
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2017

Lecture 6
Ana Bove

March 30th 2017

Overview of today’s lecture:

NFA: Non-deterministic finite automata;

Equivalence between DFA and NFA.

Recap: Deterministic Finite Automata

Defined by a 5-tuple (Q,Σ, δ, q0,F);
For our examples, better represented by transition diagrams or tables;

Why finite?;

Why deterministic?;

total δ : Q × Σ → Q;

Useful to model simple problems;

Only accessible part is of interest;

Accept set of words x such that δ̂(q0, x) ∈ F ;

Accept the so called regular language;

We can defined the products × and ⊎, and the complement...

... accepting the intersection, union and complement of the
languages;

Hence, regular languages are closed under intersection, union and
complement.

March 30th 2017, Lecture 6 TMV027/DIT321 1/24

Non-deterministic Finite Automata

Given a state and the next symbol, a non-deterministic finite automaton
(NFA) can “move” to many states.

q0

q1

q2

5 kr

5 kr

choc

tea

You can think that the vending machine can choose between different states.

March 30th 2017, Lecture 6 TMV027/DIT321 2/24

When Does a NFA Accepts a Word?

Intuitively: the automaton guess a successful computation if there is one.

Formally: if there is at least one path from the start state to an accepting
state.

Example:

NFA accepting words that end in 11 q0 q1 q2

0, 1

1 1

What are all possible computations for the string 1011?
Will 1011 be accepted by the NFA?

And 110?

March 30th 2017, Lecture 6 TMV027/DIT321 3/24

NFA Accepting Words of Length Divisible by 3 or by 5

Let Σ = {1}.

1 1

1 1

1

1 1

1
1

1

What would be the equivalent DFA?

March 30th 2017, Lecture 6 TMV027/DIT321 4/24

Non-deterministic Finite Automata

Definition: A non-deterministic finite automaton (NFA) is a 5-tuple
(Q,Σ, δ, q0,F) consisting of:

1 A finite set Q of states;

2 A finite set Σ of symbols (alphabet);

3 A “partial” transition function δ : Q × Σ → Pow(Q);

4 A start state q0 ∈ Q;

5 A set F ⊆ Q of final or accepting states.

Note: We do not need a dead state here.

March 30th 2017, Lecture 6 TMV027/DIT321 5/24

Example: NFA

Define an automaton accepting only the words over {0, 1} such that the
second last symbol from the right is 1.

q0 q1 q2

0, 1

1 0, 1

δ 0 1
→ q0 {q0} {q0, q1}

q1 {q2} {q2}
∗q2 ∅ ∅

Note: Observe the “moves” from q2.

δ(q, a) = ∅ means the NFA gets “stuck” when reading a in state q

Compare with a “dead” state in a DFA.

March 30th 2017, Lecture 6 TMV027/DIT321 6/24

Extending the Transition Function to Strings

As before, we define δ̂(q, x) by recursion on x .

Definition:
δ̂ : Q ×Σ∗ → Pow(Q)

δ̂(q, ǫ) = {q}
δ̂(q, ax) =

⋃
p∈δ(q,a) δ̂(p, x)

That is, if δ(q, a) = {p1, . . . , pn} then

δ̂(q, ax) = δ̂(p1, x) ∪ . . . ∪ δ̂(pn, x)

March 30th 2017, Lecture 6 TMV027/DIT321 7/24

Language Accepted by a NFA

Definition: The language accepted by the NFA N = (Q,Σ, δ, q0,F) is the
set L(N) = {x ∈ Σ∗ | δ̂(q0, x) ∩ F 6= ∅}.

That is, a word x is accepted if δ̂(q0, x) contains at least one accepting state.

Note: Again, we could write a program that simulates a NFA and let it
tell us whether a certain string is accepted or not.

Exercise: Do it!

March 30th 2017, Lecture 6 TMV027/DIT321 8/24

Transforming a NFA into a DFA

For same examples it is much simpler to define a NFA than a DFA.

Example: The language with words of length divisible by 3 or by 5.

However, any language accepted by a NFA is also accepted by a DFA.

In general, the number of states of the DFA is about the number of states in the NFA

although it often has many more transitions.

In the worst case, if the NFA has n states, a DFA accepting the same language might

have 2n states.

The algorithm transforming a NFA into an equivalent DFA is called the
subset construction.

March 30th 2017, Lecture 6 TMV027/DIT321 9/24

Example: Subset Construction

Let us convert this NFA into a DFA
q0 q1 q2

0, 1

1 0, 1

The DFA starts from {q0}.

From {q0}, with 0, we go to q0 so δD({q0}, 0) = {q0}.

From {q0}, with 1, we go to q0 or to q1. Then, δD({q0}, 1) = {q0, q1}.

From {q0, q1}, with 0, we go to q0 or to q2. Then, δD({q0, q1}, 0) = {q0, q2}.

From {q0, q1}, with 1, we go to q0 or q1 or q2. Then, δD({q0, q1}, 1) = {q0, q1, q2}.

etc...

March 30th 2017, Lecture 6 TMV027/DIT321 10/24

Example: Subset Construction (cont.)

The complete (and accessible part of the) DFA from the previous NFA is:

q0

q0, q1

q0, q2

q0, q1, q2

0 1

0

1

1

0 0

1

The DFA remembers the last two bits seen and accepts a word if the
next-to-last bit is 1.

March 30th 2017, Lecture 6 TMV027/DIT321 11/24

The Subset Construction

Definition: Given a NFA N = (QN ,Σ, δN , q0,FN) we construct a DFA
D = (QD ,Σ, δD , {q0},FD) as follows:

QD = Pow(QN);

δD : QD × Σ → QD (that is, δD : Pow(QN)× Σ → Pow(QN))

δD(X , a) =
⋃

q∈X δN(q, a);

FD = {S ⊆ QN | S ∩ FN 6= ∅}.

Note: We will later see (slide 20) that L(D) = L(N)!

Note: By only computing the accessible states (from the start state) we are able to

keep the total number of states to 4 (and not 8) in the previous example.

Exercise: Implement the subset construction!
March 30th 2017, Lecture 6 TMV027/DIT321 12/24

Remarks of the Subset Construction

If |QN | = n then |QD | = 2n.
Non accessible states in QD can be safely removed (we will see how to do this

later on in the course).

If X = {q1, . . . , qn} then δD(X , a) = δN(q1, a) ∪ . . . ∪ δN(qn, a).

δD(∅, a) = ∅
δD({q}, a) = δN(q, a)

δD(X , a) =
⋃

q∈X δD({q}, a)

δD(X1 ∪ X2, a) = δD(X1, a) ∪ δD(X2, a)

Each accepting state (set) S in FD contains at least one accepting
state of N.

March 30th 2017, Lecture 6 TMV027/DIT321 13/24

Example: NFA Representation of Gilbreath’s Principle

Let us shuffle 2 non-empty alternating decks of cards, one starting with a
red card and one starting with a black one.
How does the resulting deck look like?

Let Σ = {B,R} represent a black or red card respectively.

q0

q1

q2

q3

q4

q5

R

B

B

R

BR
R

B

B

R

B

R

q0 starts with B and R
q1 both start with B
q2 both start with R
q3 starts with B and ǫ
q4 starts with R and ǫ
q5 both ǫ

How does the resulting deck look like? We can build the corresponding DFA!

March 30th 2017, Lecture 6 TMV027/DIT321 14/24

Example: DFA Representation of Gilbreath’s Principle

q0

q1q3

q2q4

q2q4q5

q1q3q5

q0q3q4q5q

R

B

B

R

B

R

B

R

R

B

B

R

R ,B

How does the resulting deck look like?

March 30th 2017, Lecture 6 TMV027/DIT321 15/24

Application of NFA: Text Search

Suppose we want to find occurrences of certain keywords in a text.

We could design a NFA that enters in an accepting state when it has recognised one of
these keywords.

Then we could either implement the NFA or transform it to a DFA and get a
“deterministic” (efficient) program.

Once we prove the subset construction correct, then we know the DFA will be correct (if

the NFA is!).

This is a good example of a derivation of a program (the DFA) from a specification (the

NFA).

March 30th 2017, Lecture 6 TMV027/DIT321 16/24

Application of NFA: Text Search

The following (easy to write) NFA searches for the keywords web and ebay:

q1

q2 q3 q4

q5 q6 q7 q8

a ∈ Σ
w

e b

e

b a y

March 30th 2017, Lecture 6 TMV027/DIT321 17/24

Application of NFA: Text Search (Cont.)

If one applies the subset construction one obtains the following (complicated) DFA.

The obtained DFA has the same number of states as the NFA, but it is much more

difficult to define directly!

March 30th 2017, Lecture 6 TMV027/DIT321 18/24

Towards the Correction of the Subset Construction

Proposition: ∀x .∀q. δ̂N(q, x) = δ̂D({q}, x).

Proof: By induction on x we prove P(x) : ∀q. δ̂N(q, x) = δ̂D({q}, x).

Base case: trivial.

Inductive step: Assuming P(x) we prove P(ax).

δ̂N(q, ax) =
⋃

p∈δN (q,a) δ̂N(p, x) by definition of δ̂N

=
⋃

p∈δN (q,a) δ̂D({p}, x) by IH with state p

= δ̂D(δN(q, a), x) see lemma below

= δ̂D(δD({q}, a), x) remark on slide 13

= δ̂D({q}, ax) by definition of δ̂D

Lemma: For all words x and sets of states S, δ̂D(S , x) =
⋃

p∈S δ̂D({p}, x).

March 30th 2017, Lecture 6 TMV027/DIT321 19/24

Correction of the Subset Construction

Theorem: Given a NFA N, if D is the DFA constructed from N by the
subset construction then L(N) = L(D).

Proof: x ∈ L(N) iff δ̂N(q0, x) ∩ FN 6= ∅ iff δ̂N(q0, x) ∈ FD .

By the previous proposition, then δ̂D({q0}, x) ∈ FD .

Since {q0} is the starting state in D , then x ∈ L(D).

March 30th 2017, Lecture 6 TMV027/DIT321 20/24

Equivalence between DFA and NFA

Theorem: A language L is accepted by some DFA iff L is accepted by
some NFA.

Proof: The “if” part is the result of the correctness of subset construction.

For the “only if” part we need to transform the DFA into a NFA.

Intuitively: each DFA can be seen as a NFA where there exists only one choice at each
stage.

Formally: given D = (Q,Σ, δD , q0,F) we define N = (Q,Σ, δN , q0,F) such that
δN(q, a) = {δD(q, a)}.

It only remains to show (by induction on x) that if δ̂D(q0, x) = p then δ̂N(q0, x) = {p}.

March 30th 2017, Lecture 6 TMV027/DIT321 21/24

Regular Languages

Recall: A language L ⊆ Σ∗ is regular iff there exists a DFA D on the alphabet Σ such
that L = L(D).

Proposition: A language L ⊆ Σ∗ is regular iff there exists a NFA N such
that L = L(N).

Proof: If L is regular then L = L(D) for some DFA D .
To D we can associate a NFA ND such that L(D) = L(ND) (see previous theorem).

In the other direction, if L = L(N) for some NFA N then, the subset construction gives

a DFA D such that L(N) = L(D) so L is regular.

March 30th 2017, Lecture 6 TMV027/DIT321 22/24

Overview of next Week

Mon 3 Tue 4 Wed 5 Thu 6 Fri 7

8-10 EL43 In-
dividual help.

Ex 10-12 EA
DFA, NFA.

Lec 13-15 HB3
NFA, ǫ-NFA.

Lec 13-15 HB3
RE, FA → RE.

Ex 15-17 EA
DFA, NFA.

15-17 EL41
Consultation

Assignment 2: DFA, NFA.
Deadline: Sunday April 9nd 23:59.

March 30th 2017, Lecture 6 TMV027/DIT321 23/24

Overview of Next Lecture

Sections 2.3.6, 2.5–2.5.5:

More on NFA;

NFA with ǫ-transitions;

Equivalence between DFA and ǫ-NFA.

March 30th 2017, Lecture 6 TMV027/DIT321 24/24

