
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2017

Lecture 8
Ana Bove

April 6th 2017

Overview of today’s lecture:

Regular expressions;

Algebraic laws for regular expressions;

Equivalence between FA and RE: from FA to RE.

Recap: Non-deterministic Finite Automata
(with ǫ-Transitions)

Product of NFA as for DFA, accepting intersection of languages;

Union of languages comes naturally, complement not so “immediate”;

By allowing ǫ-transitions we obtain ǫ-NFA:

Defined by a 5-tuple (Q,Σ, δ, q0,F );

δ : Q × (Σ ∪ {ǫ}) → Pow(Q);

ECLOSE needed for δ̂;

Accept set of words x such that δ̂(q0, x) ∩ F 6= ∅;
Given a ǫ-NFA E we can convert it to a DFA D such that
L(E ) = L(D);

Hence, also accept the so called regular language.
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Regular Expressions

Regular expressions (RE) are an algebraic way to denote languages.

RE are a simple way to express the strings in a language.

Example: grep command in UNIX (K. Thompson) takes a (variation) of a RE as input.

We will show that RE are as expressive as DFA and hence, they define all
and only the regular languages.
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Inductive Definition of Regular Expressions

Definition: Given an alphabet Σ, we inductively define the regular
expressions over Σ as follows:

Base cases: The constants ∅ and ǫ are RE;
If a ∈ Σ then a is a RE.

Inductive steps: Given the RE R and S , we define the following RE:

R + S and RS are RE;
R∗ is RE.

The precedence of the operands is the following:

The closure operator ∗ has the highest precedence;

Next comes concatenation;

Finally, comes the operator +;

We use parentheses (,) to change the precedence.

(Compare with exponentiation, multiplication and addition on numbers.)
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Another Way to Define the Regular Expressions

A nicer way to define the regular expressions is by giving the following
BNF (Backus-Naur Form), for a ∈ Σ:

R ::= ∅ | ǫ | a | R + R | RR | R∗

alternatively
R ,S ::= ∅ | ǫ | a | R + S | RS | R∗

Note: BNF is a way to declare the syntax of a language.

It is very useful when describing context-free grammars and in particular the syntax of

(big parts of) most programming languages.
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Functional Representation of Regular Expressions

data RExp a = Empty | Epsilon | Atom a |

Plus (RExp a) (RExp a) |

Concat (RExp a) (RExp a) |

Star (RExp a)

For example the expression b + (bc)∗ is given as

Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))
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Language Defined by the Regular Expressions

Definition: Given a RE R , the language L(R) generated/defined by it is
defined by recursion on the expression:

Base cases: L(∅) = ∅;
L(ǫ) = {ǫ};
Given a ∈ Σ, L(a) = {a}.

Recursive cases: L(R + S) = L(R) ∪ L(S);
L(RS) = L(R)L(S);
L(R∗) = L(R)∗.

Note: x ∈ L(R) iff x is generated by R.

Notation: We write x ∈ L(R) or x ∈ R indistinctly.
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Example of Regular Expressions

Let Σ = {0, 1}:

0∗ + 1∗ = {ǫ, 0, 00, 000, . . .} ∪ {ǫ, 1, 11, 111, . . .}

(0 + 1)∗ = {ǫ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, . . .}

(01)∗ = {ǫ, 01, 0101, 010101, . . .}

(000)∗ = {ǫ, 000, 000000, 000000000, . . .}

01∗ + 1 = {0, 01, 011, 0111, . . .} ∪ {1}

((0(1∗)) + 1) = {0, 01, 011, 0111, . . .} ∪ {1}

(01)∗ + 1 = {ǫ, 01, 0101, 010101, . . .} ∪ {1}

(ǫ+ 1)(01)∗(ǫ+ 0) = (01)∗ + 1(01)∗ + (01)∗0 + 1(01)∗0

(01)∗ + 1(01)∗ + (01)∗0 + 1(01)∗0 = . . .

What do they mean? Are there expressions that are equivalent?
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Algebraic Laws for Regular Expressions

The following equalities hold for any RE R , S and T :

Idempotent: R + R = R
Commutative: R + S = S + R In general, RS 6= SR
Associative: R + (S + T ) = (R + S) + T R(ST ) = (RS)T
Distributive: R(S + T ) = RS + RT (S + T )R = SR + TR

Identity: R + ∅ = ∅+ R = R Rǫ = ǫR = R
Annihilator: R∅ = ∅R = ∅

∅∗ = ǫ∗ = ǫ
R+ = RR∗ = R∗R
R∗ = (R∗)∗ = R∗R∗ = ǫ+ R+

Note: Compare (some of) these laws with those for sets on slide 14 lecture 2.
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Algebraic Laws for Regular Expressions

Other useful laws to simplify regular expressions are:

Shifting rule: R(SR)∗ = (RS)∗R

Denesting rule: (R∗S)∗R∗ = (R + S)∗

Note: By the shifting rule we also get R∗(SR∗)∗ = (R + S)∗

Variation of the denesting rule: (R∗S)∗ = ǫ+ (R + S)∗S

Note: These rules are not always trivial to apply ... :-)
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Example: Proving Equalities Using the Algebraic Laws

Example: The set of all words with no substring of more than two adjacent 0’s is
(1 + 01 + 001)∗(ǫ+ 0 + 00). Now,

(1 + 01 + 001)∗(ǫ+ 0 + 00)

= ((ǫ+ 0)(ǫ+ 0)1)∗(ǫ+ 0)(ǫ + 0) by distributivity

= (ǫ+ 0)(ǫ+ 0)(1(ǫ + 0)(ǫ + 0))∗ by shifting

= (ǫ+ 0 + 00)(1 + 10 + 100)∗ by distributivity

Then (1 + 01 + 001)∗(ǫ+ 0 + 00) = (ǫ+ 0 + 00)(1 + 10 + 100)∗

Example: A proof that a∗b(c + da∗b)∗ = (a + bc∗d)∗bc∗:

a∗b(c + da∗b)∗ = a∗b(c∗da∗b)∗c∗ by denesting (R = c,S = da∗b)

a∗b(c∗da∗b)∗c∗ = (a∗bc∗d)∗a∗bc∗ by shifting (R = a∗b,S = c∗d)

(a∗bc∗d)∗a∗bc∗ = (a+ bc∗d)∗bc∗ by denesting (R = a,S = bc∗d)
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Equality of Regular Expressions

Recall: RE are a way to denote languages.

Then, for RE R and S , R = S actually means L(R) = L(S).

Hence we can prove the equality of RE in the same way we prove the
equality of languages!

Example: Let us show that R∗ = R∗R∗. Let L = L(R).

Then L(R∗) = L(R)∗ = L∗.

L∗ ⊆ L∗L∗ since ǫ ∈ L∗.

Conversely, if L∗L∗ ⊆ L∗ then x = x1x2 with x1 ∈ L∗ and x2 ∈ L∗.

If x1 = ǫ or x2 = ǫ then it is clear that x ∈ L∗.

Otherwise x1 = u1u2 . . . un with ui ∈ L and x2 = v1v2 . . . vm with vj ∈ L.

Then x = x1x2 = u1u2 . . . unv1v2 . . . vm is in L∗.
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Proving Algebraic Laws for Regular Expressions

In general, given the RE R and S we can prove the law R = S as follows:

1 Convert R and S into concrete RE C and D, respectively, by replacing
each variable in the RE R and S by (different) concrete symbols.

Example: R(SR)∗ = (RS)∗R can be converted into a(ba)∗ = (ab)∗a.

2 Prove or disprove whether L(C ) = L(D). If L(C ) = L(D) then
R = S is a true law, otherwise it is not.

Example: We can prove the shifting law by induction: ∀n ∈ N.a(ba)n = (ab)na.

Theorem: The above procedure correctly identifies the true laws for RE.

Proof: See theorems 3.14 and 3.13 in pages 121 and 120 respectively.
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Example: Proving the Denesting Rule

We can state (R∗S)∗R∗ = (R +S)∗ by proving L((a∗b)∗a∗) = L((a+b)∗):

⊆: Let x ∈ (a∗b)∗a∗, then x = vw with v ∈ (a∗b)∗ and w ∈ a∗.

By induction on v . If v = ǫ we are done.

Otherwise v = av ′ or v = bv ′.
In both cases v ′ ∈ (a∗b)∗ hence by IH v ′w ∈ (a+ b)∗ and so is vw .

⊇: Let x ∈ (a + b)∗.

By induction on x . If x = ǫ then we are done.

Otherwise x = x ′a or x = x ′b and x ′ ∈ (a + b)∗.

By IH x ′ ∈ (a∗b)∗a∗ and then x ′ = vw with v ∈ (a∗b)∗ and w ∈ a∗.

If x ′a = v(wa) ∈ (a∗b)∗a∗ since v ∈ (a∗b)∗ and (wa) ∈ a∗.

If x ′b = (v(wb))ǫ ∈ (a∗b)∗a∗ since v(wb) ∈ (a∗b)∗ and ǫ ∈ a∗.
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Regular Languages and Regular Expressions

Theorem: If L is a regular language then there exists a RE R such that
L = L(R).

Proof: Recall that each regular language has a FA that recognises it.

We shall construct a RE from such automaton.

We shall see 2 ways of constructing a RE from a FA:

Eliminating states (section 3.2.2);

By solving a linear equation system using Arden’s Lemma.

(OBS: not in the book!)
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Example: From FA to RE by Eliminating States

q0 q1

q2

q3

0

1

0 1
1

0

1

If we remove q2
we should keep all paths
going through it q0 q1 q3

0 01

1
1

0

1

If we remove q1
we should keep all paths
going through it

q0 q3

0

1(01)∗1
1 + 0(01)∗1

Final RE: 0∗1(01)∗1(1 + 0(01)∗1)∗.
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From FA to RE: Eliminating States in an Automaton A

Let the FA A be:

q1

qk

s

p1

pm

Q1

Qk

P1

Pm

S

R11

Rkm

R1m

Rk1

If an arc does not
exist in A, then it is
labelled ∅ here.

For simplification, we

assume the q’s are

different from the p’s.
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From FA to RE: Eliminating State s in A

When we eliminate the state s, all the paths that went through s do not
longer exists!

To preserve the language of the automaton we must include, on an arc
that goes directly from q to p, the labels of the paths that went from q to
p passing through s.

Labels now are not just symbols but (possible an infinite number of)
strings: hence we will use RE as labels.
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From FA to RE: Eliminating State s in A

q1

qk

p1

pm

R11 +Q1S
∗P1

Rkm + QkS
∗Pm

R1m + Q1S
∗PmRk1 + QkS

∗P1
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From FA to RE: Eliminating States in A

For each accepting state q we eliminate states until we have q0 and q left.

For each accepting state q we have 2 cases: q0 = q or q0 6= q.

If q0 = q:

q0

R

The expression is R∗.

If q0 6= q:

q0 q

R U

S

T

The expression is (R + SU∗T )∗SU∗.

The final RE is the sum of the expressions derived for each final state.
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Example: RE Representing Gilbreath’s Principle

Recall:

q0

q1q3

q2q4

q2q4q5

q1q3q5

q0q3q4q5q

R

B

B

R

B

R

B

R

R

B

B

R

B ,R

Observe: Eliminating q is trivial. Eliminating q1q3 and q2q4 is also easy.
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Example: RE Representing Gilbreath’s Principle

After eliminating q, q1q3 and q2q4 we get:

q0

q2q4q5

q1q3q5

q0q3q4q5
RB + BR

B

R

B

R

RE when final state is q0q3q4q5:
(RB + BR)(RB + BR)∗ = (RB + BR)+

RE when final state is q2q4q5: (RB + BR)(RB)∗B(R(RB)∗B)∗

RE when final state is q1q3q5: (RB + BR)(BR)∗R(B(BR)∗R)∗
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Example: RE Representing Gilbreath’s Principle

The final RE is the sum of the 3 previous expressions.

Let us first do some simplifications.

(RB + BR)(RB)∗B(R(RB)∗B)∗ = (RB + BR)(RB)∗(BR(RB)∗)∗B by shifting
= (RB + BR)(RB + BR)∗B by the shifted-denesting rule
= (RB + BR)+B

Similarly (RB + BR)(BR)∗R(B(BR)∗R)∗ = (RB + BR)+R.

Hence the final RE is

(RB + BR)+ + (RB + BR)+B + (RB + BR)+R

which is equivalent to

(RB + BR)+(ǫ+ B + R)
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From FA to RE: Linear Equation System

To any FA we associate a system of equations with REs as solution.

To every state qi we associate a variable Ei .

Each Ei represents the set {x ∈ Σ∗ | δ̂(qi , x) ∈ F} (for DFA).

Then E0 represents the set of words accepted by the FA.

The solution to the linear system of equations associates a RE to each
variable Ei .

The solution for E0 is the RE generating the same language that is
accepted by the FA.
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From FA to RE: Constructing the Linear Equation System

Consider a state qi and all the transactions coming out of it:

qi

If there is no arrow coming out of qi

then Ei = ∅ if qi is not final

or Ei = ǫ if qi is final

qi

q1

qj

qn

ai1

aij

ain

Here we have the equation

Ei = ai1E1 + . . .+ aijEj + . . .+ ainEn

If qi is final then we add ǫ

Ei = ǫ+ ai1E1 + . . .+ aijEj + . . .+ ainEn

April 6th 2017, Lecture 8 TMV027/DIT321 24/32

From FA to RE: Solving the Linear Equation System

Lemma: (Arden) A solution to X = RX + S is X = R∗S. Furthermore, if
ǫ /∈ L(R) then this is the only solution to the equation X = RX + S.

Proof: (sketch) We have that R∗ = RR∗ + ǫ.

Hence R∗S = RR∗S + S and then X = R∗S is a solution to X = RX + S .

One should also prove that:

Any solution to X = RX + S contains at least R∗S ;

If ǫ /∈ L(R) then R∗S is the only solution to the equation X = RX + S (that is, no

solution is “bigger” than R∗S).

See for example Theorem 6.1, pages 185–186 of Theory of Finite Automata, with an

introduction to formal languages by John Carroll and Darrell Long, Prentice-Hall

International Editions.
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Example: RE Representing Automaton in Slide 15

E0 = 0E0 + 1E1 E1 = 0E2 + 1E3

E2 = 0Ex + 1E1 E3 = 0E1 + 1E3 + ǫ Ex = (0 + 1)Ex

We solve Ex : Ex = (0 + 1)∗∅ = ∅

We eliminate Ex and E2:
E0 = 0E0 + 1E1 E1 = 01E1 + 1E3

E3 = 0E1 + 1E3 + ǫ

We solve E1: E1 = (01)∗1E3

We eliminate E1: E0 = 0E0 + 1(01)∗1E3 E3 = 0(01)∗1E3 + 1E3 + ǫ

We solve E3: E3 = (0(01)∗1 + 1)E3 + ǫ ⇒ E3 = (0(01)∗1 + 1)∗ǫ = (0(01)∗1 +

We eliminate E3: E0 = 0E0 + 1(01)∗1(0(01)∗1 + 1)∗

We solve E0: E0 = 0∗1(01)∗1(0(01)∗1 + 1)∗
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Example: RE Representing Gilbreath’s Principle

We obtain the following system of equations (see slide 20):

E0 = RE13 + BE24 E0345 = ǫ+ BE245 + RE135

E13 = BE0345 + REq E245 = ǫ+ RE0345 + BEq

E24 = RE0345 + BEq E135 = ǫ+ BE0345 + REq

Eq = (B + R)Eq

Since Eq = (B + R)∗∅ = ∅, this can be simplified to:

E0 = RE13 + BE24 E0345 = ǫ+ BE245 + RE135

E13 = BE0345 E245 = ǫ+ RE0345

E24 = RE0345 E135 = ǫ+ BE0345

April 6th 2017, Lecture 8 TMV027/DIT321 27/32



Example: RE Representing Gilbreath’s Principle

And further to:

E0 = (RB + BR)E0345

E0345 = (RB + BR)E0345 + ǫ+ B + R

Then a solution to E0345 is

(RB + BR)∗(ǫ+ B + R)

and the RE which is the solution to the problem is

(RB + BR)(RB + BR)∗(ǫ+ B + R)

or
(RB + BR)+(ǫ+ B + R)
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Example: Eliminating States

Consider the automaton D

q0 q1

q2

a c

b

db

a

By eliminating states the expression is

a∗b(c + da∗b)∗

Consider the automaton D ′

q0 q1

a c

b

d

By eliminating states the expression is

(a + bc∗d)∗bc∗

But intuitively these automata are equivalent...
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Example: Linear Equation System

The linear equations corresponding to the automaton D ′ are

E0 = aE0 + bE1 E1 = ǫ+ cE1 + dE0

The resulting RE depends on the order we solve the system.

If we solve E1 first we get E0 = (a + bc∗d)∗bc∗.

If we solve E0 first we get E0 = a∗b(c + da∗b)∗.

It should be that a∗b(c + da∗b)∗ = (a + bc∗d)∗bc∗! (see proof in slide 10.)

Exercise: What RE do we obtain for the automaton D?
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Overview of next Week

Mon 17 Tue 18 Wed 19 Thu 20 Fri 21

Ex 10-12 EA
ǫ-NFA, RE.

Lec 13-15 HB3
RE → FA, RL.

13-15 EL41
Consultation

Ex 15-17 EA
ǫ-NFA, RE.
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Overview of Next Lecture

Sections 3.2.3, 4–4.2.1:

Equivalence between FA and RE: from RE to FA;

Pumping Lemma for RL;

Closure properties of RL.
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