Lecture 8
Ana Bove

April 6th 2017

Overview of today’s lecture:

o Regular expressions;

o Algebraic laws for regular expressions;
o Equivalence between FA and RE: from FA to RE.

o Product of NFA as for DFA, accepting intersection of languages;

o Union of languages comes naturally, complement not so “immediate”;
o By allowing e-transitions we obtain e-NFA:

Defined by a 5-tuple (Q, X, d, qo, F);

d:Qx (XU{e}) = Pow(Q);

o ECLOSE needed for §;

Accept set of words x such that 8(go, x) N F # ;

(%}

©

(%}

Given a e-NFA E we can convert it to a DFA D such that
L(E) = L(D);

Hence, also accept the so called regular language.

©

©

April 6th 2017, Lecture 8 TMV027/DIT321 1/32

Regular Expressions

Regular expressions (RE) are an algebraic way to denote languages.

RE are a simple way to express the strings in a language.

Example: grep command in UNIX (K. Thompson) takes a (variation) of a RE as input.

We will show that RE are as expressive as DFA and hence, they define all
and only the regular languages.

April 6th 2017, Lecture 8 TMV027/DIT321 2/32

Inductive Definition of Regular Expressions

Definition: Given an alphabet X, we inductively define the regular
expressions over 2 as follows:

Base cases: @ The constants () and € are RE;
o If a€ X then ais a RE.

Inductive steps: Given the RE R and S, we define the following RE:
o R+ S and RS are RE;
o R*is RE.

The precedence of the operands is the following:

@ The closure operator * has the highest precedence;
@ Next comes concatenation;
@ Finally, comes the operator +;

@ We use parentheses (,) to change the precedence.

(Compare with exponentiation, multiplication and addition on numbers.)

April 6th 2017, Lecture 8 TMV027/DIT321 3/32

A nicer way to define the regular expressions is by giving the following
BNF (Backus-Naur Form), for a € ¥

R:=0|e|la| R+R|RR|R*

alternatively
R,S:=0|ela|R+S|RS|R"

Note: BNF is a way to declare the syntax of a language.

It is very useful when describing context-free grammars and in particular the syntax of

(big parts of) most programming languages.

April 6th 2017, Lecture 8 TMV027/DIT321

data RExp a = Empty | Epsilon | Atom a |
Plus (RExp a) (RExp a) |
Concat (RExp a) (RExp a) |
Star (RExp a)

For example the expression b + (bc)* is given as

Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))

April 6th 2017, Lecture 8 TMV027/DIT321 5/32

Language Defined by the Regular Expressions

Definition: Given a RE R, the language L(R) generated/defined by it is
defined by recursion on the expression:

Base cases: o L() = 0;

o L(e) = {e};
o Given a€ X, L(a) = {a}.

Recursive cases: o L(R+S) = L(R)U L(S);
o L(RS) = L(R)L(S);
o L(R*) = L(R)*.

Note: x € L(R) iff x is generated by R.

Notation: We write x € L(R) or x € R indistinctly.

April 6th 2017, Lecture 8 TMV027/DIT321 6/32

Example of Regular Expressions
Let ¥ ={0,1}:

9 0" +1* = {¢,0,00,000,...} U{e 1,11,111,.. .}

o (0+1)* = {0,1,00,01, 10, 11,000, 001, 010, 011, 100, 101, .. .}
o (01)* = {¢,01,0101, 010101, ...}

@ (000)* = {e, 000,000000, 000000000, . ..}

@ 01* +1 ={0,01,011,0111,...} U {1}

o ((0(1*)) + 1) = {0,01,011,0111,...} U {1}

o (01)* + 1 = {¢,01,0101, 010101, ...} U {1}

@ (e+1)(01)*(e 4 0) = (01)* + 1(01)* + (01)*0 + 1(01)*0

@ (01)* +1(01)* + (01)*0 4 1(01)*0 = ...

What do they mean? Are there expressions that are equivalent?
April 6th 2017, Lecture 8 TMV027/DIT321 7/32

Algebraic Laws for Regular Expressions

The following equalities hold for any RE R, S and T:

Idempotent: R+ R=R

Commutative: R4+S5S=S+R In general, RS # SR
Associative: R+ (S+T)=(R+S)+ T R(ST)=(RS)T
Distributive: R(S+ T)= RS + RT (S+ TYR=SR+ TR

Identity: R+0=0+R=R Re =eR =R

Annihilator: R) = QR = ()
0* =€e*=c¢
RT = RR* = R*R
R* = (R*)* = R*R* = e + R*

Note: Compare (some of) these laws with those for sets on slide 14 lecture 2.

April 6th 2017, Lecture 8 TMV027/DIT321 8/32

Algebraic Laws for Regular Expressions

Other useful laws to simplify regular expressions are:

o Shifting rule: R(SR)* = (RS)*R

o Denesting rule: (R*S)*R* = (R+ S)*

Note: By the shifting rule we also get R*(SR*)* = (R+ S)*

o Variation of the denesting rule: (R*S)* =e¢+ (R+ S)*S

Note: These rules are not always trivial to apply ... :-)

April 6th 2017, Lecture 8 TMV027/DIT321 9/32

Example: Proving Equalities Using the Algebraic Laws
Example: The set of all words with no substring of more than two adjacent O's is
(14 01+ 001)"(e + 0+ 00). Now,

(1 + 01 4 001)* (e 4 0 + 00)
= ((e+0)(e+0)1)"(e+ 0)(e + 0) by distributivity
= (e+0)(e+0)(1(e +0)(e +0))* by shifting
— (e + 0+ 00)(1 + 10 + 100)* by distributivity

Then (1 4 01 + 001)*(e 4 0 + 00) = (e 4 0 + 00)(1 + 10 + 100)*

Example: A proof that a*b(c + da"b)* = (a+ bc*d)*bc™:

a*b(c+ da*b)* = a*b(c*da*b)*c” by denesting (R =c¢,S = da*b)
a*b(c*da*b)*c* = (a"bc*d)*a*bc* by shifting (R =a*b,S = c*d)
(a*bc*d)*a*bc* = (a+ bc*d)"bc” by denesting (R = a,S = bc*d)

April 6th 2017, Lecture 8 TMV027/DIT321 10/32
Equality of Regular Expressions

Recall: RE are a way to denote languages.

Then, for RE R and S, R = S actually means L(R) = L(S).

Hence we can prove the equality of RE in the same way we prove the
equality of languages!

Example: Let us show that R* = R*R*. Let L = L(R).

Then L(R*) = L(R)" = L".

LY C LL" sinceeec L.

Conversely, if L*L* C L* then x = x1x with x3 € L* and x» € L™.
If x1 =€ or xo» = € then it is clear that x € L.

Otherwise x1 = viu2 ... up with u; € £ and xo = viva ... vy with v; € L.

Then x = x1x0 = v ... UVIVS ...V iS In L7,
April 6th 2017, Lecture 8 TMV027/D|T321 11/32

Proving Algebraic Laws for Regular Expressions

In general, given the RE R and S we can prove the law R = S as follows:

Q Convert R and S into concrete RE C and D, respectively, by replacing
each variable in the RE R and S by (different) concrete symbols.

Example: R(SR)* = (RS)*R can be converted into a(ba)* = (ab)*a.

Q Prove or disprove whether £(C) = L(D). If L(C) = L(D) then
R = S is a true law, otherwise it is not.

Example: We can prove the shifting law by induction: Vn € N.a(ba)" = (ab)"a.

Theorem: The above procedure correctly identifies the true laws for RE.

Proof: See theorems 3.14 and 3.13 in pages 121 and 120 respectively.

April 6th 2017, Lecture 8 TMV027/DIT321 12/32

Example: Proving the Denesting Rule

We can state (R*S)*R* = (R+ S)* by proving L((a*b)*a*) = L((a+ b)*):

C: Let x € (a"b)*a", then x = vw with v € (a*h)* and w € a*.
By induction on v. If v = ¢ we are done.

Otherwise v = av’ or v = bv'.
In both cases v’ € (a*b)* hence by IH v'w € (a+ b)* and so is vw.

O: Let x € (a+ b)™.

By induction on x. If x = € then we are done.

Otherwise x = x’a or x = x’b and x’ € (a + b)*.

By IH x’ € (a*b)*a* and then x’ = vw with v € (a*b)* and w € a*.

If x'a = v(wa) € (a*b)*a” since v € (a*b)* and (wa) € a".
If x'b = (v(wb))e € (a*b)*a* since v(wb) € (a*b)* and € € a*.

April 6th 2017, Lecture 8 TMV027/DIT321 13/32

Regular Languages and Regular Expressions

Theorem: If L is a regular language then there exists a RE R such that
L =L(R).

Proof: Recall that each regular language has a FA that recognises it.

We shall construct a RE from such automaton.

We shall see 2 ways of constructing a RE from a FA:

O Eliminating states (section 3.2.2);

@ By solving a linear equation system using Arden’'s Lemma.

(OBS: not in the book!)

April 6th 2017, Lecture 8 TMV027/DIT321 14/32

Example: From FA to RE by Eliminating States

0 1
0 1
‘ 1 L
0
0

If we remove g,
we should keep all paths 1 1
going through it

01 1

If we remove g; 14 0(01)"1

we should keep all paths 1(01)*1
going through it

Final RE: 0*1(01)*1(1 + 0(01)*1)*.

April 6th 2017, Lecture 8 TMV027/DIT321 15/32

From FA to RE: Eliminating States in an Automaton A

Let the FA A be:

If an arc does not
exist in A, then it is
labelled @ here.

For simplification, we
assume the g's are

different from the p's.

April 6th 2017, Lecture 8 TMV027/DIT321 16/32

From FA to RE: Eliminating State s in A

When we eliminate the state s, all the paths that went through s do not
longer exists!

To preserve the language of the automaton we must include, on an arc
that goes directly from g to p, the labels of the paths that went from g to
p passing through s.

Labels now are not just symbols but (possible an infinite number of)
strings: hence we will use RE as labels.

April 6th 2017, Lecture 8 TMV027/DIT321 17/32

Ri1 + @ S*P;

April 6th 2017, Lecture 8 TMV027/DIT321

For each accepting state g we eliminate states until we have gg and g left.

For each accepting state g we have 2 cases: go = g or qo # q.

If go = g R
The expression is R*.
If g0 # q: U
S
The expression is (R + SU*T)*SU*.
=

The final RE is the sum of the expressions derived for each final state.

April 6th 2017, Lecture 8 TMV027/DIT321 19/32

Example: RE Representing Gilbreath’s Principle

Recall:

Observe: Eliminating q is trivial. Eliminating g1g3 and g»qs is also easy.

April 6th 2017, Lecture 8 TMV027/DIT321 20/32
Example: RE Representing Gilbreath'’s Principle

After eliminating g, g1g3 and g>qs4 we get:

- @B
@ D
R

y

o RE when final state is g9g3q49s:
(RB + BR)(RB + BR)* = (RB + BR)™

o RE when final state is g2qaqs: (RB + BR)(RB)*B(R(RB)*B)*
o RE when final state is q1g3g5: (RB + BR)(BR)*R(B(BR)*R)*

April 6th 2017, Lecture 8 TMV027/DIT321

Example: RE Representing Gilbreath’s Principle

The final RE is the sum of the 3 previous expressions.

Let us first do some simplifications.

(RB + BR)(RB)*B(R(RB)*B)* = (RB+ BR)(RB)*(BR(RB)*)*B by shifting
= (RB+ BR)(RB + BR)*B by the shifted-denesting rule
= (RB+ BR)"B

Similarly (RB + BR)(BR)*R(B(BR)*R)* = (RB + BR)*R.

Hence the final RE is
(RB + BR)" + (RB + BR)"B+ (RB + BR)™R
which is equivalent to
(RB+ BR)*(e+ B+ R)

April 6th 2017, Lecture 8 TMV027/DIT321 22/32

From FA to RE: Linear Equation System

To any FA we associate a system of equations with REs as solution.

To every state g; we associate a variable E;.

Each E; represents the set {x € ¥* | 6(gi, x) € F} (for DFA).

Then Ej represents the set of words accepted by the FA.

The solution to the linear system of equations associates a RE to each
variable E;.

The solution for Eg is the RE generating the same language that is
accepted by the FA.

April 6th 2017, Lecture 8 TMV027/DIT321 23/32

From FA to RE: Constructing the Linear Equation System

Consider a state g; and all the transactions coming out of it:

If there is no arrow coming out of g;
then E; = () if g; is not final

‘ or E; = € if g; is final

Here we have the equation
E,-:a,-1E1+...+a,-jEj—|—...+a,-,,E,,

If g; is final then we add ¢
E,-:e—|—a,-1E1+...+a,-jEj—|—...+a,-,,E,,

April 6th 2017, Lecture 8 TMV027/DIT321 24/32

From FA to RE: Solving the Linear Equation System

Lemma: (Arden) A solution to X = RX + S is X = R*S. Furthermore, if
e & L(R) then this is the only solution to the equation X = RX + S.

Proof: (sketch) We have that R* = RR™ + .

Hence R*S = RR*S + S and then X = R*S is a solution to X = RX + S.

One should also prove that:

@ Any solution to X = RX + S contains at least R*S;

Q If e ¢ L(R) then R*S is the only solution to the equation X = RX + S (that is, no
solution is “bigger” than R*S).

See for example Theorem 6.1, pages 185-186 of Theory of Finite Automata, with an
introduction to formal languages by John Carroll and Darrell Long, Prentice-Hall

International Editions.

April 6th 2017, Lecture 8 TMV027/DIT321 25/32

Example: RE Representing Automaton in Slide 15
Eo =0Ep+1E1 EL =0E, +1E3
E» =0Fc+1E E3=0F +1E3+¢€ E= (0+1)E
We solve E,: Ex = (0+1)*0 =0

Eo =0Ey+ 1E Ei =01E +1E3
We eliminate E, and Es: E; = 0F; + 1F; + ¢
We solve Eq: E; = (01)*1E;
We eliminate Eq: Ey = 0Ey + 1(01)*1E; E3 = 0(01)*1E3 + 1E3 + ¢
We solve Es: E3 = (0(01)*1 + 1)E3 + ¢ = E3 = (0(01)*1 + 1)*¢ = (0(01)*1
We eliminate E3: Ey = 0Ep + 1(01)*1(0(01)*1 + 1)*

We solve Ey: Eg = 0¥1(01)*1(0(01)*1 + 1)*

April 6th 2017, Lecture 8 TMV027/DIT321

Example: RE Representing Gilbreath'’s Principle

We obtain the following system of equations (see slide 20):

Eo = RE13 + BEyy Eo3z45 = € + BEpss + REi3s

E13 = BEg3as + RE; Eoss = € + REg34s + BE,

E>s = REpzss + BE; Eq135 = € + BEg3as + REq
E, = (B+ R)E,

Since Eq = (B + R)*0) = (), this can be simplified to:

Eo = RE13 + BEzy Eozas = € + BEoys + REiss
E13 = BEgzss Eo45 = € + REg3ss
E>4 = REpzss E135 = € + BEgaas

April 6th 2017, Lecture 8 TMV027/DIT321 27/32

Example: RE Representing Gilbreath’s Principle
And further to:

Eo = (RB + BR)Eo3ss
Eozas = (RB + BR)Eozas + ¢+ B+ R

Then a solution to Eg3ss is

(RB + BR)*(¢ + B+ R)

and the RE which is the solution to the problem is

(RB + BR)(RB + BR)*(c + B + R)

or
(RB + BR)" (¢ + B+ R)

April 6th 2017, Lecture 8 TMV027/DIT321 28/32

Example: Eliminating States

Consider the automaton D
a C

By eliminating states the expression is

bl 14 a*b(c + da*b)*

Consider the automaton D’

a C

5 By eliminating states the expression is

(a+ bc*d)*bc*

d

But intuitively these automata are equivalent...

April 6th 2017, Lecture 8 TMV027/DIT321

Example: Linear Equation System

The linear equations corresponding to the automaton D’ are

Eo = aEy + bE; E1 = e+ cE1 + dEg
The resulting RE depends on the order we solve the system.

If we solve E; first we get Eg = (a+ bc*d)*bc*.

If we solve Ey first we get Eg = a*b(c + da*b)*.

It should be that a*b(c + da*b)* = (a + bc*d)*bc*! (see proof in slide 10.)

Exercise: What RE do we obtain for the automaton D?

April 6th 2017, Lecture 8 TMV027/DIT321 30/32

Overview of next Week

| Mon 17 | Tue 18 | Wed 19 | Thu 20 | Fri 21

Ex 10-12 EA
e-NFA, RE.

Lec 13-15 HB3| 13-15 EL41
RE — FA, RL. | Consultation

Ex 15-17 EA
e-NFA, RE.

April 6th 2017, Lecture 8 TMV027/DIT321 31/32

Sections 3.2.3, 4-4.2.1:

o Equivalence between FA and RE: from RE to FA;
@ Pumping Lemma for RL;

o Closure properties of RL.

April 6th 2017, Lecture 8 TMV027/DIT321 32/32

