

• Add an element 
 

Improving it (take 1)

H e l l o W o r l

H e l l o W o r l

d

H e l l o W o r l

d !

• Does this idea help?

• We will avoid copying the array 99 appends out of 100

• In other words, we will copy the array 1/100th as often...

• ...so instead of copying  
 
5,120,000,000,000 characters,  
 
we will copy only 51,200,000,000!

• (Oh. That's still not so good.)

Improving it (take 1)

• The trick: as the array gets bigger, have more and more
slack space: 
 
Whenever the array gets full, double its size

• So we need to copy the array less and less often as it
gets bigger

• This works – and is what StringBuilder does!

Improving it (take 2)

See
CopyDouble.java

• Why does it work?
- Imagine the array is currently full, e.g., size 1024, and we

append a character
- This means we create a new array of size 2048
- After 1024 appends, the array will be full again and we will

have to copy 2048 characters
- In general, if we have just copied 2n characters, we have

previously added n characters without copying
- This “averages out” at 2 characters copied per append

• For “War and Peace”, we copy ~6,400,000 characters. A
million times less than the first version!

Improving it (take 2)

Performance - a graph

Performance – a graph

Zoom in!
Zoom in!

Zoom in!

Zoom in!

A huge eIect from
a small change!

• A dynamic array is like an array, but can be resized – very
useful data structure:
- E get(int i);

- void set(int i, E e);

- void add(E e);

• Implementation is just as in our file-reading an example:
- An array
- A variable storing the size of the used part of the array
- Add copies the array when it gets full, but doubles the size of

the array each time

• Called ArrayList in Java

Dynamic arrays

• String: array of characters
- Fixed size
- Immutable (can't modify once created)

• StringBuilder: dynamic array of characters
- Can be resized and modified efficiently

• (is there a tiny catch?)

About String and StringBuilder

• It's often tempting to program using “brute force”, using
just arrays, strings, etc.

• But by choosing the right data structure:
- The code becomes simpler (compare arrayList.add(e)

against our array-copying dance from earlier)
- Hence it's easier to avoid mistakes
- You can get whopping performance improvements!

The moral of the story

• Vague answer: any way of organising the data in your
program

• A data structure always supports a particular set of
operations:
- Arrays: get (a[i]), set (a[i]=x), create (new int[10])
- Dynamic arrays: same as arrays plus add
- Haskell lists: cons, head, tail
- Many, many more...

So what is a data structure anyway?

Real life applications

Prefix tree – return all
strings starting with a
particular sequence

• As a user, you are mostly interested in what operations
the data structure supports, not how it works

• Terminology:
- The set of operations is an abstract data type (ADT)
- The data structure implements the ADT
- Example: map is an ADT which can be implemented by a

binary search tree, a 2-3 tree, a hash table, ... (we will come
across all these later)

Interface vs implementation

• Why study how data structures work inside?

• Can't we just use them?
- As computer scientists, you ought to understand how things

work inside
- In order to choose the most suitable existing

implementation of an ADT you need to known how they
work to some extent

- Sometimes you need to adapt an existing data structure,
which you can only do if you understand it

- The best way to learn how to design your own data
structures is to study lots of existing ones

Interface vs implementation

• How to design data structures
- Lectures and exercises

• How to reason about their performance
- Lectures, exercises, hand-in

• How to use them and pick the right one
- Labs and exercises

This course

• “Brute force” programming works up to a point
- After that you need to think!
- Using the right data structures makes your program simpler

and faster

• Most data structures are based on some simple idea

• Reasoning helps to get things right
- Dynamic arrays work because the array is always half empty

after resizing

• We can use maths to predict the performance of our
algorithms (more of this next time)

Big points

