The End of the Beginning

What Have We Learned?

* Programming

— For some of you: first time

— Make the computer do some useful tasks
* Programming Language

— Haskell

— Different from what most of you had seen
before

* Programming Principles

Programming Principles (I)

* Modelling

— Create a new type that models what you are
dealing with

— Design and define typed functions around
your types

— Sometimes your type has an extra invariant

— Invariants should be documented (for
example as a property)

Programming Principles (ll)

* Properties

— When you define functions around your
types...

— Think about and define properties of these
functions

— Properties can be tested automatically to find
mistakes

— Mistakes can be in your functions (program)
or in your properties (understanding)

Programming Principles (lll)

* Breaking up problems into simpler parts,
recursion

— When you need to solve a large, complicated
problem...

— Continue breaking up until the parts are simple,
or until you can use an existing solution

— The parts can be solved recursively

— Solve the whole problem by combining the
solutions of all parts

Programming Principles (IV)

* Abstraction and Generalization

— When you find yourself repeating a
programming task

— Take a step back and see if you can
generalize

— You can often define an abstraction (higher-
order function) performing the old task and
the new one

— Avoid copy-and-paste programming

Programming Principles (V)

* Pure functions
— Use pure functions as much as possible

— These are easier to understand, specify and
test

— Concentrate 10 instructions in a small part of
your program

Programming Principles

* Important!
* Independent of programming language

Report from the front

“Laste kursen 2010 nar jag borjade pa D och larde
mig mycket, fast jag tyckte att jag kunde
programmera innan. Fick 2012 jobb pa Ericsson och
programmerade da i Python, och anvande da
dagligen tekniker som jag larde mig i kursen,
framforallt da rekursion, operationer pa listor och
delar av det funktionella programmeringssattet som
var nytt for mig 2010.”

Report from the front

“En vanlig fraga/missuppfattning som jag minns fran
borjan av Chalmers ar just 'varfor Haskell”? Ingen
anvander det pa riktigt i industrin’, och det kan vara
vart att paminna en extra gang om att man lar sig
metoder och tankesatt som ar anvandbara oavsett
vilket sprak man sedan kodari.”

Why Haskell?

* What is easy in Haskell:
— Defining types
— Properties and testing
— Recursion
— Abstraction, higher-order functions
— Pure functions
— Separation (laziness)

Why Haskell (11)?

* What is harder in Haskell:
— Ignoring types
* Static strong typing
* Expressive type system
— Most advanced type system in a real-world language
— Impure functions

* All functions are pure
— Unique among real-world languages

* Instructions are created and composed explicitly
— Makes it clear where the "impure stuff’ happens

Two major paradigms

Imperative programming:

* Instructions are used to change the computer's
state:

— X = X+1
— deleteFile("slides.pdf’)

* Run the program by following the instructions top-
down

Functional programming:

* Functions are used to declare dependencies
between data values:

-y =1(x)
* Dependencies drive evaluation

Coming Programming Courses

D-line

Grundlaggande
datorteknik

— Assembler

Objektorienterad
programming
— Java

Inbyggda system
— C

W

* Two programming
courses
— Both in Java
* Datastructures

— Java
— Haskell

Data structures

— Java
— Haskell

Future Programming Courses

Concurrent Programming

Compiler Construction

Advanced Functional Programming

Parallel Functional Programming

Software Engineering using Formal Methods

Language Technology
All use
Functional
Programming in
some way

(Programming Paradigms)

Exam: Saturday 28t October 14:00

What if...

You are not done with the labs in time?
* Next year: this course runs again

 complete the missing labs according to the
deadlines and rules given

You do not pass the exam?
 December: re-exam

* August: re-exam

EXAM
Introduction to Functional Programming
TDAS55/DIT440

DAY: 2016-10-29 TIME: 14:00-18:00 PLACE: M-salar

Responsible: David Sands, D&IT, Tel: 0737 20 76 63
Aids: An English (or English-Swedish, or English-X) dictionary

Grade: Completing Part | gives a 3 or a G;
Part | and Part Il are both needed for a 4, 5, or VG

This exam consists of two parts:

Part | (5 small assignments) Part Il (2 larger assignments)
« Give good enough answers for 4 « You do not need to solve this part if you
assignments here and you will geta 3 or are happy with a 3 or a G!
aG e Do Part | and one assignment of your
e (Points on Part |l can be counted choice here and you will get a 4
towards Part | if needed, but this is very « Do Part | and both assignments here
unlikely to happen in practice.) and you willgeta 5 ora VG

Please read the following guidelines carefully:

o Answers can be given in Swedish or English

« Begin each assignment on a new sheet

» Write your number on each sheet

» Write clearly; unreadable = wrong!

e You can make use of the standard Haskell functions and types given in
the attached list (you have to implement other functions yourself it you want
to use them)

* You do not have to import standard modules in your solutions

Good Luck!

What you should know to pass

In general (not specifically for 2017)

* Do not expect to pass by learning old exam
guestions!

* Do not assume that old exam questions will
come up again this year.

* show that you understand by writing more-or-
less correct Haskell code for some small
problems

Basic Programming Techniques

e Definition by recursion (lists and numbers)
* Definition using list comprehensions

— Write simple functions
— Understand definitions

— Rewrite definitions written in one style using
another

example: af function in 2016 exam

Combining functions

e Give definitions which combine the use of
other standard functions

example: urls function in 2016

Simple higher-order functions

Understand and use simple higher-order
functions

for example: map, filter, takeWhile, dropWhile,
zZipWith, all, any

Define a simple higher-order function e.g. to
simplify cut-and-paste code.

Predicates

Writing functions that return something of type
Bool

Show that you understand and can formulate
properties of functions (e.g. quickCheck
properties)

e.g. prop_Lookup from 2016 exam

Simple Data types

e Define simple data types to model a problem
domain (both with and without recursion)

e Define functions using given recursive or non-
recursive data type
Examples:

— prop_lookup (exam 2016) uses the Maybe type
— Defining a data type for expressions (2016)

“Instructions”

Defining simple functions using 10 or Gen

* small definitions using do-notation

* understand/simplify definitions that use do
notation

Course evaluation

* Please don't forget to fill in the course
evaluation!

* This will help us improve the course in
coming years

